— Problem Set 1 — Y1: Macroeconometrics University of Helsinki, January 2012

Antti Ripatti antti[at]ripatti.net http://teaching.ripatti.net/metrics/

—Exercise 1. (Gymnastics of recursive substitution)—Consider the following scalar stochastic process

$$x_t = \rho x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathrm{iid}(0, \sigma^2), \ t = 1, 2, \dots, \infty.$$

Assume further the initial condition $x_0 = a \in \mathbb{R}$.

- (a) Express x_t as the sum of current and past ϵ_t s and x_0 .
- (b) Is x_t stable or non-explosive if $|\rho| < 1$? Explain why?
- (c) What happens if $|\rho| > 1$? What happens if $\rho = 1$?
- (d) Are your answers to (b) and (c) different if we don't assume an initial condition, i.e.: $t = -\infty, \ldots, -1, 0, 1, 2, \ldots, \infty$
- (e) Suppose that $x_0 = 0$, $\varepsilon_1 = 1$ and $\varepsilon_j = 0$ j > 2. What is x_1, x_2, x_t ? (Impulse responses)
- (f) Compute one period forecast of x_t , ie $E_t x_{t+1}$? Compute h-period forecast of x_t , ie $E_t x_{t+h}$? The conditioning information set is $\mathcal{F}_t = \{\varepsilon_t, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots\}$.
- —EXERCISE 2. (INTERMEDIATE STEPS OF THE EXAMPLE)—Calculate the intermediate steps, ie matrices A_0^{-1} , \tilde{A} and E, of the example 'NK model in BK form'.

—Exercise 3. (Indeterminacy in NK model)—

Consider the New-Keynesian model (equations (13)–(15) in the handout/slides). Some assumptions related to the model parameters are listed in early parth of the slides. Assume that instead of (15), the monetary policy is given by

$$i_t = \rho + \phi_\pi \pi_t + \phi_y y_t + s_t,$$

where s_t is a monetary policy shock. Let's assume it is (strong) white noise¹.

¹See wikipedia for the definition.

- (a) Write the process in the matrix form as equation (16) in the example in the handout.
- (b) Assume the following parameter values $\sigma = 1$, $\beta = 0.99 \lambda = 0.1$, shock variances 0.01 (if needed), $\phi_{\pi} = 1.5$, $\phi_{y} = 0.2$ and $\rho = 0$. Use your matrix computing program (R, Octave, Matlab, Gauss, whatever), and calculate numerically the matrices A_{0} , A_{0}^{-1} , \tilde{A} and E.
- (c) What does the BK conditions say about this problem? Calculate the eigenvalues of \tilde{A} , ie the BK conditions.
- (d) Try (again numerically) different values of ϕ_{π} . What are the values that do not satisfy BK condition?