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Introduction

THE GOAL

Use DSGE models to address empirical issues
Examples of uses:

Model Estimation
Model Comparison
Forecasting
Measurement
Shock Identification
Policy Analysis
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EVOLUTION OF EMPIRICAL MACRO – PART 1: BIRTH

OF LARGE MODELS

The representation of theoretical models as complete
probability models dates at least to Haavelmo (1944,
Econometrica)
Models were loosely related to economic theory:

Production functions
National account identities
Old-Keynesian consumption function

And estimated using OLS or instrumental variables methods
(2SLS).
Phillips curve was upward-sloping even in the long-run! Policy
tool.
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EVOLUTION OF EMPIRICAL MACRO – PART 2A: THE

BREAKDOWN OF THE PHILLIPS CURVE
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EVOLUTION OF EMPIRICAL MACRO – PART 2B: SCENT

OF NEO-CLASSICAL SYNTHESIS

Developments in time series econometrics: cointegration
and error correction models
Separation of short-run (dynamics) and long-run
(cointegration)
Long-run (cointegration) builds on economic theory
Not yet general equilibrium
Ad-hoc dynamics
No sensible steady-state
Vulnerable to Lucas critique

AWM, BOF3, BOF4
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EVOLUTION OF EMPIRICAL MACRO – PART 3A:
KYDLAND–PRESCOTT

Methodological revolution
Intertemporally optimizing agents. Budget and technology
constraints.

Conceptual revolution
In a frictionless markets under perfect competition
business cycles are efficient: no need for stabilization;
stabilization may be counter-productive.
Economic fluctuations are caused by technology shocks:
they are the main source of fluctuation.
Monetary factors (price level) has a limited (or no) role
Calibration
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EVOLUTION OF EMPIRICAL MACRO – PART 3A:
KYDLAND–PRESCOTT. . .

Implementation
1 Pose a question
2 Use theory to address the question
3 Construct the model economu
4 Calibrate
5 Run the experiment within the model

Lack of statistical formality in calibration.
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EVOLUTION OF EMPIRICAL MACRO – PART 3B:
BAYESIAN ESTIMATION

Sargent (1989 JPE) presents the mapping of linearized
DSGE models into state-space representation
DeJong, Ingram and Whiteman (2000, JoE, 2000, JAE)
developed motheods for mapping priors over structureal
parameters into priors over correspondint state-space
parameters enabling Bayesian inference.
Smets and Wouters (2003) made a real working application
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THIS COURSE

This course builds on Part 3 (Kydland and Prescott (1982)). The
aim is to learn how the model meets data.

We
stationarize the model: restrictions implied by the
balanced growth path
approximate it with the first order Taylor approximation
review (some of) the solution methods
refresh the basic statistical tools to compute moments
filter the model and the data
introduce the Bayesian methods to study model
parameters



Structural Macroeconometrics

Approximating and solving DSGE models

OUTLINE
1 Introduction
2 Approximating and solving DSGE

models
Stationarizing
Approximating
Solving

Blanchard and Kahn method
Klein method
Method of undetermined
coefficients

3 Moments of Model and Data
Introduction
Autocovariance functions and
alike
Spectral analysis

Univariate
Frequency-Domain Methods
Estimation
Linear Filters

Multivariate time series models
Filtering the data and model

4 Matching moments
Calibrating steady-state
Comparing model and data
moments
GMM

5 Filtering and Likelihood approach
Kalman filter and the maximum
likelihood
Filtering and decompositions
Bayesian methods
Simulating posterior
Model comparison



Structural Macroeconometrics

Approximating and solving DSGE models

BASIC NEOCLASSICAL MODEL WITH GROWTH
Infinite number of identical agents with preferences

U = E0

∞

∑
t=0

βtu(Ct, Lt), 0 < β < 1 (1)

u(·) is strictly increasing, concave, twice continuously
differentiable to satisfy Inada-type conditions. Ct is
consumption and Lt leisure.
Production technology

Yt = Ft(Kt, Nt), (2)

where Kt is predetermined capital, Nt is labour input. Ft() has
all standard neoclassical properties.
Capital accumulates according to

Kt+1 = (1− δK)Kt + It, (3)

where It is gross investment and δK is the rate of depreciation.
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Individual resource constraints:
1 Total amount of time cannot exceed the endowment of

unity
Lt + Nt ≤ 1 (4)

2 Total uses of goods cannot exceed his disposable income

Ct + It ≤ (1− τt)Yt + Tt, (5)

where τt is tax on output and Tt is transfers/lump-sum
taxes.
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Policy rule links the tax rate to per capital level1 to the levels of
endogenous and exogenous variables:

τt = τt(At, Gt, Kt, Nt).

Government budget constraint is given by

τtYt = Gt + Tt.

Combining the government and individual budget constraints
gives us per capita resource constraints

Lt + Nt ≤ 1 (6)
Ct + It + Gt ≤ Yt. (7)

1denoted by underline
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OPTIMALITY CONDITIONS

Combine (2)–(5) to a single constraint to write the Lagrangian
as follows

L = E0

∞

∑
t=0

{
βtu(Ct, 1−Nt)

+ Λt
[
(1− τt)Ft(Kt, Nt) + Tt + (1− δK)Kt − Ct − Kt+1

]}
, (8)

where K0 is treated as given and Λt is the Lagrange multiplier
attached to the combined constraint.
Let Dnf ≡ ∂f (x1, . . . , xn, xn+1, . . . )/∂xn.
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The optimality conditions are given by

βtD1u(Ct, 1−Nt)−Λt = 0 (9)

−βtDtu(Ct, 1−Nt) + Λt(1− τt)D2Ft(Kt, Nt) = 0 (10)

Λt+1
[
(1− τt)D1Ft+1(Kt+1, Nt+1) + (1− δK)

]
−Λt = 0 (11)

(1− τt)Ft(Kt, Nt) + Tt + (1− δK)Kt − Kt+1 − Ct = 0, (12)

for t = 0, 1, 2, . . . and the “transversality condition”,
limt→∞ ΛtKt+1 = 0.
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Stationarizing

This section builds on King et al. (2002)
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Approximating and solving DSGE models

Stationarizing

PER CAPITA OPTIMALITY CONDITIONS

This section builds on King et al. (2002)
The above optimality conditions are individual optimality
condition. It can be shown that there exists per capita
optimality conditions:

βtD1u(Ct, 1−Nt)−Λt = 0

−βtDtu(Ct, 1−Nt) + Λt(1− τt(At, Gt, Kt, Nt))D2Ft(Kt, Nt) = 0

Λt+1
[
(1− τt)D1Ft+1(Kt+1, Nt+1) + (1− δK)

]
−Λt = 0

(1− τt)Ft(Kt, Nt) + Tt + (1− δK)Kt − Kt+1 − Ct = 0,

for t = 0, 1, 2, . . . and the “transversality condition”,
limt→∞ ΛtKt+1 = 0.
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Stationarizing

TECHNOLOGIES THAT LEAD TO BALANCED GROWTH

PATH
The steady state growth is defined to be a situation in which
Ct, Yt, It, Kt and the real wages (per hour/person) grow at
constant, but possibly differing rates.
We need to restrict

returns-to-scale to unity (constant returns-to-scale, ie the
degree of homogeneity)
direction of technical change
form of the production function F

Write the production function as follows

Yt = AF(XK
t Kt, XN

t Nt),

where XK
t represents capital-augmenting technical progress

and XN
t labour-augmenting technical progress and γXK and

γXN their respective (gross) growth rates.
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Stationarizing

The growth rate of Yt is then the following

γY ≡
Yt

Yt−1
=

XK
t Kt

XK
t−1Kt−1

F(1, Zt)

F(1, Zt−1)
, where Zt ≡

XN
t Nt

XK
t Kt

Zt stationary so that γY = γXKγK

Combining aggregate budget constraint (7) and capital
accumulation (3), results (ignoring underlines)

γK =
Yt − Ct

Kt−1
+ (1− δK).

Assuming Y > C, γK will be constant only if Y/K and C/K are
constant. Since Y/K is constant, then γK = γY and γXK = 1. No
capital-augmentation in the steady state!
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Stationarizing

F(1,Zt)
F(1,Zt−1)

is stationary

irrespective of the stationarity of Zt. In this case the production
function is Cobb-Douglas. Then it is always possible to write
the technical progress as labour-augmenting.

Hence, the non-stationary technical change must be expressible
in labour-augmenting form! In the case of Hicks-neutral
technical change, i.e. XK

t = XN
t , the Cobb-Douglas production is

only production function that is consistent with the feasibility
of the steady-state.
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Stationarizing

IMPLICATIONS

The assumption of non-stationary growth restrict many choices
regarding the model specification

1 feasibility of steady states
2 steady state marginal products
3 local elasticities
4 preferences and policy rules
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Stationarizing

STEADY-STATES

γN = 1 since daily time devoted to work is bounded by 0
and 1.

γC = γI = γY from the commodity constraint C + I = Y and
I > 0.

γK = γI from capital accumulation equation (3)
γX = γK because of constant returns-to-scale.

Hence, all the real variables grow at the same rate!
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Stationarizing

STEADY-STATE MARGINAL PRODUCTS

1 the marginal product of capital AD1F(Kt, XtNt) is
stationary since γK = γX and the constant returns-to-scale
implies that the marginal product is homogenous of
degree zero in X: AD1F(Kt/Xt, Nt).

2 the marginal product of labour XtAD2F(Kt, XtNt) grows at
rate γX since AD2F(Kt, XtNt) is also homogenous of degree
zero in X.
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Stationarizing

RESTRICTIONS ON PREFERENCES AND POLICY RULES I

We have to check whether the household optimality conditions
are consistent with the technologically feasible steady state.

Invariant intertemporal substitution in consumption
Equations (9) and (11) imply that the growth rate of marginal
utility is constant over time

D1u(Ct, L)
D1u(Ct+1, L)

=
β

γΛ
= β[AD1F(k, N) + 1− δK],

where k = K/X.
Define σc =

D11U(Ct,L)Ct
D1U(Ct,L)

as the elasticity of marginal utility with
respect to consumption. Then σc has to be constant over time
and, hence, invariant to the scale of consumption.
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Stationarizing

RESTRICTIONS ON PREFERENCES AND POLICY RULES

II
Invariance of efficient steady state labour
Conditions (9) and (10) imply

log[D1u(Ct, Lt)] + log[XtAD2F(Kt, XtN)] = log[D2u(Ct, Lt)].

By utilizing
1 Marginal product of effective labour AD2F(k, N) is constant

in the steady state.
2 Technology grows at rate γX
3 The marginal utility of consumption grows at rate γ−σc

C .
Denote elasticity of marginal utility of leisure wrt consumption
as ξlc, then, in the steady state, this is constant and satisfies
1− σc = ξlc.
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Stationarizing

The steady state labour conditions are actually pretty strict. For
balanced growth to be optimal with labour supply chosen by agents,
utility must be such that there are exactly offsetting income and
substitution effects of the changes in real wages associated with
sustained growth in productivity.
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Stationarizing

STATIONARIZED VARIABLES

The growth rate of the economy (and all real variables) is

Xt

Xt−1
≡ γ = γY = γC = γI = . . .

We transform all real variables by dividing them Xt. The
economy with new set of variables is stationarized.
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Stationarizing

EXAMPLES I

Production function

Yt = Kα
t−1(XtNt)

1−α

divide both sides by Xt

Yt

Xt︸︷︷︸
≡Yt

=

Kt−1

Xt−1︸ ︷︷ ︸
≡Kt−1

Xt−1

Xt︸ ︷︷ ︸
=1/γ


α

(Nt)
1−α

In stationarized, transformed form

Yt = (Kt−1/γ)αN1−α.
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Stationarizing

EXAMPLES II
The consumption Euler equation

1 = β Et

[(
Ct+1

Ct

)−σ Pt

Pt+1
Rt

]

Multiply and divide by Xt and Xt+1

1 = β Et

[(
Ct+1/Xt+1Xt+1

Ct/XtXt

)−σ Pt

Pt+1
Rt

]

1 = β Et

[(
Ct+1

Ct
γ

)−σ Pt

Pt+1
Rt

]
The stationarized system forms the basis for the following
steps.
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Stationarizing

NOMINAL TRENDS I

Monetary policy controls the nominal trends in the economy. It
may arise, for example, in the following two cases

1 The central bank’s inflation target is non-zero
CB follows, for example, the Taylor type rule

it = ρ + φπ(πt − π̄),

where π̄ is the non-zero inflation target.
2 Central bank targets money growth and money growth

rate exceeds (income elasticity×) real growth rate of the
economy.

Choose the price numeraire, consumption prices for example,
and express the economy in inflation rates and relative prices.
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Approximating

(LOG)LINEARIZING

The stationarized decision rules, budget constraints and
equilibrium conditions can typically be written in the following
form

Et Ψ(Zt+1, Zt) = 0, (13)

where Zt and 0 are n× 1 vectors. The conditional expectation
operator Et uses information up to and including period t.
Note, that it is not restrictive to use the first order system, i.e.
having only one lead. The higher order leads/lags may be
introduced by augmenting the state vector Zt (google
“companion form”).
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Approximating

The goal is to approximate (13) with a linear system, which can
then be solved using the methods that will be described in the
following chapters.

Notation
Denote the steady state by a variable without time index, Z.
Small letter denotes log of original capital letter variable,
zt ≡ log(Zt).

The deterministic steady state of (13) is

Ψ(Z, Z) = 0,

Note, that Z, the deterministic steady state of the model is a
nonlinear function of the model’s parameters µ.
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Approximating

Compute the first-order Taylor approximation around the
steady-state Z.

0 ≈ Ψ(Z, Z) +
∂Ψ
∂Zt

(Z, Z)︸ ︷︷ ︸
≡A(µ)

×(Zt − Z) +
∂Ψ

∂Zt+1
(Z, Z)︸ ︷︷ ︸

B(µ)

×(Zt+1 − Z),

where Zt − Z is n× 1, ∂Ψ(Z, Z)/∂Zt denotes the Jacobian of
Ψ(Zt+1, Zt) wrt Zt+1 evaluated at (Z, Z). To shorten

A(µ)(Zt − Z) + B(µ)Et(Zt+1 − Z) = 0.

The coefficient matrices are function of deep (model’s)
parameters.
Note that this is a mechanical step that is typically done by the
software (e.g. Dynare, Iris). Often the Jacobian may be
computed analytically.



Structural Macroeconometrics

Approximating and solving DSGE models

Approximating

LOGARITHMIC APPROXIMATION

Logarithmic approximation is a special case of above. Note that
Zt = exp(log(Zt)), and, as denoted above, Zt = exp(zt).
Suppose we have

f (Xt, Yt) = g(Zt), (14)

with strictly positive X, Y, Z (ie the linearization point). The
steady state counterpart is f (X, Y) = g(Z).
This simple summarization is, for example, in the slides by Jürg Adamek).

(http://www.vwl.unibe.ch/studies/3076_e/linearisation_slides.pdf)

http://www.vwl.unibe.ch/studies/3076_e/linearisation_slides.pdf
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Approximating

Start from replacing Xt = exp(log(Xt)) in (14),

f
(

elog(Xt), elog(Yt)
)
= g

(
elog(Zt)

)
,

i.e.
f (ext , eyt) = g (ezt) ,

Taking first-order Taylor approximations from both sides:

f (X, Y) + f ′1(X, Y)X(xt − x) + f ′2(X, Y)Y(yt − y)
= g(Z) + g′(Z)Z(zt − z) (15)

Often we denote x̂t ≡ xt − x.
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Approximating

Divide both sides of (15) by f (X, Y) = g(Z) to obtain

1 + f ′1(X, Y)X(xt − x)/f (X, Y) + f ′2(X, Y)Y(yt − y)/f (X, Y)
= 1 + g′(Z)Z(zt − z)/g(Z) (16)

Note that
f ′1(X, Y)X/f (X, Y)

is the elasticity of f (Xt, Yt) with respect to Xt at the steady-state
point.
Also note, that 100× (xt − x) tells Xt’s relative deviation from
the steady-state point.
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Approximating

WARNING!

You may only loglinearize strictly positive variable. Typical
example of a variable that may obtain negative values is the net
foreign asset. This needs to be linearized!
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Approximating

USEFUL LOG-LINEARIZATION RULES
Denote x̂t ≡ log(Xt)− log(X)

Xt ≈ X(1 + xt)

Xρ
t ≈ Xρ(1 + ρx̂t)

aXt ≈ X(1 + x̂t)

XtYt ≈ XY(1 + x̂t + ŷt)

Yt(a + bXt) ≈ Y(1a + bX) + aYyt + bXY(x̂t + ŷt)

Yt(a+ bXt + cZt) ≈ Y(a+ bX+ cZ)+Y(a+ bX+ cZ)ŷt + bXYx̂t + cZYẑt

Xt

aYt
≈ X

aY
(1 + x̂t − ŷt)

Xt

Yt + aZt
≈ X

Y + aZ

[
1 + x̂t −

Y
Y + aZ

ŷt −
aZ

Y + aZ
ẑt

]
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Solving

BLANCHARD AND KAHN METHOD
Blanchard and Kahn (1980) develop a solution method based
on the following setup of a model[

x1t+1
Et x2t+1

]
= Ã

[
x1t
x2t

]
+ Eft, (17)

where
x1t is n1 × 1 vector of endogenous predetermined variables
= variables for which Et x1t+1 = x1t+1. For example kt+1 in
the standard RBC model.
x2t is n2 × 1 vector of endogenous nonpredetermined
variables = for which x2t+1 = Et x2t+1 + ηt+1, where ηt+1
represents an expectational error.
ft contains k× 1 vector of exogenous forcing variables: e.g.
shock innovations.
Ã is full rank.
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Solving

Use Jordan normal form2 of the matrix Ã as follows

Ã = Λ−1JΛ,

where J is a diagonal matrix consisting of eigenvalues of Ã that
are ordered from in increasing value. It is partitioned as follows

J =
[

J1 0
0 J2

]
,

where
the eigenvalues in J1 lie on or within the unit circle (stable
eigenvalues)
the eigenvalues in J2 lie outside the unit circle (unstable
eigenvalues)

2See also Spectral decompostition or Eigendecompisition or canonical form
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Matrix Λ contains the corresponding eigenvectors. It is
partitioned accordingly (and E too)

Λ =

[
Λ11 Λ12
Λ21 Λ22

]
E =

[
E1
E2

]
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Solving

STABILITY CONDITION

Saddle-path stability
If the number of unstable eigenvalues is equal to the number of
nonpredetermined variables, the system is said to be
saddle-path stable and an unique solution exists.

Other cases
1 If the number of unstable eigenvalues exceeds the number

of nonpredetermined variables, no solution exists.
2 If the number of unstable eigenvalues is smalle than the

number of nonpredetermined variables, there are infinite
solutions
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SADDLE-PATH CASE I
Rewrite (17) as[

x1t+1
Et x2t+1

]
= Λ−1JΛ

[
x1t
x2t

]
+

[
E1
E2

]
ft (18)

and premultiply by Λ to obtain[
x́1t+1

Et x́2t+1

]
=

[
J1 0
0 J2

] [
x́1t
x́2t

]
+

[
É1
É2

]
ft,

where [
x́1t
x́2t

]
≡
[

Λ11 Λ12
Λ21 Λ22

] [
x1t
x2t

]
[

É1
É2

]
≡
[

Λ11 Λ12
Λ21 Λ22

] [
E1
E2

]
.
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SADDLE-PATH CASE II

The system is now “de-coupled” in the sense that the
nonpredetermined variables are related only to the unstable
eigenvalues J2 of Ã. Hence, we have two “seemingly
unrelated” set of equations.
As in the univariate case, we derive the solution of the
nonpredetermined variables by forward iteration and
predetermined variables by backward iteration.
We start by analysing the lower block, ie the system of the
nonpredetermined variables by performing the forward
interation. Denote f2t of those fts that are conformable with D2.
The lower part of (18) is as follows

x́2t = J−1
2 Et x́2t+1 − J−1

2 D2f2t (19)
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SADDLE-PATH CASE III
Shift it one period and use the law-of-iterated-expectations3

x́2t+1 = J−1
2 Et x́2t+2 − J−1

2 D2f2t+1

and substitute it back to (19) to obtain

x́2t = J−2
2 Et x́2t+2 − J−2

2 D2f2t+1 − J−1
2 D2f2t (20)

Because J2 contains the eigenvalues above the unit disc, Jn
2 will

asymptotically wanish. The iteration results

x́2t = −
∞

∑
i=0

J−(i+1)
2 D2 Et f2t+i

Using the definition x́2t, we may write in to the form

x2t = −Λ−1
22 Λ21x1t −Λ−1

22

∞

∑
i=0

J−(i+1)
2 D2 Et f2t+i (21)
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SADDLE-PATH CASE IV

Finally, the upper part of (18) is given by

x1t+1 = Ã11x1t + Ã22x2t + E1ft,

where Ã11 and Ã22 are reshuffled Ã according to the above
ordering.

3Et(Et+1 xt) = Et xt
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AN EXAMPLE WITH AR(1) SHOCK

Suppose
f2t+1 = Φf2t + εt+1, εt ∼ IID(0, Σ)

and ρ is full rank and its roots are within the unit disc (ie
stationary VAR(1)). Then

Et f2t+i = Φif2t, i ≥ 0

and (21) becomes

x2t = −Λ−1
22 Λ21x1t −Λ−1

22 (I−ΦJ−1
2 D2)

−1f2t (22)
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ISSUES

The model variables has to be classified either
predetermined or nonpredetermined. −→model-specific
system reduction may be required.
Ã has to be a full rank matrix. Hence, identities are not
allowed!
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KLEIN’S METHOD I

Klein (2000) proposes a method that overcome some of the
drawbacks of Blanchard and Kahn (1980) by allowing singular
Ã. It is also computationally fast. The system has to be in the
form

Ã Et xt+1 = B̃xt + Eft, (23)

where ft (nz × 1 vector) follows the VAR(1)4. Ã and B̃ are n× n
matrices, and E n× nz matrix.

ft = Φft−1 + εt, εt ∼ IID(0, Σ)

and Ã may be singular (reduced rank). This mean that we may
have static equilibrium conditions (like identities) in the
system.
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KLEIN’S METHOD II

Decompose xt to predetermined5 x1t and nonpredetermined x2t
variables as before. Then

Et xt+1 =

[
x1t+1

Et x2t+1

]
.

As before the system will be de-coupled according to x1t
(n1 × 1) and x2t (n2 × 1). Generalized Schur decomposition, that
allows singularity is used instead of standard spectral
decomposition. Applying it to Ã and B̃ gives

QÃZ = S (24)
QB̃Z = T, (25)



Structural Macroeconometrics

Approximating and solving DSGE models

Solving

KLEIN’S METHOD III
where Q, Z are unitary6 and S, T upper triangular matrices with
diagonal elements containing the generalized eigenvalues of Ã
and B̃. Eigenvalues are ordered as above.
Z is partitioned accordingly

Z =

[
Z11 Z12
Z21 Z22

]
.

Z11 is n1 × n1 and corresponds the stable eigenvalues of the
system and, hence, conforms with x1, ie predetermined
variables.
Next we triangularize the system (23) to stable and unstable
blocks

zt ≡
[

st
ut

]
= ZHxt,
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KLEIN’S METHOD IV

where H denotes the Hermitian transpose. and (24) and (25) can
be written as

Ã = Q′SZH

B̃ = Q′TZH.

Premultiplying the partitioned system by Q we obtain

S Et zt+1 = Tzt + QEft (26)

and since S and T are upper triangular, (23) may be written as[
S11 S12
0 S22

]
Et

[
st+1
ut+1

]
=

[
T11 T12
0 T22

] [
st
ut

]
+

[
Q1
Q2

]
Eft. (27)
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KLEIN’S METHOD V
Due to block-diagonal (recursive) structure, the process ut is
unrelated st. We iterate this forward to obtain7

ut = −T−1
22

∞

∑
i=0

[T−1
22 S22]

iQ2E Et ft+i.

Since ft is VAR(1), we obtain

ut = Mft
vec M = [(Φ′ ⊗ S22)− In ⊗ T22]

−1 vec[Q2E].

This solution of the unstable component is used to solve the
stable block, resulting

st+1 = S−1
11 T11st + S−1

11 [T12M− S12MΦ + Q1E]ft − Z−1
11 Z12Mεt+1.

Given the definition of ut and st, we may express the solution in
terms of original variables.

4We drop the constant term (and other stationary deterministic stuff) to
simplify algebra.

5Klein (2000) gives more general definition to predetermidness than BK.
He also allows “backward-lookingness”, which means that the prediction
error is martingale difference process.

6U′U = I
7See appendix B in Klein (2000).
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METHOD OF UNDETERMINED COEFFICIENTS
Following Anderson and Moore (1985) (AiM) and Zagaglia
(2005), DSGE model may be written in the form

H−1zt−1 + H0zt + H1 Et zt+1 = Dηt, (28)

where zt is vector of endogenous variables and ηt are pure
innovations with zero mean and unit variance.
The solution to (28) takes the form

zt = B1zt−1 + B0ηt,

where

B0 = S−1
0 D,

S0 = H0 + H1B1.

B1 satisfies the identity

H−1 + H0B1 + H1B2
1 = 0.
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SUMMARIZING I
The general feature of the solution methods is that they result a
“VAR(1)” representation of the model

ξt = F0(µ) + F1(µ)ξt−1 + FΓ(µ)vt, (29)

where
Variable vector ξt are the variables in the model.
matrices Fi(µ) are complicated (and large) matrices whose
exact form depends on the solution method (See, eg,
previous slide)
They are also highly nonlinear function of the “deep”
parameters µ of the economic model

The parameters µ include, among others, the parameters
specifying the stochastic processes of the model: shock
variances, for example
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SUMMARIZING II

We may use this representation to analytically calculate
various model moments for given parameter values.
We may use this also for simulating the model.
Note that we do not know anything about the data at this
stage.
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Introduction

THE IDEA

The ultimate purpose of bringing model and data together is to
validate the model. This means

comparing model and data
using data to calibrate (some) parameters of the model
figuring out in where the model fits the data and where not

How to do it:
computing model moments (statistics), and
comparing them to data moments (statistics)

More challenging task is to estimate parameters (or other
objects) of the model.
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Introduction

HOW TO COMPUTE MODEL MOMENTS

(After all the hazzle of the previous section) the model is in the
linear form. Many statistics may be computed analytically
using the linear form.
For some statistics this is not possible. The simulation (Monte
Carlo) alternative:

N = 10000; % large number
for iN = 1:N
draw_shock_innovation;
relying_on_the_solution_compute_endog._variables;
compute_test_statistic;
save_it_to_vector;

end;
my_test_statistic = meanc(test_statistic)
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Introduction

COMPARING DATA AND MODEL

Note that the data moments are estimated!
−→ there is uncertainty related to these estimates
−→ use confidence bounds (of data moments) when

comparing data moments and model moments
Very often the comparison involves plotting. Do not forget
bounds in plots.
Univariate comparisons are straightforward. Multivariate
comparison involves identification problem: impulse responses
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Introduction

WHAT MOMENTS?

Standard moments are
means: great ratios
variances: relative to, for example, output
correlation: with different lags
similar moments in frequency domain

spectral density
coherence
gain

impulse responses
forecast error variance decomposition
other VAR statistics

People are innovative in comparing, for example,forecasts!
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Introduction

STRUCTURE OF THIS SECTION

1 Introduce univariate or bivariate moments in time domain:
auto and cross correlations

2 Same stuff in frequency domain
3 Have a look at multivariate stuff: VARs

Exclusions
I exclude

univariate time series model (eg ARMA): you should
know these!
nonlinear time series models (eg ARCH): the current
model solution methods (as we use them) do not support
nonlinearity
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STOCHASTIC PROCESS

Definition (Stochastic process)
A set of random variables

{Xt = (x1t, . . . , xmt)
′|t ∈ T }

is called stochastic process, where t denotes time and Xt is an
observation that is related to time t.

Since this is infinite dimensional, we cannot determine its’ joint
distribution. According to Kolmogorov (1933), under certain
regularity conditions we can characterize its joint distribution
by its’ finite dimensional marginal distributions

FXt1 ,...,Xtp
(t1, . . . , tp ∈ T ).

Large part of material of this section are based on the excellent lecture notes by Markku Rahiala

(http://stat.oulu.fi/rahiala/teachmr.html)

http://stat.oulu.fi/rahiala/teachmr.html


Structural Macroeconometrics

Moments of Model and Data

Autocovariance functions and alike

STOCHASTIC PROCESS AND ITS PROPERTIES I

Definition (Stationarity)
If

FXt1 ,...,Xtp
= FXt1+τ ,...,Xtp+τ

for all p, τ, t1, . . . , tp, the process is strictly stationary.
If it applies only to the first and second moments, ie{

E Xt ≡ µ = constant and
Γ(τ) = E Xt+τX′t − µµ′ = cov (Xt+τ, Xt)

the process is weakly stationary.
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STOCHASTIC PROCESS AND ITS PROPERTIES II

Definition (Autocovariance function)

Γ(τ) = cov (Xt+τ, Xt)

is called autocovariance function.

Note that Γ(τ)′ = Γ(−τ). A weakly stationary process {Xt}
that has Γ(τ) = 0 (for all τ 6= 0) is called white noise.
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STOCHASTIC PROCESS AND ITS PROPERTIES III

Definition (Autocovariance-generating function)
For each covariance-stationary (weakly stationary) process Xt
we calculate the sequence of autcovariances {Γ(τ)}∞

τ=−∞. If
this sequence is absolutely summable, we may summarize the
autocovariances through a scalar-valued function called
autocovariance-generating function

gX(z) =
∞

∑
τ=−∞

Γ(τ)zτ,

where z is complex scalar.
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STOCHASTIC PROCESS AND ITS PROPERTIES IV

Definition (Autocorrelation)
Let {xt} be weakly stationary scalar process and γx(τ) its
autocovariance function. Then

γx(0) = var(xt) = σ2
x = constant

and

ρx(τ) =
γx(τ)

γx(0)
=

cov(xt+τ, xt)

var(xt)

depends only on τ. The sequency ρx(τ) (for all
τ = 0,±1,±2, . . . ).
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STOCHASTIC PROCESS AND ITS PROPERTIES V

Definition (Crosscorrelation)
If Xt = (x1t · · · xmt)′ is multivariate, then function

ρxi,xj(τ) =
cov(xi,t, xj,t+τ)√
var(xi,t) var(xj,t)

is called cross correlation of components xi,t and xj,t.
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SAMPLE COUNTERPARTS AND SOME USEFULL

THEOREMS I

Definition (Sample autocorrelation)

For observations (x1, . . . , xn the sample autocorrelation is the
sequence

rx(τ) =
1

n−τ ∑n−τ
t=1 (xt − x̄)(xt+τ − x̄)
1
n ∑n

t=1(xt − x̄)2
, τ = 0,±1,±2, . . . ,±(n− 1),

where x̄ = 1
n ∑n

t=1 xt.

To make inference about the size of sample autocorrelation, the
following theorems can be useful
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SAMPLE COUNTERPARTS AND SOME USEFULL

THEOREMS II

Theorem
Let K be fixed positive integer and {εt} white noise. Then

√
nR =

√
n(rε(1) · · · rε(K))′ ∼asympt. NK(0, I),

when n approaches infinity.
And

Qn = (n + 2)
K

∑
τ=1

(
1− τ

n

)
rε(τ)

2 ∼as. χ2
K.

when n approaches infinity.

Similar results can be shown to sample crosscorrelation.
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SPECTRAL ANALYSIS I
The spectral analysis section is based on the course material by Markku Lanna and Henri Nyberg, see the course
“Empirical macroeconomics” http://blogs.helsinki.fi/lanne/teaching

In physics and engineering light is considered as electromagnetic waves that consists of in terms of energy,
wavelength, or frequency.
One may use prism to decompose light to spectrum (probably you did this in the high school).
Similarly a stationary time series can be considered as constant electromagnetic wave.
Economic time series can be seen as consisting of components with different periodicity.

trend, business cycle, seasonal component etc.
In frequency-domain analysis, the idea is to measure the contributions of different periodic components in a
series.

Different components neet not be identified with regular
(fixed) cycles, but there is only a tendency towards cyclical
movements centered around a particular frequency.

For instance, the business cycle is typically defined as
variation with periodicity of 2–8 years.

Frequency-domain methods are complementary to time-domain methods in studying the properties of, e.g.,

detrending methods,

http://blogs.helsinki.fi/lanne/teaching
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SPECTRAL ANALYSIS II

seasonal adjustment methods,
data revisions, and
interrelations between the business cycle components of
various economic variables.

Wave length
wave length × frequency = constant (light speed in physics)
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PRELIMINARIES
From high school algebra:

sin(x + y) = sin(x) · cos(y) + cos(x) · sin(y)

cos(x + y) = cos(x) · cos(y)− sin(x) · sin(y)

[sin(x)]2 + [cos(x)]2 ≡ 1

from which follows

b · cos(x) + c · sin(x) = a · cos(x + θ),

where
a =

√
b2 + c2 and θ = arctan

( c
b

)
θ is called phase angle. Complex number

z = x + i · y ∈ C and conjugate z̄ = x− i · y ∈ C
Euler’s formula

ez = ex+i·y = exei·y = ex(cos(y) + i sin(y))
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SPECTRAL REPRESENTATION THEOREM

Any covariance-stationary process Xt can be expressed as sum
of cycles

Xt = µ +
∫ π

0
[α(ω) cos(ωt) + δ(ω) sin(ωt)]dω.

The random processes α(·) and δ(·) have zero mean and they
are not correlated across frequencies.
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FIXED CYCLES I

Although economic time series are not characterized by
cycles with fixed periodicity, let us first, for simplicity,
consider fixed cycles to introduce the main concepts.
For example, the cosine function is periodic, i.e., it
produces a fixed cycle.

y = cos (x) goes through its full complement of values (one
full cycle) as x (measured in radians) moves from 0 to 2π.
The same pattern is repeated such that for any integer k,
cos (x + 2πk) = cos (x).
By defining x = ωt, where ω is measured in radians and t is
time, y = cos (ωt) becomes a function of time t with fixed
frequency ω.

By setting ω equal to different values, y can be made to
expand or contract in time.
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FIXED CYCLES II
For small ω (low frequency) it takes a long time for y to go
through the entire cycle.
For big ω (high frequency) it takes a short time for y to go
through the entire cycle.
Example: try to play with command plot
cos(180*(pi/180)*(x-0)) in the site
www.wolframalpha.com

Each frequency ω corresponds to the period of the cycle
(denoted by p), which is the time taken for y to go through
its complete sequence of values.
Given ω, how is the period p computed?

cos (ωt) = cos (ωt + 2π), so how many periods does it take
for ωt to increase by 2π?

2π/ω periods.

www.wolframalpha.com
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FIXED CYCLES III

A cycle with period 4 thus repeats itself every four periods
and has frequency ω = 2π/4 = π/2 ≈ 1.57 radians.
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FIXED CYCLES I
AMPLITUDE AND PHASE

The range of y is controlled by multiplying cos (ωt) by the
amplitude, ρ.
The location of y along the time axis can be shifted by
introducing the phase, θ.
Incorporating the amplitude and phase into y yields

y = ρ cos (ωt− θ) = ρ cos [ω (t− ξ)] ,

where ξ = θ/ω gives the shift in terms of time.
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FIXED CYCLES II
AMPLITUDE AND PHASE

Example
Suppose the cosine function has a period of 4 so that it peaks at
t = 0, 4, 8, . . .. If we want it to have peaks at t = 2, 6, 10, . . ., i.e.
ξ = 2, the phase θ = ξω = 2 (2π/4) = π. Note, however, that
this phase shift is not unambiguous because the same effect
would have been obtained by setting ξ = −2, indicating
θ = ξω = −2 (2π/4) = −π.
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SPECTRUM I

The (power) spectrum (or spectral density) gives the
decomposition of the variance of a time series process in
terms of frequency.
The spectral density function sy (ω) of a weakly stationary
process yt is obtained by evaluating the autocovariance-
generating function (AGF) at e−iω and standardizing by
2π:

sy (ω) =
1

2π
gy

(
e−iω

)
=

1
2π

∞

∑
j=−∞

γje−iωj,

where i =
√
−1.
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SPECTRUM II
By de Moivre’s theorem,

e−iωj = cos (ωj)− i sin (ωj) ,

we obtain

sy (ω) =
1

2π

∞

∑
j=−∞

γj [cos (ωj)− i sin (ωj)] ,

and making use of the fact that for a weakly stationary
process γ−j = γj and well-known results from
trigonometry, sy (ω) simplifies to

sy (ω) =
1

2π

[
γ0 + 2

∞

∑
j=1

γj cos (ωj)

]
.
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SPECTRUM III

Properties

Assuming the sequence of autocovariances
{

γj
}∞

j=−∞ is
absolutely summable, the spectrum of yt is a continuous,
real-valued function of ω.
If the process yt is weakly stationary, the spectrum is
nonnegative for all ω.
It suffices to consider sy (ω) in the range [0, π].

The spectrum is symmetric around zero, because
cos (−ωj) = cos (ωj).
The spectrum is a periodic function of ω, i.e.,
sy (ω + 2πk) = sy (ω), because cos [(ω + 2πk) j] = cos (ωj)
for any integers k and j.

Example: White Noise
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SPECTRUM IV

To get some intuition of how the spectrum decomposes the
variance of a time series in terms frequency, let us first, for
simplicity, consider the white noise process.
For a white noise process yt = εt, γ0 = σ2

ε and γj = 0 for
j 6= 0.

Hence, the AGF gy (z) = σ2
ε and the spectrum is flat:

sy (ω) =
1

2π
γ0 =

σ2
ε

2π
.

The area under the spectrum over the range [−π, π] equals
σ2

ε : ∫ π

−π
sy (ω) dω =

σ2
ε

2π
(π + π) = σ2

ε .



Structural Macroeconometrics

Moments of Model and Data

Spectral analysis

SPECTRUM V

Fact
The area under the spectrum over the range [−π, π] always equals
the variance of yt. Comparisons of the height of sy (ω) for different
values of ω indicate the relative importance of fluctuations at the
chosen frequencies in influencing variations in yt.

It is useful to relate the radians ω to the associated period
(the number of units of time it takes the cyclical component
with frequency ω to complete a cycle), p = 2π/ω.
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SPECTRUM VI

Example
The period associated with frequency ω = π/2 is
2π/ω = 2π/ (π/2) = 4. With annual data, a cyclical
component with frequency π/2 thus corresponds to a cycle
with a periodicity of 4 years. With quarterly data it corresponds
to a cycle with a periodicity of 4 quarters or 1 year.

Example: MA(1)

The AGF of the MA(1) process is

gy (z) = σ2
ε (1 + θ1z)

(
1 + θ1z−1

)
.
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SPECTRUM VII

Thus

sy (ω) =
σ2

ε

2π
gy

(
e−iω

)
=

σ2
ε

2π

(
1 + θ1e−iω

) (
1 + θ1eiω

)
=

σ2
ε

2π

(
1 + θ1eiω + θ1e−iω + θ2

1eiω−iω
)

=
σ2

ε

2π

(
1 + θ2

1 + 2θ1 cos (ω)
)

.

Example: AR(1)
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SPECTRUM VIII

The AGF of the AR(1) process is

gy (z) = σ2
ε

1
φ (z) φ (z−1)

=
1

(1− φ1z) (1− φ1z−1)
.
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SPECTRUM IX
Thus

sy (ω) =
σ2

ε

2π
gy

(
e−iω

)
=

σ2
ε

2π

1
(1− φ1e−iω) (1− φ1eiω)

=
σ2

ε

2π

1
(1− φ1e−iω) (1− φ1eiω)

=
σ2

ε

2π

1
1− φ1e−iω − φ1eiω + φ2

1

=
σ2

ε

2π

1
1 + φ2

1 − 2φ1 cos (ω)
.

Example: AR(2)
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SPECTRUM X

The spectrum of the AR(2) process need not be
monotonically decreasing, but its peak depends on the
values of φ1 and φ2.
A peak at ω∗ indicates a tendency towards a cycle at a
frequency around ω∗.

This stochastic cycle is often called a pseudo cycle as the
cyclical movements are not regular.

The peak of the spectrum can be found by setting the
derivative of sy (ω) equal to zero and solving for ω.
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SPECTRUM XI
The AGF of an AR(2) process is

gy (z) = σ2
ε

1
φ (z) φ (z−1)

=
σ2

ε

(1− φ1z− φ2z2) (1− φ1z−1 − φ2z−2)
.

Thus

sy (ω) =
σ2

ε

2π
gy

(
e−iω

)
=

σ2
ε

2π

1
(1− φ1e−iω − φ2e−i2ω) (1− φ1eiω − φ2ei2ω)

=
σ2

ε

2π

1
1 + φ2

1 + φ2
2 − 2φ1 (1− φ2) cos (ω)− 2φ2 cos (2ω)
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ESTIMATION OF SPECTRUM I
SAMPLE PERIODOGRAM

The spectrum of an observed time series can, in principle,
be estimated by replacing the autocovariances γj in the
theoretical spectrum

sy (ω) =
1

2π

[
γ0 + 2

∞

∑
j=1

γj cos (ωj)

]

by their estimates γ̂j to obtain the sample periodogram

ŝy (ω) =
1

2π

[
γ̂0 + 2

T−1

∑
j=1

γ̂j cos (ωj)

]
.



Structural Macroeconometrics

Moments of Model and Data

Spectral analysis

ESTIMATION OF SPECTRUM II
SAMPLE PERIODOGRAM

This yields a very jagged and irregular estimate of the
spectrum.

Because we are, effectively, estimating T parameters with T
observations, this pattern persists irrespective of the
sample size.

Nonparametric Estimation

It is reasonable to assume that sy (ω) will be close to sy (λ)
when ω is close to λ.
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ESTIMATION OF SPECTRUM III
SAMPLE PERIODOGRAM

This suggests that sy (ω) might be estimated by a weighted
average of the values of ŝy (λ) for values of λ in the
neighborhood around ω, with the weights depending on
the distance between ω and λ:

ŝy
(
ωj
)
=

h

∑
m=−h

κ
(
ωj+m, ωj

)
ŝy
(
ωj+m

)
.

h is a bandwidth parameter indicating how many
frequencies around ωj are included in estimating ŝy

(
ωj
)
.
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ESTIMATION OF SPECTRUM IV
SAMPLE PERIODOGRAM

The kernel κ
(
ωj+m, ωj+m

)
gives the weight of each

frequency, and these weights sum to unity,

h

∑
m=−h

κ
(
ωj+m, ωj

)
= 1.

Modified Daniell Kernel

Several kernels are available for the nonparametric
estimation of the spectrum.
The default kernel in R is the modified Daniell kernel,
possibly used repeatedly.

The kernel puts half weights at end points.
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ESTIMATION OF SPECTRUM V
SAMPLE PERIODOGRAM

For example, with bandwidth parameter h = 1, the weights

of ŝy

(
ωj−1

)
, ŝy

(
ωj

)
and ŝy

(
ωj+1

)
are 1/4, 2/4 and 1/4,

respectively.

Applying the same kernel again yields weights 1/16, 4/16,
6/16, 4/16, 1/16 for ŝy

(
ωj−2

)
, ..., ŝy

(
ωj+2

)
, respectively.

Choosing the bandwidth parameter is arbitrary. One
possibility is to plot the estimated spectrum based on
several different bandwidths and rely on subjective
judgment.

Autoregressive Spectral Estimation

An estimate of the spectrum can be based on an AR(p)
model fitted to the observed time series:
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ESTIMATION OF SPECTRUM VI
SAMPLE PERIODOGRAM

1 Estimate an adequate AR(p) model for yt.
2 Plug the estimated coefficients φ̂1, φ̂2, ..., φ̂p in the

expression of sy (ω) derived for the AR(p) model.

The order of the AR model, p, must be carefully chosen.

If p is too small, i.e., the AR model does not adequately
capture the dynamics of yt, the ensuing spectrum may be
misleading.
If p is too large, the spectrum may be inaccurately
estimated.
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LINEAR FILTERS I

Many commonly used methods of extracting the business
cycle component of macroeconomic time series (and
seasonal adjustment methods) can be expressed as linear
filters,

yt =
s

∑
j=−r

wjxt−j

where, say, xt is the original series and yt its business cycle
component.
A filter changes the relative importance of the various
cyclical components. To see how different frequencies are
affected, the spectra of the unfiltered and filtered series can
be compared.
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LINEAR FILTERS II

A more direct way is to inspect the squared frequency
response function that gives the factor by which the filter
alters the spectrum of yt.
The filter may also induce a shift in the series with respect
to time, and this is revealed by the phase diagram.

Squared Frequency Response Function Assuming the original
series xt has an infinite-order MA representation xt = ψ (L) εt,
the filtered series can be written as
yt = W (L) xt = W (L)ψ (L) εt, where
W (L) = w−rL−r + · · ·+ w−1L−1 + w0 + w1L + · · ·wsLs.
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LINEAR FILTERS III
The spectrum of yt thus equals

sy (ω) =
1

2π
gy

(
e−iω

)
=

σ2
ε

2π
W
(

e−iω
)

ψ
(

e−iω
)

W
(

eiω
)

ψ
(

eiω
)

=
σ2

ε

2π
W
(

e−iω
)

W
(

eiω
)

ψ
(

e−iω
)

ψ
(

eiω
)

= W
(

e−iω
)

W
(

eiω
)

sx (ω) .

The term W
(
e−iω)W

(
eiω) is called the squared frequency

response function and it shows how the filtering changes the
spectrum of the original series.
Squared Frequency Response Function:
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LINEAR FILTERS IV
Example
Consider taking first differences of a variable xt,

yt = xt − xt−1 = (1− L) xt = W (L) xt.

Now
sy (ω) = W

(
e−iω

)
W
(

eiω
)

sx (ω) ,

i.e., the squared frequency response function equals

W
(

e−iω
)

W
(

eiω
)

=
(

1− e−iω
) (

1− eiω
)

= 2− eiω − e−iω

= 2− [cos (ω)− i sin (ω) + cos (ω) + i sin (ω)]

= 2 [1− cos (ω)] .



Structural Macroeconometrics

Moments of Model and Data

Spectral analysis

LINEAR FILTERS: GAIN I

In the literature, the properties of filters are often illustrated
using the gain function, G (ω), which is just the modulus of the
squared frequency response function (squared gain):

G (ω) =
√

W (e−iω)W (eiω) ≡
∣∣∣W (

e−iω
)∣∣∣ .
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LINEAR FILTERS: GAIN II

Example
For the first-difference filter (1− L), the gain function is given
by

G (ω) =
√
(1− e−iω) (1− eiω)

=
√

2 [1− cos (ω)].

This carries the same information as the squared frequency
response function.

Try plot sqrt(2*(1-cos(w)))
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LINEAR FILTERS: GAIN III

Given the gain function G(ω), the relationship between
sy(ω) and sx(ω) can be written

sy(ω) = G(ω)2sx(ω).

The gain function expresses how the employed filter serve
to isolate cycles.

Gain function with the value 0 indicates that the filter
eliminates those frequencies.
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LINEAR FILTERS: PHASE DIAGRAM I

The squared frequency response function W
(
e−iω)W

(
eiω)

takes on real values only. However, the frequency response
function W

(
e−iω) is, in general a complex quantity,

W
(

e−iω
)
= W∗ (ω) + iW† (ω)

where W∗ (ω) and W† (ω) are both real.
The phase diagram, i.e., the slope of the phase function

Ph (ω) = tan−1
[
−W† (ω) /W∗ (ω)

]
gives the delay in time periods.



Structural Macroeconometrics

Moments of Model and Data

Spectral analysis

LINEAR FILTERS: PHASE DIAGRAM II
The phase diagram measures the shift that how much the
lead-lag relationships in time series are altered by the filter.

Example
Consider a filter that shifts the series back by three time
periods,

yt = xt−3 = L3xt = W (L) xt.

The frequency reponse function equals
W
(
e−iω) = e−3iω = cos (3ω)− i sin (3ω) Thus

Ph (ω) = tan−1 [sin (3ω) / cos (3ω)] = tan−1 [tan (3ω)] = 3ω.
In other words, the phase diagram is a straight line with slope
3.

Phase Diagram: Symmetric Filter
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LINEAR FILTERS: PHASE DIAGRAM III
Most filters used to extract the business cycle component of
macroeconomic time series are symmetric.
For a symmetric linear filter, the phase function equals zero,
i.e., they exhibit no phase shift.
The frequency response function equals

W
(

e−iω
)

= w−re−riω + · · ·+ w−1e−iω + w0

+w1eiω + · · ·+ wreriω

=
r

∑
j=−r

wj cos (ωj)− i
r

∑
j=−r

wj sin (ωj)

= w0 + 2
r

∑
j=1

cos (ωj) .
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LINEAR FILTERS: PHASE DIAGRAM IV

Hence, W† (ω) = 0, indicating that
Ph (ω) = tan−1 [−W† (ω) /W∗ (ω)

]
= 0.
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CROSS-SPECTRAL ANALYSIS I

In addition to the spectra of single time series, the
relationships between pairs of variables can be examined
in the frequency domain.
The spectrum can be generalized for the vector case, and
the cross spectrum between yt and xt is defined
analogously with the spectrum of a single series,

syx (ω) =
1

2π

∞

∑
τ=−∞

γyx (τ) e−iωτ.

Instead of the cross spectrum, functions derived from it
(phase and coherence) allow for convenient interpretation
of the relationship between two variables in the frequency
domain.
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CROSS-SPECTRAL ANALYSIS II

Given data on y and x, the cross spectrum and the derived
functions can be computed analogously to the power
spectrum. In particular, some smoothing is required to
obtain consistent estimators of the phase and coherence.

The cross-spectral density function can be expressed in terms of
its real component cyx(ω) (the cospectrum) and imaginary
component qyx (the quadrature spectrum)

syx(ω) = cyx(ω) + i qyx(ω).

In polar form, the cross-spectral density can be written

syx(ω) = R(ω) eiθ(ω),
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CROSS-SPECTRAL ANALYSIS III

where
R(ω) =

√
cyx(ω)2 + qyx(ω)2

and

θ(ω) = arctan
−qyx(ω)

cyx(ω)
.

The function R(ω) is the gain function.
θ(ω) is called the phase function.



Structural Macroeconometrics

Moments of Model and Data

Spectral analysis

PHASE DIAGRAM

The phase function has the same interpretation as in the
case of a linear filter.

If in the plot of the phase function against ω (the phase
diagram), the phase function is a straight line over some
frequency band, the direction of the slope tells which series
is leading and the amount of the slope gives the extent of
the lag.

The lag need not be an integer number.
If the slope is zero there is no lead-lag relationship.
If the slope is positive, the first variable is lagging.
If the slope is negative, the first variable leading.

A confidence band may be computed around the estimated
phase function to evaluate statistical significance.
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COHERENCE

The coherence measures the strength of the relationship
between two variables, yt and xt, at different frequencies.
The (squared) coherence is defined analogously to
correlation:

C (ω) =

∣∣syx (ω)
∣∣2

sx (ω) sy (ω)
,

and it can be interpreted as a measure of the correlation
between the series y and x at different frequencies.
0 ≤ C (ω) ≤ 1
If C (ω) is near one, the ω-frequency components of y and
x are highly (linearly) related, and if C (ω) is near zero,
these components are only slightly related.
A confidence band can be used to evaluate the statistical
significance.



Structural Macroeconometrics

Moments of Model and Data

Multivariate time series models

OUTLINE
1 Introduction
2 Approximating and solving DSGE

models
Stationarizing
Approximating
Solving

Blanchard and Kahn method
Klein method
Method of undetermined
coefficients

3 Moments of Model and Data
Introduction
Autocovariance functions and
alike
Spectral analysis

Univariate
Frequency-Domain Methods
Estimation
Linear Filters

Multivariate time series models
Filtering the data and model

4 Matching moments
Calibrating steady-state
Comparing model and data
moments
GMM

5 Filtering and Likelihood approach
Kalman filter and the maximum
likelihood
Filtering and decompositions
Bayesian methods
Simulating posterior
Model comparison



Structural Macroeconometrics

Moments of Model and Data

Multivariate time series models

VAR MODEL I

Let Xt = (x1t · · · xmt)′ be a m× 1 vector.

Definition (VAR(p) model)
VAR(p) model is

Xt = Φ1Xt−1 + · · ·+ ΦpXt−p + εt εt ∼ NIDm(0, Σ).

Denote matrix polynomial Φ(L) ≡ I−Φ1L− · · · −ΦpLp.

The parameters of the VAR(p) process may be estimated OLS
(corresponds ML estimation).
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The roots of the VAR representation corresponds to the mp
factors of equation

det
[
Φ(s−1)

]
= 0.

If they lie inside of the unit circle, and all elements in Xt are
stationary the process Xt is stationary and we have the Wold
decomposition

Xt = Φ(L)−1εt =
∞

∑
j=0

Ψjεt−j,

where m×m coefficient matrices Ψj (j = 0, 1, 2, . . . ) are called
impulse responses. They can be computed recursively from

Ψi = Φ1Ψi−1 + Φ2Ψi−2 + · · ·+ ΦpΨi−p i = 1, 2, . . . ,

with Ψ0 = Im and Ψi = 0 for i < 0. They tell how earlier
innovations εt−j are reflected by Xt observations.
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The problem is that each component in εt may correlate with
another component. Identification problem arises. The
innovations εt may be orthogonalized by Cholesky
decomposition:
Let vt be orthogonalized innovation so that

E vtv′t = I.

Define a matrix P such that

P−1ΣP′−1
= I.

which implies
Σ = PP′. (30)

vt may be constructed using

vt = P−1εt
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Note, that this is not the only way to make the innovations
orthogonal!
The Cholesky decomposition of Σ is a lower-triangular matrix
that satisfies (30), with diagonal elements containing the square
root of the diagonal elements of Σ . Note, that the ordering of
the variables in Xt affects P. It is not unique in that sense.
The whole structural VAR litterature aims finding (economic)
theoretically consistent ways to orthogonalize innovations.
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The VAR(p) may be written in the companion form (by
augmenting the state-space) as follows

Xt
Xt−1
Xt−2

...
Xt−p+1


︸ ︷︷ ︸

≡zt

=


Φ1 Φ2 Φ3 · · · Φp
I 0 0 · · · 0
0 I 0 · · · 0
...

. . . . . . . . . 0
0 0 0 · · · I 0


︸ ︷︷ ︸

≡A


Xt−1
Xt−2
Xt−3

...
Xt−p


︸ ︷︷ ︸
≡zt−1

+


εt
0
0
...
0


︸︷︷ ︸
≡εt

zt = Azt−1 + εt (31)
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Definition (Contemporaneous variance-covariance
matrix)
Let

Γ(0) = E ztz′t = E(Azt−1 + εt)(Azt−1 + εt)
′ = AΓ(0)A′ + Σ,

where Γ(0) denotes the contemporaneous variance-covariance
matrix of zt. The solution of above is given by

vec (Γ(0)) = (I−A⊗A)−1 vec (Σ) .

Definition (τth order covariance matrix)

Γ(τ) = E ztz′t−τ
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Note that

Γ(1) = E(ztz′t−1 = E(Azt−1 + εt)z′t−1 = AΓ(0),

and, in general,
Γ(τ) = AτΓ(0)
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Definition (Partial cross-correlation)
Estimate VAR(p) of increasing ps:

Xt = Φ(p)
1 Xt−1 + ·+ Φ(p)

p Xt−p + ε
(p)
t , p = 1, 2, 3, . . .

using OLS. The estimates of the highest order Φs form a
sequence

Φ̂(p)
p , p = 1, 2, 3, . . .

form partial crosscorrelation function
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FORECAST ERROR VARIANCE DECOMPOSITION I

Define matrix Hi that picks the power of the first line of matrix
A from the companion form

Hi = JAiJ′,

where J = [Im 0 · · · 0] is m×mp matrix. Denote P as the lower
triangular Cholesky decomposition of Σ as above, and
Θi = HiP
Calculate the mean squared error of the h-step forecast of
variable xj,

MSE[xj,t(h)] =
h−1

∑
i=0

K

∑
k=1

(e′jΘiek)
2 =

( h−1

∑
i=0

ΘiΘ′i

)
jj
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FORECAST ERROR VARIANCE DECOMPOSITION II

where ej is the jth column of IK and the subscript jj refers to that
element of the matrix.
The amount of forecast error variance of variable j accounted
for by exogenous shocks to variable k is given by ωjk,h

ωjk,h =
h−1

∑
i=0

(e′jΘiek)
2/MSE[xj,t(h)].
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TO PRE-FILTER

Often the theoretical model show no growth. The balanced
growth path issues are then ignored.

Ironically, the RBC models that build on the neo-classical
growth model do not — as a prototype — model the economic
growth.

Data portrays growth
−→ in order to compare data and model moments, one needs
to get rid of the growth in data.
−→ detrend the data!
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TO PRE-FILTER THE DATA

The idea is to remove certain frequencies of the data
Seasonal filters remove seasonality
Hodrick-Prescott filter removes the trend
Band-pass filter removes chosen frequencies

Univariate filters
Hodrick-Prescott filter
Band-pass filter
Baxter-King filter
Beverage-Nelson filter
Seasonal filters

Multivariate filters



Structural Macroeconometrics

Moments of Model and Data

Filtering the data and model

TO PRE-FILTER OR NOT TO PRE-FILTER

Problems in pre-filtering the data
Do not take into account the restriction by the theoretical
model: number of trends, style of trends.

Filtering is subsitute of poor modeling of trends/balanced
growth path.

Filtering is never perfect. Leakage.
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MATCHING MOMENTS

Moment is a fancy word to describe the statistics we use to
compare model and data.

There is no clear guide which moments to match. It may
depend on

purpose of the modeling: policy vs. forecast, . . .
style of the model: for example growth vs. dynamics or
both!
frequency: short-run vs long-run
. . .

In the previous chapter we had large list of moments. It is easy
to invent more!



Structural Macroeconometrics

Matching moments

BENEFITS OF CALIBRATION/MOMENT MATCHING

Get aquainted with your model!
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THREE SETS OF PARAMETERS

We may typically partition the parameters of the theoretical
model µ into three sets

1 Parameters that affect only the steady-state
2 Parameters that does not affect steady state but affect

dynamics (temporal dependency) of the system
3 Parameters that affect both

We may utilize the separation of the sets in calibration.
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HOW TO CALIBRATE STEADY-STATE: MOMENTS OF

THE STEADY STATE

Consider the first set of parameters, ie parameters that affect
only the steady-state.
They can be chosen such as they exactly match

great ratios in the data: I/K, C/Y, I/Y, (X−M)/Y, . . .
average growth rates in the data: ∆y, πt.

given the chosen parameters of the set 3.
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HOW TO DO IT
You may follow the procedure

1 Choose the data and the sample!
2 Compute the great ratios that can be found from the model

too. Plot them to check that they really are stationary
3 Compute sample average.
4 Solve the steady-state model

1 Compute the same great ratios using steady-state model
2 Try another set of parameter values

5 Repeat the above until the distance between great ratios
computed from the data and from the model are
minimized

Often conflict: Matching certain moment results unmatching
other one.
−→ try GMM and do it formally (statistically consistent way)
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CALIBRATING DYNAMICS: MOMENTS OF TEMPORAL

DEPENDENCE

These are difficult to calibrate!

You may try the following moments
Cross-correlations
Coherence could be useful.
Impulse response function

look the response at impact,
the shape,
the persistence
Identification problem: how to compute the impulse
responses we observe in the data. Structural VAR!
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THE GENERALIZED METHOD OF MOMENTS I
Let wt denote the variables we observe at time t and let Θ be
the unknown parameters of interest. They are related by the
function h(Θ, wt), where the dimension of the function vector is
l.

The orthogonality conditions lies at the hearth of the
generalized methods of moments.
The orthogonality condition says that when evaluated at
Θ∗ (the true value), the unconditional expections satisfy

E[h(Θ∗, wt)] = 0, (32)

The sample mean of these conditions are

g(Θ; w1, . . . , wT) ≡
1
T

T

∑
t=1

h(Θ, wt),
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THE GENERALIZED METHOD OF MOMENTS II
The GMM objective function to be minimized is

Q(Θ) = g(Θ; w1, . . . , wT)
′Wg(Θ; w1, . . . , wT), (33)

where W is the weighting matrix of the orthogonality
conditions. Any positive definite matrix is ok, but optimal
weighting is obtained by using the covariance matrix of
the orthogonality conditions ST.
The estimator of the covariance matrix is the following

S = lim
T→∞

(1/T)
T

∑
t=1

∞

∑
v=−∞

E
[
h(Θ∗, wt)h(Θ∗, wt−v)

′] ,

where Θ∗ denotes the true value of Θ. I have used
the VARHAC estimator by den Haan and Levin (1996) and
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THE GENERALIZED METHOD OF MOMENTS III
quadratic the spectral kernel estimator by Newey and West
(1994) that allow autocorrelation (and heteroscedasticity) in
the sample orthogonality conditions.

If the number of orthogonality conditions, l, exceeds the
number of parameters, j, the model is overidentified.
Hansen (1982) shows that it is possible to test the
overidentification restrictions (J-test), since[√

Tg(Θ̂, w1, . . . , wT)
]′

Ŝ−1
T

[√
Tg(Θ̂, w1, . . . , wT)

]
d−→ χ2(l− j),

where d−→ denotes convergence in distribution.
Problems and solutions

In the GMM estimation, we encounter the problem of
defining the orthogonality conditions (instruments in the
typical case).
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THE GENERALIZED METHOD OF MOMENTS IV
The GMM estimator is different for different set of
orthogonality conditions.
According to the simulation experiments of Tauchen (1986)
and Kocherlakota (1990), increasing the number of
orthogonality conditions reduces the estimators’ variance
but increases the bias in small samples.
In the iteration of the GMM objective (33), follow the
guidence of Hansen et al. (1996): Since the weighting
matrix in the objective function is also a function of the
parameters, it is useful to iterate that as well. This, of
course, increases the computational burden.

Extensions (that follow GMM spirit)
Simulated method of moments: extends the generalized
method of moments to cases where theoretical moment
functions cannot be evaluated directly, such as when
moment functions involve high-dimensional integrals.
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THE GENERALIZED METHOD OF MOMENTS V

Indirect inference: introduce auxiliary model and match the
simulated and data moments of the auxialiary model. (Use,
eg, VAR as the auxiliary model) If the auxiliary model is
correctly specified this is maximum likelihood.
Empirical likelihood
. . .
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THE STATE SPACE FORM I

In following I follow the notation of Hamilton (1994) and Yada
manual but the logic of Harvey (1989, Structural Time Series
Models). Harvey’s setup is more general than that of Hamilton.
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THE STATE SPACE FORM II

Definition (Measurement equation)
Let yt be multivariate time series with n elements. They are
observed and related to an r× 1 state vector ξt via
measurement equation

yt = Htξt + xt + wt, t = 1, . . . , T (34)

where Ht is an n× r matrix, xt is k× 1 vector and wt is ab n× 1
vector of serially uncorrelated disturbances with mean zero
and covariance matrix Rt:

E wt = 0 and var(wt) = Rt.

In general the elements of ξt are not observable.
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THE STATE SPACE FORM III

Definition (Transition equation (state equation))
The state variables ξt are generated by a first-order Markov
process

ξt = Ftξt−1 + ct + Btvt, (35)

where Ft is an r× r matrix, ct is an r× 1 vector, Bt is an m× g
matrix and vt is a g× 1 vector of serially uncorrelated
disturbances with mean zero and covariance matrix Qt, that is

E vt = 0 and var(vt) = Qt.

Assumption

E ξ0 = ξ̂0 and var(ξ0) = P0
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THE STATE SPACE FORM IV

Assumption

E(wtv′k) = 0, for all k, t = 1, . . . , T

E(wtξ
′
0) = 0, E(vtξ

′
0) = 0 for t = 1, . . . , T

The first line in above assumption may be relaxed.
Matrices Ft, xt, Rt, Ht, ct, Bt and Qt are called system matrices. If
they do not change over time, the model is said to be
time-invariant or time-homogenous. Stationary models are special
case.
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STATE SPACE FORM AND THE ECONOMIC MODEL

Equation (29) on slide 11 looks familiar:

ξt = F0(µ) + F1(µ)ξt−1 + FΓ(µ)vt, (29)

Redefining ct = F0(µ) and Bt = FΓ(µ), the solution of the
economic model is the transition (state) equation of the state
space representation of (34) and (35). This makes the state
space representation attractive!

With the measurement equation, we are able to map the
(theoretical) model variables to actual data!



Structural Macroeconometrics

Filtering and Likelihood approach

Kalman filter and the maximum likelihood

THE KALMAN FILTER I

Definition (The Kalman filter)
The Kalman filter is a recursive procedure for computing the
optimal estimator of the state vector at time t, based on the
information available at time t.

Combined with an assumption that the disturbances and the
initial state vector are normally distributed, it enables the
likelihood function to be calculated via what is known as the
prediction error decomposition. The derivation of Kalman filter
below rests on that assumption.
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CONDITIONAL MULTIVARIATE NORMAL
This a sidestep to statistics. We need this result in constructing
the Kalman filter!
If X ∼ N(µ, Σ) where µ and Σ are mean and covariance of
multivariate normal distribution and are partitioned as follows

µ =

[
µ1
µ2

]

Σ =

[
Σ11 Σ12
Σ21 Σ22

]
then the distribution of x1 conditional on x2 = a is multivariate
normal (X1|X2 = a) ∼ N(µ̄, Σ̄) where

µ̄ = µ1 + Σ12Σ−1
22 (a− µ2)

and covariance matrix

Σ = Σ11 − Σ12Σ−1
22 Σ21.
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DERIVATION OF THE KALMAN FILTER I

Consider the state space representation of (34) and
(35).
Under normality, ξ0 has multivariate normal with
mean ξ̂0 and covariance P0.

t = 1
ξ1 = F1ξ̂0 + c1 + B1v1

−→ Due to normality

ξ̂1|0 = F1ξ̂0 + c1

and
P1|0 = F1P0F′1 + B1Q1B′1,

where ξ̂1|0 indicates the mean of the distribution of
ξ1 conditional on the information at time t = 0.
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DERIVATION OF THE KALMAN FILTER II
For the distribution of ξ1 conditional on y1 write

ξ1 = ξ̂1|0+ (ξ1 − ξ̂1|0)

y1 = H1 ξ̂1|0 + x1 + H1 (ξ1 − ξ̂1|0) + w1.

The second equation is rearranged measurement
equation (34).

−→ vector [ξ ′1 y1]
′ is multivariate normal with mean

[ξ̂ ′1|0 (H1ξ̂1|0 + x1)
′]′

and a covariance[
P1|0 P1|0H′1

H1P1|0 H1P1|0H′1 + R1

]
.
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DERIVATION OF THE KALMAN FILTER III

Applying the conditional distribution of
multivariate normal to the case: ξ1 conditional on
particular value of y1 results mean

ξ̂1 = ξ̂1|0 + P1|0H′1S−1
1 (y1 −H1ξ̂1|0 − x1)

and covariance

P1 = P1|0 − P1|0H′1S−1
1 H1P1|0,

where
S1 = H1P1|0H′1 + R1

Iterating this over t = 2, 3, . . . , T gives us the Kalman filter!
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THE KALMAN FILTER I
Consider, again, the state space representation of (34) and (35).

Define ξ̂t−1 denotes the optimal estimator of ξt−1 based
on the observations up to and including yt−1.
Pt−1 denotes the r× r covariance matrix of the
estimations error

Pt−1 = E
[
(ξt−1 − ξ̂t−1)(ξt−1 − ξ̂t−1)

′]
Prediction equations Given ξ̂t−1 and Pt−1, the optimal

estimator of ξt is given by

ξ̂t|t−1 = Ftξ̂t−1 + ct

and the covariance matrix of estimation error is

Pt|t−1 = FtPt−1F′t + BtQtB′t, t = 1, . . . , T
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THE KALMAN FILTER II

Updating equations One the new observation yt becomes
available, the estimator ξ̂t|t−1 of ξt can be updated

ξ̂t = ξ̂t|t−1 + Pt|t−1H′1S−1
t (yt −Htξ̂t|t−1 − xt)

and
Pt = Pt|t−1 − Pt|t−1H′tS

−1
t HtPt|t−1,

where
St = HtPt|t−1H′t + Rt
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THE KALMAN FILTER III
The equations in these two slides make up the Kalman filter.
They can be written in the single set of recursion from ξ̂t−1 to ξ̂t
or from ξ̂t|t−1 as follows

ξ̂t+1|t = (Ft+1 − KtHt)ξ̂t|t−1 + Ktyt + (ct+1 − Ktxt),

where the Kalman gain is given by

Kt = Ft+1Pt|t−1H′tS
−1
t , t = 1, . . . , T.

The recursion for the error covariance matrix is

Pt+1|t = Ft+1(Pt|t−1−Pt|t−1H′tS
−1
t HtPt|t−1)F

′
t+1 +Bt+1Qt+1B′t+1, t = 1, . . . , T

It is know as a Riccati equation.
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ISSUES I

The state space representation and Kalman filter tells
nothing how to interprete the state variables ξt. Economic
model does tell! Its elements may or may not be
identifiable.
Same economic model may have several state space
representations. The one that has smallest state vector is
called minimal realisation.
Sometimes transition equation is written in the form where
state variables are leaded with one period.
The system matrices Ft, Rt, Ht, Bt and Qt may depend on a
set of unknown parameters, and one of the main statistical
stasks will ofteb be the estimation of these parameters.
Given initial conditions, the Kalman filter delivers the
optimal esimateor of the state vector.
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ISSUES II
Information filter is a version of the Kalman filter, where the
recursion involves P−1. This is handy when P0 is infinite or
when system matrices are time-varying.
Square root filter is the one where P is obtained via Cholesky
decomposition. It is known to be numerically stable.

ξ̂ = Et(ξt) = E(ξ|Yt)

and
Pt = Et

{
[ξt − Et(ξt)] [ξt − Et(ξt)]

′
}

Hence, the conditional mean is the minimum mean square
estimate of ξt.
The conditional mean can also be regarded as an estimator
of ξt. Hence it applies to any set of observations. It is also
minimum mean square estimator of ξt.
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ISSUES III

In the above case Pt can be considered as the the meas
square errror (MSE) matrix of the estimator.
For time invariant model the necessary and sufficient
condition for stability is that the characteristic roots of the
transition matrix F should have modulus less than one.
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MAXIMUM LIKELIHOOD ESTIMATION AND THE

PREDICTION ERROR DECOMPOSITION I

Classical theory of maximun likelihood estimation is based on
a situation in which the T sets of observations, y1, . . . , yT are
independently and identically distributed. The joint density
function is given by

L(y; φ) =
T

∏
t=1

p(yt),

where p(yt) is the joint probability density function (p.d.f.) of
the t-th set of observations. Once the observations have been
made, L(y; φ) is reinterpreted as a likelihood function and the
ML estimator is found by maximizing this function wrt φ.
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MAXIMUM LIKELIHOOD ESTIMATION AND THE

PREDICTION ERROR DECOMPOSITION II
In time series or economic models observations are typically
not independent. We write instead the conditional probability
density function

L(y; φ) =
T

∏
t=1

p(yt|Yt−1),

where Yt−1 = {y1, y2, . . . , yt−1}.

If the disturbances vt and wt and initial state vector ξ0 are
multivariate normal, p(yt|Yt−1) is itself normal with the mean
and covariance given by Kalman filter.

Conditionally Yt−1, ξt ∼ N(ξ̂t|t−1, Pt|t−1).
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MAXIMUM LIKELIHOOD ESTIMATION AND THE

PREDICTION ERROR DECOMPOSITION III

From the measurement equation

ỹt|t−1 ≡ Et−1(yt) = Htξ̂t|t−1 + xt

with covariance matrix St.
Define ṽt = yt − Et−1 yt = yt − ỹt|t−1

Then the likelihood can be written as

log L = −nT
2

log 2π − 1
2

T

∑
t=1

log |St| −
1
2

T

∑
t=1

ṽ′tS
−1
t ṽt.
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MAXIMUM LIKELIHOOD ESTIMATION AND THE

PREDICTION ERROR DECOMPOSITION IV

Since ỹt|t−1 is also the MMSE of yt, ṽt can be interpreted as
vector of prediction errors. The above likelihood is,
therefore, called prediction error decomposition form of the
likelihood.
Consequently, the likelihood function may easily
computed with Kalman filter.
And numerically maximized wrt unknown parameter φ.
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ML ISSUES I
The limiting distribution of the ML estimator of φ is
normal with covariance matrix obtained as the inverse of
the information matrix

φ has to be interior point
derivatives of log L exists up to order three, and they are
continuous in the neighbourhood of true φ
φ is identifiable

In nonstationary models, the influence of the initial point
does not vanish. No steady-state point exists. Then, the KF
has to be initialized using first observations and “large“
matrix P0. This is called diffuse prior.
Forecasting is easy. Multistep forecast may be obtained by
applying KF prediction equations repeteadly. Note: PT+j|T
do not take into account the uncertainty related to
estimating unknown parameters.
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SMOOTHING

Filtering is prediction/forecasting. In smoothing we want to
know the distribution of ξt conditional on all the smaple, ie
E(ξt|YT).

it is known as smoothed estimate
and the corresponding estimator as smoother
several algorithms: fixed point, fixed lag, fixed interval

Covariance matrix of ξt|T conditional on all T observations

Pt|T = ET
[
(ξt − ξ̂t|T)(ξt − ξ̂t|T)

′]
when +hatξt|T is viewed as an estimator, Pt|T ≤ Pt (t = 1, . . . , T)
is its MSE matrix.
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FIXED-INTERVAL SMOOTHING

Starts with final quantities ξ̂T and PT of the Kalman filter and
work backwards

ξ̂t|T = ξ̂t + P?
t (ξ̂t+1|T − Ft+1ξ̂t)

and
Pt|T = Pt + P?

t (Pt+1|T − Pt+1|t)P
?
t
′

where
P?

t = PtF′t+1P−1
t+1|t t = T− 1, . . . , 1

with ξ̂T|T = ξ̂T and PT|T = PT.
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IDENTIFICATION I
Based on Andrle (2010)

Fundamental issue in economic and statistical modeling.
Easily acute in state space models.
Y set of observations
Model: distribution for the variable in question.
S structure, ie parameters of that distribution, ie complete
probability specification of Y of the form

S = F(Y, θ),

where θ ∈ Θ ⊂ Rn is the vector of parameters that belongs
to parameters space Θ.
Observational equivalence: two structures, S0 = F(Y, θ0) and
S? = F(Y, θ?), having the same joint density function, ie if
F(Y, θ0) = F(Y, θ?) for almost all Y.
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IDENTIFICATION II

A structure is identifiable if the exists no other
observationally equivalent structure, ie θ0 = θ?.
A model is identifiable if all its possible structures are
identifiable. If no structure is identifiable, the model is said
to be underidentified.
Local identification: the structure is locally identified if there
exists an open neighbourhood of θ0 containing no other
θ ∈ Θ, which produces observationally equivalent
structure.
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IDENTIFICATION III
Theorem (Rotemberg, 1971)

Subject to some regularity conditions, θ0 is locally identified for a
given structure if and only if the Information matrix evaluated at θ0

is not singular.

Equation
T(θ, τ) = 0

defines the mapping between the reduced form parameters
τ ∈ T ⊂ Rm and structural parameters θ.
If reduced form parameters are (locally) identified, the
necessary and sufficient condition for identification is that

T ≡ ∂T
∂θ′
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IDENTIFICATION IV

is of full rank.

Bayesian perspective
“Identification is a property of likelihood” and, hence, it the
Bayesian approach makes no difference. Unidentification affect
large sample inference and frequency properties of Bayesian
inference since likelihood does not dominate prior as the
sample size grows.
Data may be marginally informative even for conditionally
inidentified parameter and marginal posterior and prior
densities may differ.

SEE ANDRLE (2010) SLIDES!
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APPLICATIONS

The KF opens up many applications even within the context of
DSGE models

Missing observations
Different frequencies for different variables, eg quarterly,
annually, live happily together
Different vintages of data

See the second set of slides by Michal Andrle, CNB, IMF!
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FEATURES OF THE MAXIMUM LIKELIHOOD

ESTIMATION

Takes probability distribution generated by the DSGE
model very seriously
Maximum likelihood works well if the misspecification of
the DSGE model is small. However, likelihood-based
analysis potentially very sensitive to misspecification.
State space models are not the best setup to recover
misspecification.
As stressed above, it there is a lack of identification, the
likelihood function will be flat in certain directions.
In practice, likelihood function tends to be multi-modal,
difficult to maximize, and often peaks in regions of the
parameters space in which the model is hard to interpret.

−→ fix subset of parameters.
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BAYESIAN INFERENCE IN A NUTSHELL

Parameter is a random variable!
Combine prior distribution of the structural parameters
with likelihood function

This prior density can contain information from other
sources than the current data.

Use Bayesian theorem to update the prior density by
calculating conditional distribution of the parameters
given the data (posterior distribution)
Inference and decisions are then based on this posterior
distribution
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NUTSHELL OF A NUTSHELL

P(A|B) = P(A∩ B)
P(B)
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INTRODUCTION I

Structural models have interest parameterization in the
sense that we may have a priori information from

microeconometric studies;
studies from other fields
other countries’ data
...

Bayesians love this since prior information has an essential
role in Bayesian inference.
Bayesians interprete parameters as random variables.
Objective is to make conditional probabilistic statements
regarding the parameterization of the model:

1 structure of the model (model specification)
2 the observed data
3 prior distribution of the parameters.
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INTRODUCTION II
Likelihood is 1. plus 2.
Combining likelihood and 3. using Bayes’ rule yields an
associated posterior distribution.
Data speaks in likelihood and the researcher speaks in
prior distribution.

The incorporation of prior information is not what
distinguishes classical (“frequentist”) from Bayesian
analysis; the distinguishing feature is the probabilistic
interpretation assigned to parameters under the Bayesian
perspective.

We may interprete calibration as a Bayesian analysis
involving very, very strict prior (probability mass
concentrated on a single point).
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INTRODUCTION III

By choosing a diffuse prior we may let data to speak as
much as possible.

Objectives in using Bayesian procedures in DSGEs
1 Implement DSGEs as a source of prior information

regarding the parameterization of reduced form models
(like VAR).

2 Facilitate direct estimation of the parameters of DSGEs and
to implement estimated models to pursuit different tasks.

3 To facilitate model comparisons. Posterior odds analysis.
Works also for false and non-nested models.
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PRELIMINARIES I
Notation:

A structural model
µ vector of parameters, primary focus of analysis

Λ(µ) parameters of state space representation, no
(extra) identification problem here. This is the
model’s solution.

X sample of observations
L(X|µ, A) likelihood function

L(X|µ) likelihood function if A is clear/granted
π(µ) prior distribution of µ

p(X, µ) joint probability of X and µ
p(X) probability of X

Classical (frequentist) view
parameters are fixed, but unknown objects
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PRELIMINARIES II
likelihood function is a sampling distribution for the data
X is one of many possible realizations from L(X|µ) that
could have obtained.
Inference regarding µ center on statements regarding
porbabilities associated with the particular observation of
X for given values of µ.

Bayesian view
X taken as given.
inference interested in alternative specification of µ
condtional on X.
This probabilistic interpretation of µ gives rise to
incorporate prior information on µ.
This is facilitated by the prior distribution for µ, denoted
by π(µ).
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PRELIMINARIES III

How to incorporate prior information

Calculate joint probability of (X, µ) with the help of
conditional and unconditional distribution

p(X, µ) = L(X|µ)π(µ)

or reversing the role

p(X, µ) = p(µ|X)p(X)

In the first equation the likelihood function L(X|µ) has the
role of conditional probability and conditioning is made
wrt µ.
In the second equation conditioning is wrt X.
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PRELIMINARIES IV

Get rid of the joint probability by equating those two:

p(µ|X)p(X) = L(X|µ)π(µ).

Solving for p(µ|X) gives Bayes’ rule:

p(µ|X) =
L(X|µ)π(µ)

p(X)
∝ L(X|µ)π(µ).

The ∝ is because p(X) is a constant from the point of view
of the distribution of µ.
p(µ|X) is now the posterior distribution.
Conditional on X and the prior π(µ) it assigns probabilities
to alternative values of µ.
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PRELIMINARIES V
Bayesian analysis typically involves calcualting the
conditional expected value of a function of the parameters
g(µ):

E[g(µ)] =
∫

g(µ)P(µ|X)dµ∫
P(µ|X)

,

where the denominator
∫

P(µ|X) exists to handle the
missing p(X) in the Bayes’ rule.
Examples of g(µ)

Identitity function would result posterior mean.
g(µ) = 1 for µj ∈ [µj, µ̄j), and 0 other wise: If repeated to
each element in µ would enable to construction of marginal
predictive density functions (p.d.f.:s) for each µi. Here
Marginal means that the p.d.f. is unconditional on the other
elements of µ.
marginal p.d.f. of spectra
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PRELIMINARIES VI
marginal p.d.f. of impulse response functions
marginal p.d.f. of predictive densities
marginal p.d.f. of unobserved shock processes
marginal p.d.f. of forecasts!

Hence, E[g(µ)] is the weighted average of g(µ) where
weights are given by posterior distribution P(µ|X), ie by
data (likelihood functio) and the prior.
Rarely E[g(µ)] can be calculated analytically −→ numerical
integration.

Numerical integration
Suppose we may draw directly from P(µ|X)
we, naturally, know g(µ)
Let’s do Monte Carlo integration:
for i=1:N % where N is a large number like 10000

1 draw µi (one realization) from P(µ|X)
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PRELIMINARIES VII
2 compute g(µi)
3 store it to a vector

end
compute the average.

Typically you may do this without loops by using
vector/matrix operations, eg
gN = mean(g(randmu(N)))
By law of large numbers

ḡN =
1
N

N

∑
i

g(µi)
p−→ E(g(µ)],

where
p−→means convergence in probability.
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PRELIMINARIES VIII

Std(ḡN) is given by

std(ḡN) =
σ(g(µ))√

N
.

and its sample (simulated) counterpart

σ̄N[g(µ)] =

[
1
N

N

∑
i=1

g(µi)
2 − ḡ2

N

]2

.

Marginal p.d.f. of g(µ) may obtained from the draws of
g(µ) by kernel methods.
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IMPLEMENTING DSGES

Typically posterior distribution p(µ|X) is not directly
(analytically) available.

likelihood is available for Λ(µ), whereas
priors are specified in terms µ.

We can calculate p(µ|X) for given value of µ with the help
of the likelihood function L(X|µ, A) (ie with Kalman filter).
The last problem is to define from where to draw µi such
that the procedure will be

accurate
efficient

DeJong and Dave (2007) studies
Importance sampling
MCMC: Gibbs
MCMC: Metropolis-Hastings
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METROPOLIS-HASTINGS I
A Markov chain is a sequence of random variables, such that
the probability distribution of any one, given all preceding
realizations, depend on the immediately preceding realization.
Hence, {xi} has the property

Pr(xi+1|xi, xi−1, xi−2, . . . ) = Pr(xi+1|xi)

Here i refers to Monte Carlo replication.
xi can take one of n possible values, which collectively
defines the state space over x
Movements of xi over i is characterized via P, an n× n
transition matrix. Hence, a Markov chain can be fully
described by its initial state and a rule describing how the
chain moves from its state in i to a state in i + 1.
pqr is the (q, r)th element of P:
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METROPOLIS-HASTINGS II

it is the probability that xi will transition to state r in
replication i + 1 given its current state r.
qth row of P is the conditional probability distribution for
xi+1 given the current state q in replication i

The posterior distribution is not standard. The idea of Markov
Monte Carlo chain is to construct a stochastic process, such
that:

it has stationary distribution
it converges to that stationary distribution
the stationary distribution is the target distribution, ie the
posterior distribution p(µ|X). (ergodic distribution)
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METROPOLIS-HASTINGS III

−→ construct a Markov chain in µ, ie the transition matrix P,
such that the process converges to the posterior distribution.
The ‘process’ here is the sequence of draws, ie the simulations.
Let ι(µ|µi−1, θ) be a standing density (proposal distribution or
jumping distribution), where θ represents the parameterization
of this density.

Ideally ι(µ|µi−1, θ) should have fat tails relative to
posterior (we see shortly why).
center µi−1 and “rotation” θ should different from
posterior.
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METROPOLIS-HASTINGS ALGORITHM I
Let µ?

i denote a draw from ι(µ|µi−1, θ). It is a candidate to
become next successful µi.
It has the following probability to become successful:

q(µ?
i |µi−1) = min

[
1,

p(µ?
i |X)

p(µi−1|X)

ι(µi−1|µi−1, θ)

ι(µ?
i |µi−1, θ)

]
This probability can be simulated as follows

draw f from uniform distribution over [0, 1].
if q(µ?

i |µi−1) > f then µi = µ?
i else redraw new

candidate µ?
i from ι(µ|µi−1, θ).

Note that if ι(µ|θ) = p(µ|X) q(µ?
i |µi−1) = 1.

Finally, E[g(µ)] can be calculated usual way using sequence of
accepted draws.
Two variants:
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METROPOLIS-HASTINGS ALGORITHM II
1 independence chain: ι(µ|µi−1, θ) = ι(µ|θ).
2 random walk MH: candidate draws

µ?
i = µi−1 + εi

then stand-in density evolves

ι(µ|µi−1, θ) = ι(µ− µi−1|θ),

so that the center (mean) of ι(µ|µi−1, θ) evolves over Monte
Carlo replications following a random walk.

Choosing the stand-in distribution:
The “quality” of stand-in distribution helps in
convergence. It should be as close as possible to posterior
distribution.
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METROPOLIS-HASTINGS ALGORITHM III

Natural candidate: ML estimates of the parameters µ
follow asymptotically multivariate Normal distribtion
N(µ̂, Σ).
Since we want to be sure to have fatter tails, lets scale the
covariance matrix:

N(µ̂, c2Σ)

This would be our first draw from stand-in density, ie
ι(µ?

0 |θ).
Random walk Metropolis-Hastings would involve

ι(µ− µi−1|θ) = N(µi−1, c2Σ).
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METROPOLIS-HASTINGS ALGORITHM IV

Acceptance rate =
accepted draws

all draws
Optimal acceptance rate is 0.44 for a model with one parameter
and 0.23 if there more than five parameters.
This guides us in choosing c (the scale factor of the asymptotic
covariance matrix):

1 start with c = 2.4/
√

number of parameters.
2 Increase (decrease) c if the acceptance rate is too high (low).
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MARKOV CHAIN DIAGNOSTICS I

In the ML estimation the problems related to likelihood (eg
identification, or the model specification in general) show
typically up as numerical problem in maximizing the
likelihood.
In Bayesian estimation they show up in the MCMC.
Fundamental questions is the convergence of the chain(s):

Is the target distribution achieved?
What is the impact of the starting values of the chain?
Are blocks of draws correlated?

Partial solutions to possible problem

Remember that this is not standard Monte Carlo where 10
000 replication is a big number. Here it is million (Markov
chain)
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MARKOV CHAIN DIAGNOSTICS II

Throw away early iterations of each MCMC chain. Even 50
%
Asses the convergence

Plot the raw draws, ie parameter value against draw: if
they are trending, there is a trouble.
Plot multiple chains to the same graph: are they in the same
region.
Plot:

1
ns

ns

∑
s=1

g(µ(s))

as a function of ns.
start Markov chain at extreme values of µ and check
whether different runs of the chain settle to the same
distribution



Structural Macroeconometrics

Filtering and Likelihood approach

Simulating posterior

MARKOV CHAIN DIAGNOSTICS III

Simulate multiple chains: Look, among other things,
whether the moments of a single parameter µ(j) are
similar across the chains
Compute test statistics that measure variation within a chain
and between the chains.
These test statistic builds on the classical test set-ups that
try to detect structural breaks.

Testing the structural change, ie convergence.

Cusum-type of tests of structural change (see Yu and
Mykland (1998) or Yada manual)
Partial means test by Geweke (2005) splits the chain into
groups:
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MARKOV CHAIN DIAGNOSTICS IV
N is number of draws, Np = N/(2p), where p is positive
integer. Define p separated partial means

Ŝ(N)
j,p =

1
Np

Np

∑
m=1

S(µ(m+Np(2j−1)), j = 1, . . . , p

where S is some summary statistic of the parameters µ (eg
original parameters). Let τ̂j,p be the Newey-West (1987)
numerical standard error for j = 1, . . . , p. Define the (p− 1)
vector Ŝ(N)

p with typical element Ŝ(N)
j+1,p − Ŝ(N)

j,p and the

(p− 1)× (p− 1) triidiagonal matrix V̂(N)
p where

V̂(N)
j,j = τ̂2

j,p + τ̂2
j+1,p, j = 1, . . . , p− 1

and
V̂(N)

j,j+1 = V̂(N)
j+1,j = τ̂2

j+1,p, j = 1, . . . , p− 1.
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MARKOV CHAIN DIAGNOSTICS V
The statistic

G(N)
p =

(
Ŝ(N)

p

)′
[V̂(N)

p ]−1Ŝ(N)
p

d−→ χ2(p− 1),

as N → ∞ under the null that the MCMC chain has
converged with the separated partial means being equal.

Multiple chain diagnostics
i = 1, . . . , N chain length; j = 1, . . . , M number of chains.
Between chain variance is

B =
N

M− 1

M

∑
j=1

(S̄j − S̄)2,

where

S̄j =
1
N

N

∑
i=1

Sij S̄ =
1
M

M

∑
j=1

S̄j.
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MARKOV CHAIN DIAGNOSTICS VI
and within chain variance

W =
1

M(N− 1)

M

∑
j=1

N

∑
i=1

(Sij − S̄j)
2.

Define variance of S

Σ̂§ =
N− 1

N
W +

1
N

B,

and
V̂ = Σ̂S +

B
MN

.

The potential sclae reduction factor R̂ should decline to 1 if
simulation converges

R̂ =

√
V̂
W

=

√
N− 1

N
+

(M + 1)B
MNW

.
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CHOOSING PRIOR DISTRIBUTION I
Think carefully:

What is the domain?
Is it bounded?
Shape of distribution: symmetric, skewed, which side?

How to choose prior:
The choice of a prior distribution for a deep parameter
often follows directly from assumptions made in the DSGE
model.
Results from other studies (Microstudies or DSGE
estimates) are already available.

Pre-sample.
Other countries and data sets
NOT the data you are currently using the estimation.

Should not be too restrictive — allow for a wide support.
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CHOOSING PRIOR DISTRIBUTION II

Most common distributions employed are:

Beta distribution; range is ∈ (p1, p2); autoregressive
parameters ∈ (0, 1)
Gamma distribution; range is ∈ (p1, ∞);
Normal distribution
Uniform distribution; range is ∈ (p1, p2); diffuse priors
Inverted-gamma distribution; range is R+; variances

Yada manual has nice plots of the distributions.

Look at the model moments implied by priors!

Sensitivity analysis: how robus are conclusions to choice of
prior?
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MODEL COMPARISON I

Posterior distribution can be used to asses conditional
probabilities associated with alternative model specifications.
This lies at the heart of the Bayesian approach to model
comparison.

Relative conditional probabilities are calculated using odds
ratio.

Two models: A and B with corresponding parameter
vectors that may differ µA and µB.
Study model A (and change the symbols to study the
model B).
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MODEL COMPARISON II

Posterior (conditional on the model A)

p(µA|X, A) =
L(X|µA, A)π(µA|A)

p(X|A)

Integrate both sides by µA (ie calculate the marginal
probabilities; ie average over the all possible parameter
values) to have

p(X|A) =
∫

L(X|µA, A)π(µA|A)dµA.

This is the marginal likelihood of model A.
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MODEL COMPARISON III

Use Bayes’ rule to calculate conditional probability
associated with model A:

p(A|X) =
p(X|A)π(A)

p(X)

(use the similar logic as in the start of the section, ie define
joint probability of data and model (X, A).
Substitute the marginal likelihood into the above equation

p(A|X) =

[∫
L(X|µA, A)π(µA|A)dµA

]
π(A)

p(X)
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MODEL COMPARISON IV
Look at the ratio of the above condtional density to that of the
model B. This is called posterior odds ratio:

POA,B =

[∫
L(X|µA, A)π(µA|A)dµA

][∫
L(X|µB, B)π(µB|B)dµB

]︸ ︷︷ ︸
Bayes factor

π(A)

π(B)︸ ︷︷ ︸
prior odds ratio

Beauty of this approach
all models are treated symmetrically; no “null hypothesis”
all models can be false
works equally well for non-nested models

Hence, favour the model whose marginal likelihood is larger:
Odds ∈ (1− 3) “very slight evidence” in favour of A
Odds ∈ (3− 10) “slight evidence” in favour of A
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MODEL COMPARISON V
Odds ∈ (10− 100) “strong to very strong evidence” in
favour of A
Odds > 100 “decisive evidence” in favour of A

Implementation is tough, because we need to integrate the
parameters out.
Easy solution would be to assume functional form to marginal
likelihood. Laplace approximation utilizes Gaussian large sample
properties

p̂(X|A) = (2π)
T
2 |Σµm

A
|frac12p(µm

A |X, A)p(µm
A |A),

where µm
A is the posterior mode, ie the initial (ML estimated)

value of the parameters in stand-in distribution.
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MODEL COMPARISON VI
Harmonic mean estimator is based on the following idea:

E
[

f (µA)

p(µA|A)p(X|µA, A)
|µA, A

]
=

∫
f (µA)dµA∫

p(µA|A)p(X|µA, A)dµA
= p(X|A)−1,

where f is a probability density function. This suggest the
following estimator of the marginal density

p̂(X|A) =

[
1
B

B

∑
b=1

f (µb
A

p(µb
A|A)p(X|µb

A, A)

]−1

,

where µb
A is a draw of µA in Metropolis-Hastings iteration.

Typically f is replaced by a truncated normal, this estimator is
then called by modified harmonic mean estimator.
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