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Abstract Robert Sugden argues that robustness analysis cannot play an epistemic
role in grounding model-world relationships because the procedure is only a matter
of comparing models with each other. We posit that this argument is based on a
view of models as being surrogate systems in too literal a sense. In contrast, the
epistemic importance of robustness analysis is easy to explicate if modelling is
viewed as extended cognition, as inference from assumptions to conclusions.
Robustness analysis is about assessing the reliability of our extended inferences, and
when our confidence in these inferences changes, so does our confidence in the
results. Furthermore, we argue that Sugden’s inductive account relies tacitly on
robustness considerations.

1 Introduction

Questions about model-world relationships are questions of epistemology. Many
writers treat the epistemology of models as analogous to that of experimentation:
one-first builds something or sets something up, then investigates the properties of
that constructed thing, and then ponders how the discovered properties of the
constructed thing relate to the real world. Reasoning with models is thus essentially
learning about surrogate systems, and this surrogative nature distinguishes
modelling from other epistemic activities such as “abstract direct representation”
(Weisberg 2007; see also Godfrey-Smith 2006). It is then natural to think that the
epistemology of modelling should reflect this essential feature: we first learn
something about our constructed systems and we then need an additional theory of
how we can learn something about the reality by learning about the construct.
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Robert Sugden’s (2000) seminal paper on “credible worlds” provides a statement of
such a “surrogate system” view of models: models are artificial constructs and their
epistemic import is based on inductive extrapolation from these artificial worlds to
the real world.

The epistemic foundation of models according to this view is thus based on an
inductive leap, which is similar to that of extrapolating from one population to
another: we first build a population of imaginary but credible worlds, investigate
their salient features, and then make a similarity-based inductive leap by claiming
that the real world also shares these salient features.

The purpose of this article is to present an alternative perspective on modelling
that helps in making epistemic sense of the relationships between models and the
world. Our argument is that, from the epistemic point of view, modelling is
essentially inference from assumptions to conclusions conducted by an extended
cognitive system (cf. Giere 2002a, b). Our viewpoint has some obvious affinities
with Suarez’ (2003, 2004) inferential account of scientific representation (see also
Contessa 2007), but our main intention is not to provide a theory of scientific
representation. While we agree with Suarez’ main arguments against similarity and
isomorphism, we also agree with those who have pointed out that these arguments
against dyadic representation apply to representation in general rather than just
scientific representation (Brandom 1994; Callender and Cohen 2006). We are also
sympathetic to Knuuttila’s (2005, 2009) productive view in stressing that models are
artefacts used to produce claims, and in downplaying the explanatory primacy of
any representational relationship between the world and a model as a whole in
accounting for the epistemic value of models.

We do not claim that the surrogate-system view is wrong. We advocate our
ontologically deflationist perspective in order to guard against mistakes that may
arise from taking this view too literally. The perspective of modelling as extended
inference constrains and complements the surrogate-system view. First, viewing
modelling as inference constrains its epistemic reach into being the same as that of
argumentation: a model does not contain any more information than that which is
already present in the assumptions. Our aim is to dispel the impression that there is a
special philosophical puzzle of how we can learn about the world by simply looking
at our models. Secondly, viewing modelling as inference from assumptions to
conclusions implies that, in principle, all epistemic questions about modelling can
be conceived as concerning either the reliability of the assumptions or the reliability
of the inferences made from them. The first is a matter of whether the assumptions
are true (or perhaps close to being true) of, or applicable to, some specific real
system. The second is a matter of whether the way in which conclusions are derived
from these assumptions may lead to false conclusions even when the assumptions
are (roughly) true. The reliability of inferences concerns conclusions that are about
some real target system. The corresponding within-model inferences are usually
deductive and thus maximally secure.

Evaluating the reliability of assumptions may involve various epistemic activities
such as formulating intuitive judgments concerning their truthlikeness, testing the
assumptions empirically, and so forth. If all the assumptions are true, and the
modeller makes valid inferences from them, trivially, the conclusions are
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empirically supported. In this case, a within-model inference is simply a model-
world inference. The epistemic problem in modelling arises from the fact that
models always include false assumptions, and because of this, even though the
derivation within the model is usually deductively valid, we do not know whether
our model-based inferences reliably lead to true conclusions. Even though modellers
sometimes need to make judgments concerning the structural similarity of their
model and a target system, there is no need to think of models as abstract objects
and thus no special epistemic puzzle of linking abstract or constructed objects to
reality. The model’s structure ultimately derives from the assumptions and the way
in which they are put together, or to put it differently, the structure is one of the
model’s assumptions.

We will argue that robustness analysis is essentially a means of learning about
the reliability of our model-based inferences from assumptions to conclusions. Our
perspective may thus account for the epistemological significance of robustness
analysis and thereby complements the surrogate-system view. In contrast, according
to the surrogate-system point of view, robustness analysis is only a matter of
comparison between constructed worlds, and cannot therefore be relevant to the
model-world relationship. Sugden explicitly makes this argument in his Credible
Worlds paper: robustness analysis cannot take us outside the world of models and
therefore cannot be relevant to the inductive leap from models to the world.

2 Models as Surrogate Systems

There seems to be an analogy in the epistemic dynamics of models and experiments.
It is most conspicuous in the case of simulation models: we build a surrogate
system, investigate it, and then think of how to apply or relate the findings to the real
world. Uskali Miki (2005) and Mary Morgan (2003) have taken the analogy
between models and experiments further by arguing that constructing a surrogate
system and setting up an experiment also have certain logical similarities.
According to Miki (esp. 1992, 1994), modelling and experimentation are both
attempts at isolating the causally relevant factors. In the case of models such
isolation is achieved by making more or less unrealistic assumptions (theoretical
isolation), and in the case of experiments it is achieved causally through
experimental controls (material isolation).

Models are also claimed to be autonomous from theoretical presuppositions
(Morgan and Morrison 1999). Their autonomy derives from the fact that obtaining
tractable models from a theory always involves making various auxiliary
assumptions. That is what modelling is all about: changing, modifying, simplifying
and complexifying such auxiliary assumptions, often in a more or less ad hoc
manner. Thus even theoretical models, let alone phenomenological or data models,
are autonomous in the sense of involving assumptions not derivable from the theory.
One possible way of understanding the notion of model autonomy is to say that the
underlying theory restricts the results of modelling very little: the results inevitably
depend on the auxiliary assumptions. In economics, for example, utility maximi-
sation does not imply all that much in itself, as Kenneth Arrow (1986) has argued.
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Thinking of models in terms of autonomous surrogate systems, and reflecting on
the apparent similarities between them and real-world experiments, would appear to
lead naturally to the idea that the epistemic question concerning the model-world
relationship is to be analysed in terms of a model that has already been constructed,
an autonomous self-standing construct, and that answering this question requires a
special account or a theory. Existing accounts have been based on considerations of
similarity (Giere 1988), isomorphism (Van Fraassen 1980; da Costa and French
2003) or simple induction (Sugden 2000). Any answer to this epistemic question
should be constrained by the general epistemological position adopted, and we take
that position to be level-headed naturalistic empiricism: we can only find out about
the world from our experience of the world. For there to be such experience, a
suitable causal connection between the cognitive agent and the world is necessary.
We do not make any additional arguments for empiricism here because we take it to
be the default position in the philosophy of science. However, if empiricism is true,
the question of how we can learn something new about the real world merely by
studying our models becomes acute. Viewing models as surrogate systems seems to
suggest that we are supposed to learn something about the real world by
experimenting with and making observations about imaginary or abstract objects.
However, experimentation on an imagined or an abstract construct is not the same
thing as real experimentation, and finding out that a model has a certain property is
not the same thing as making an observation about the target phenomenon. In
neither case is there any direct causal contact between the modeller and the
modelled system.

3 Modelling as Extended Inference

The question of how to reconcile naturalistic empiricism with the apparent
epistemic value of models is the same as that which John Norton (2004a, b) asks
about thought experiments. In our view, the correct answer is also the same: the
epistemic reach of modelling is precisely the same as that of argumentation.
Argumentation here means, roughly, using formal syntactic rules to derive
contentful expressions from other contentful expressions in a truth- or probabil-
ity-preserving manner. What sets modelling apart from pure thought
experimentation is that in the former the inferences from assumptions to conclusions
are conducted not entirely in the head of the modeller or only in natural language,
but rather with the help of external inferential aids such as diagrams, mathematical
formulas and computer programs.' In de Donato Rodriguez and Zamora Bonilla
(2009) words, models function as inferential prostheses. What is doing the cognitive
work in modelling is not the individual, but the individual-model pair. Modelling is
essentially inference from assumptions to conclusions conducted by an extended
cognitive system (cf. Giere 2002a, b).

' As one referee pointed out, models could be seen as thought experiments of the extended cognitive
system.
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In our view, although modelling necessarily involves abstracting, models in
themselves are not abstract entities. Abstraction is an activity performed by a
cognitive agent, but the end result of that activity, the abstraction of something, need
not in itself be an abstract entity. Instead, it is (often) a material thing used to
represent something. We take models to be things made out of concrete and public
representations, such as written systems of equations, diagrams, material compo-
nents (for scale or analogue models), or computer programs actually implemented in
hardware. Abstract objects, insofar as they can be said to exist in the first place, are
non-spatiotemporal and causally inert things, and therefore cannot engage in causal
relations with the world or the subject. This is why we think that abstract objects
cannot play an ineliminable role in a naturalistic account of the epistemology of
modelling.

It is usually the inferential rather than the material (or ontological) properties of
these abstractions that are epistemically important for the modeller. Although the
material means of a representation often do matter in subtle ways for what
inferences can be made with it,” the aim in modelling is to minimise or control for
these influences: if a conclusion derived from a model is found to be a consequence
of a particular feature of a material representation lacking an intended interpretation,
the conclusion is deemed to be an artefact without much epistemic value. Therefore,
it often makes perfect sense to further abstract from multiple individual
representations to their common inferential properties and then label these common
inferential properties as “the” model itself. These inferential properties are, of
course, not intrinsic to the representations, but rather depend on the context in which
they are used.” There is thus no need to abandon the distinction between “the
model” and its various descriptions (cf. Miki 2009). For example, many kinds of
public representations facilitate similar kinds of inferences, from spring constants
and amplitudes to total energy, and this makes all of these representations models of
the harmonic oscillator. Such abstractions are often extremely useful in co-
ordinating cognitive labour. By referring to them we refer only to a set of inferences
and can therefore disregard the material things that enable us to make these
inferences in practice. The material form these representations may take is usually
not relevant to the epistemic problems at hand: whether a differential equation was
solved on a piece of paper, on a blackboard, or in a computer is not usually relevant
to whether or not it was solved correctly. This is why it is natural to think that the
“identity” of the model of the harmonic oscillator resides precisely in these

2 Much of the recent philosophical literature on models underscores this point. For example, Marion
Vorms (2008) uses the example of the harmonic oscillator (simple pendulum) to show how the material
means or the format of representation may matter in subtle ways to what kind of inferences can be made
with it.

3 Whether a public and a material thing can be used to make inferences about something else naturally
depends on the intrinsic properties of the thing in question. Thus the contextual nature of representation
does not mean that it is completely arbitrary whether something can be a representation of a particular
system. We believe that this is the intuition behind the idea that there has to be a substantial account of
representation that explains the epistemic properties of models (see e.g. Contessa 2007). However, noting
that the intrinsic properties of things matter to what can be done with them does not yet imply that it is the
concept of representation that accounts for the inferential properties of a model, rather than the other way
round (cf. Brandom 1994).
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common inferential properties of the various material representations, i.e. in the
abstract object. Nevertheless, we should resist reifying the abstractions as abstract
objects in themselves.

Neither adopting a naturalistic empiricist viewpoint nor denying the causal
efficacy of abstract objects should be very contentious. Yet, framing the epistemic
situation in this way undermines the notions that the epistemic question of how we
can learn from models is only asked after the properties of the abstract object have
been investigated, and that there should be a special answer or theory accounting for
it (e.g. extrapolation or simple induction from a set of credible worlds to the real
world). If modelling is inference, then making valid inferences from empirically
supported assumptions would automatically give us empirically supported conclu-
sions.* The inductive gap between the model and the world arises from the fact that
all of the assumptions are never true and the inference becomes unreliable. We will
substantiate this claim further when we discuss robustness analysis in the next
section.

Modelling is clearly distinct from ordinary inference and argumentation in that
we seem to find genuinely new things by manipulating or investigating an artificial
construct. This analogy between the epistemic dynamics of modelling and
experimentation can be misleading, however. The discovery of novel information
is often experienced as a similarity between modelling and experimentation. The
sense of novelty is a result of the essential use of external inferential aids in
modelling. Using mathematics, diagrammatic reasoning carried out with pen and
paper, or computer simulation involves manipulations of representations external to
the mind of the human subject, and he or she may not experience this manipulation
as inference-making, i.e. as phenomenologically similar to thinking. What the
human subject experiences is more akin to experimentation with an artefactual,
abstract or imaginary system. The modeller manipulates graphs or mathematical
equations—something external to his or her mind—and then finds something new
about the abstract object that is represented by the equations or graphs. Yet, from
the perspective of the whole extended cognitive system consisting of the modeller
and the external representations (the model), there is no experimentation, only
inference. The only “epistemic access” (cf. Méki 2009) that the extended cognitive
system has to the target system is via the original causal connection that was
required for the formulation of the substantial empirical assumptions from which the
inferences are made. The things that are found out are new only in the sense that the
conclusions were not transparent to the unaided reasoning powers of the modeller.

Giere (2002a) uses a simple example of how even elementary arithmetical
operations essentially require the manipulation of external representations. Multi-
plying three-digit numbers in our head is beyond the cognitive capacities of most of
us. By using pen and paper in the way we learned in elementary school, we can
break this arithmetic operation down into a series of single-digit multiplications and
additions. The human being performing this task is only making single-digit

4 This does not mean that the model outcome would be empirically supported in the sense that it should
straightforwardly agree with the observations. Modelling results are often claims about tendencies or
capacities of the modelled systems, and the manifestations of these tendencies can be blocked by factors
not included in the models.
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inferences, but the extended cognitive system consisting of the human, the pen and
the paper is making a three-digit inference. In economics, the use of diagrammatic
reasoning offers a vivid example of how manipulating external representations such
as supply and demand curves, budget constraints, and indifference curves facilitates
inference from assumptions to conclusions. Manipulating mathematical symbols
with pen and paper according to formal syntactic rules is a similar activity: it is
inference from assumptions to conclusions, which is now encoded in a mathematical
formalism.

We do not deny the heuristic value of viewing models as surrogate systems. Such
a view captures an important distinction between modelling and other forms of
scientific representation and reasoning. However, we claim that it is prone to leading
to two kinds of mistakes. First, such a view may tempt one to overestimate the
epistemic reach of modelling. Austere empiricism with respect to the epistemology
of modelling helps us clarify what kinds of things we may learn through modelling
and, crucially, what cannot be achieved. For example, the results of true
experimentation may depend on the causal properties of the constituent parts of
the investigated system that were unknown when the experiment was designed,
whereas the model constituents cannot, by definition, have any other properties than
those postulated. In short, the epistemic reach of modelling is the same as that of
argumentation.

Secondly, learning about the properties of our inferential aids may be
epistemologically relevant, but the epistemic dynamics of such learning need not
be similar to learning about the properties of real systems. Viewing models as
surrogate systems may thus mistakenly lead us to classify some of the things we do
with them as having little or no epistemic relevance. We use derivational robustness
analysis,” i.e. the practice of deriving the same result using different modelling
assumptions, as an example of an epistemological strategy with respect to which
this latter mistake can be made.

4 Robustness Analysis and the Reliability of Inferences

Part of the attractiveness of the surrogate-system view of models may derive from the
fact that it seems to explain why modellers are often interested only in the properties
of the models rather than in the relationship between the model and the world:
models are often taken to be interesting systems in their own right. Méki (2009)
laments that merely studying the internal logic of models is not compatible with
scientific realism, since questions of truth seem to be eschewed. This accusation
prompts the question of whether we can obtain knowledge about the material world
by merely investigating models even if we wish to avoid commitment to some kind
of problematic rationalism or other kinds of epistemic magic.

When we are primarily interested in the properties of models, we are interested in
the properties of our inferential aids. When our confidence about our inferences

5 See Woodward (2006) for an account of different types of robustness, and Wimsatt (1981) or Weisberg
(2006) for an account of its epistemic importance.

@ Springer



126 J. Kuorikoski, A. Lehtinen

changes due to new knowledge concerning the properties of the inference apparatus,
our confidence about the conclusions derived using the apparatus also changes. This
is how merely learning about models may legitimately change our beliefs about the
world. Viewing modelling as extended cognition therefore explains why and how
our beliefs about the world may change when we learn more about our models, and
shows that this can be done in a way that is consistent with empiricism.

This is why, contrary to Sugden, we think that derivational robustness analysis
may have epistemic import even though it is a mere comparison between models.
All modelling, or at least all theoretical modelling, involves false assumptions, and
is thus unreliable as an inferential aid. By unreliability we mean the following: the
modeller knows that he or she has to make unrealistic assumptions in constructing
the model, but not whether their falsity (in the sense of not being nothing-but-true
and the-whole-truth) undermines the credibility of the results derived from it.

Theoretical modelling usually involves roughly two kinds of assumptions:
substantive and auxiliary. Substantive assumptions concern aspects of the model’s
central causal mechanism about which one endeavours to make important claims.
They are usually assumptions that, it is hoped, have some degree of empirical merit,
i.e. they are thought to be more or less true of the systems on which it is hoped that
the model will shed some light. The set of target systems need not be fully specified
or even suggested in advance, and the stories that often accompany models could be
seen as selling points for their inferential abilities (cf. Sugden 2009). Auxiliary
assumptions (tractability assumptions and derivation facilitators, for example) are
required for making inferences from these substantive assumptions to conclusions
feasible (Musgrave 1981; Méki 2000; Alexandrova 2006; Hindriks 2006). Different
auxiliary assumptions create different kinds of distortions and biases in our
inferences. By errors and biases, we do not mean logical or mathematical mistakes
in inferences, but rather false consequences that the use of false auxiliary
assumptions may lead us to draw about the target phenomenon. For example, Nancy
Cartwright is concerned that auxiliary assumptions introduced through the very
structure of economic models might create irremediable errors in them that in her
words “overconstrain” the results (Cartwright 2009). Given that making at least
some unrealistic assumptions is unavoidable, these errors and biases are also
unavoidable, and the best epistemic modelling strategy is to accept their
inevitability and to try to control for their effects. Modelling practice must thus
allow for systematically examining the different roles assumptions play, and thus for
at least locating the various errors.

Derivational robustness analysis is the procedure for testing whether a modelling
result is a consequence of the substantive assumptions or an artefact of the errors and
biases introduced by the auxiliary assumptions. It is carried out by deriving a result
from multiple models that share the same substantive assumptions but have different
auxiliary assumptions. The main functions of derivational robustness analysis are to
root out errors and to provide information about the relative importance of the
assumptions with respect to the result of interest (Kuorikoski et al. 2007). By
controlling for possible errors in our inferences, robustness analysis makes our
conclusions more secure. It could therefore increase (or decrease) our confidence in
the modelling results and change our beliefs about the world, although it is, strictly
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speaking, only a matter of comparing similar models. Robustness analysis is thus an
important part of a thoroughly empiricist epistemology of modelling.

We are now in a position to clarify our claim that if the reliability of assumptions
and inferences has been successfully evaluated, there is no further puzzle concerning
how the model as an abstract object relates to reality. If the substantive assumptions
are empirically well-supported, and if the modeller makes truth-preserving
inferences from them, the conclusions are empirically supported. Insofar as the
substantive assumptions are realistic and the inference from them is reliable, they
also carry their epistemic weight into the results. The role of robustness analysis is to
show that the conclusions are not an artefact of the auxiliary assumptions, but rather
derive from the substantive assumptions. Even though deriving a result with a
different set of auxiliary assumptions usually involves deductive inference, the
epistemic importance of robustness analysis is based on the fact that it is not possible
to provide a complete list of all logically possible alternative auxiliary assumptions,
and is in this sense inductive. Furthermore, modelling results are seldom completely
robust, even with respect to the auxiliary assumptions that can be specified, and
model-based inferences are therefore less than foolproof. Hence, an inductive gap
remains between the substantive assumptions (not “the model”) and the world.
Whether or not there are further substantial but yet general or even a priori
constraints that could be imposed on this inductive leap is an open question.

If the substantial assumptions are not realistic, no amount of robustness analysis
suffices to change our views about which results of the model could also be taken to
hold in the real world. Robustness analysis is thus useless if all assumptions are
unrealistic, and its epistemic relevance rides on there being at least some realistic
assumptions. However, the fact that the epistemic status of even substantive
assumptions is often unclear only goes to show that robustness analysis is fallible, as
all forms of inductive inference are. This does not change the fact that it is the
truthlikeness of the substantial assumptions that ultimately carries the epistemic
weight in a model.

The logic of investigating the properties of inferential aids need not be, and often
is not, similar to that of material experimentation. Robustness analysis is a case in
point because it cannot always be considered a theoretical counterpart to causal
isolation or de-isolation. Material isolation works by eliminating the effects of
disturbances, while derivational robustness analysis works by controlling for errors
induced by auxiliary assumptions rather than by eliminating them. This difference
has a number of consequences.

Even though it is possible to control for the effects of disturbances, the way in
which this happens differs from controlling for errors that are induced by auxiliary
assumptions. The crucial difference is that if we know how to control for a
disturbance in an experiment, we know how the disturbance affects the phenomenon
under scrutiny. In contrast, the auxiliary assumptions are often so unrealistic that it
is misleading to think of them as possible causal factors, as the isolation account
seems to suggest. It is often simply impossible to define a metric for the
truthlikeness of auxiliary assumptions. The epistemic goal of derivational robust-
ness analysis may be served just as well by replacing unrealistic assumptions with
equally unrealistic assumptions as with more realistic ones. The crucial question is
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not the truthlikeness of the alternative auxiliary assumptions, but rather their
independence. Independence in this context means, roughly, that the alternatives are
false in different ways, and that they are therefore unlikely to create similar biases in
reasoning. By deriving the same result using a number of independent sets of
auxiliary assumptions, we reduce the possibility that the result is primarily a
consequence of an error created by a particular auxiliary assumption.

Acknowledging the importance of derivational robustness helps us to make sense
of the idea that models are often best evaluated as whole sets of similar inferential
frameworks rather than as isolated and self-standing entities (cf. Aydinonat 2008,
pp. 144-166). The question of what exactly determines the identity of a model
becomes less important when we realise that evaluation is conducted on the level of
sets of models on the one hand, and individual assumptions on the other.

S Similarity, Credibility and Robustness

Let us finally take a closer look at Sugden’s account of models as credible worlds.
He argues that the relationship between models and the world can be evaluated in
terms of similarity: the credibility of abstract models and the consequent inductive
inference are somehow established according to similarity judgments. As Sugden
correctly points out, in economics at least, the credibility of models is often argued
for by way of providing an empirical illustration or a “story” about how the
mechanism at work in the model could be at work in the real world (see also
Morgan 2001). We could complain about the fact that he has not really given an
account of how similarity judgments are supposed to do their job, but given that
others have not come up with much more content for such similarity claims, we will
not concentrate on that here.

Similarity alone is usually not sufficient for establishing credibility, and stories
with which the credibility of models is buttressed often make essential reference to
the robustness of the model—as indeed they do at least in Sugden’s own examples.
Our argument is thus that Sugden’s intuitive notion of similarity presupposes at least
an implicit reference to robustness considerations.

Consider now whether it would be sufficient to use mere similarity, without at
least an implicit reference to robustness, to establish the credibility of a model.
Sugden’s examples include Akerlof’s (1970) lemons model and Schelling’s (1978)
checkerboard model. Let us take the latter first. As Sugden notes, the checkerboard
representation of racial segregation does not derive from a series of isolation
operations that start from a real city. It would be better to say that the checkerboard
is the result of constructing a model, and that if the finished model can be taken to
isolate some particular causal factors, the isolation operation must be conceived to
be an aspect of the whole process of constructing the model.® In other words, once
Schelling had come up with the checkerboard structure, he was able to isolate

6 Uskali Miki has argued (e.g., in 2009) that Sugden’s claim about the constructive nature of modelling
is implicitly based on isolation: when we have constructed the model, we have already made the
necessary isolations.

@ Springer



Incredible Worlds, Credible Results 129

something that seemed crucial to racial segregation: the idea that segregation could
be analysed in terms of individual localisation decisions in a two-dimensional
spatial grid. However, the checkerboard structure is in crucial respects extremely
dissimilar to real cities: people in real cities often live in some sort of clusters, on
top of each other, for example. Without qualification the checkerboard is surely an
incredible world. This trivial-sounding observation simply reminds us that similarity
comparisons are sensible only with respect to particular aspects of the things
compared, and only against a given background context. Checkerboards and real
cities are, of course, similar in that they can both be depicted in a two-dimensional
space in the first place, and this particular dimension of similarity has something to
do with the phenomenon that is being investigated. Surely, however, this similarity
alone would not have convinced anybody about the credibility of the checkerboard
structure in accounting for racial segregation if whether or not the obvious
dissimilarities mattered for the result of this model were an open question. Schelling
realised this and claimed (although without actually proving) that the actual
geometric shape (two-dimensional or three-dimensional, a grid or a torus, for
example) and the initial spatial configuration of individuals on the grid did not
matter. Subsequent developments have partly vindicated this robustness claim. At
the risk of being speculative, we feel confident in claiming that the checkerboard
model would not have become so famous had its credibility not received support
from other scholars who showed that it was robust with respect to most of these
other assumptions.’

What about Akerlof’s lemons model, then? The importance of robustness in
creating credibility is admittedly less evident than in Schelling’s model, but
Akerlof’s empirical illustrations of the lemons principle do establish the idea that
insofar as this principle is at work at all, its consequences will be similar in widely
differing circumstances: informational asymmetry results in a reduction of the
volume of trade and a deterioration in the average quality of goods. The model is
indeed similar to the real world in that it is relatively easy to recognise the fact of
asymmetric information in the various settings that Akerlof presents. When he asks
us to consider the idea that there are four kinds of cars (new and old, good and bad),
he is implicitly referring to a robustness consideration: we think that making the
more realistic assumption that cars can be arranged on a continuum with respect to
age and quality would not really affect the consequences of incomplete information.

Nothing is similar to something else fout court. Meaningful comparisons of
similarity can only be made with respect to specific features of the things compared
and only against some background context. Similarity confers credibility on a model
only when it is the important parts of the model that are, to some degree, similar to
the modelled systems. Therefore, even from Sugden’s own point of view, robustness
of these important parts of the model with respect to auxiliary assumptions (which
may or may not be similar to the real world) has to be ascertained before the
similarity comparison can do the epistemic work it is supposed to do.

7 See Aydinonat (2007, 2008) for a review of Schelling’s model and for more ways in which it is
dissimilar to real cities.
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6 Conclusions

It is generally accepted that indirect representation and surrogative reasoning are the
cornerstones of the epistemic strategy of model-based science. In this article we
have stressed that although this widely shared view is correct, modelling as a
cognitive activity is nothing more than inference from assumptions to conclusions
conducted by an extended cognitive system, i.e. argumentation with the help of
external reasoning aids. This additional perspective helps to dispel some epistemic
puzzles that might arise from taking the surrogative and semi-experimental
phenomenology of modelling too far.

Our perspective also helps to illustrate how merely looking at models may
justifiably change our beliefs about the world. When we learn more about the
reliability of our inferences, the reliability attributed to our conclusion should also
change. By reliability we mean the security of our inferences against the distorting
effects of the inevitable falsities in modelling assumptions. Derivational robustness
analysis is a way of assessing the reliability of our conclusions by checking whether
they follow from the substantial assumptions through the use of different and
independent sets of false auxiliary assumptions. It is a way of seeing whether we can
derive credible results from a set of incredible worlds.
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