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Abstract: Computational complexity is examined using the principle of increasing 
entropy. To consider computation as a physical process from an initial instance to the final 
acceptance is motivated because information requires physical representations and because 
many natural processes have been recognized to complete in non-deterministic polynomial 
time  ( ). The irreversible process with three or more degrees of freedom is found 
intractable when, in terms of physics, flows of energy are inseparable from their driving 
forces. In computational terms, when solving a problem in the class , decisions among 
alternatives will affect subsequently available sets of decisions. The state space of a non-
deterministic finite automaton is evolving due to the computation itself hence it cannot be 
efficiently contracted using a deterministic finite automaton that will arrive at a solution in 
super-polynomial time. The solution itself is verifiable in polynomial time ( ) because the 
accepting state of computation is stationary. Conversely when solving problems in the 
class ,  the  set  of  states  does  not  depend  on  computational  history  hence  it  can  be  
efficiently contracted to the accepting state by a deterministic sequence of dissipative 
transformations. Thus it is concluded that the state set of class  is inherently smaller than 
the set of class . Since the computational time to contract a given set is proportional to 
dissipation, the computational complexity class  is a proper (strict) subset of . 
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1. Introduction 

Currently it is ambiguous whether every problem whose solution can be efficiently checked by a 
computer can also be efficiently solved by a computer [1,2]. On one hand, decision problems in a 
computational complexity class  can be solved efficiently by a deterministic algorithm within a number 
of steps bound by a polynomial function of the input’s length. An example of a  problem is that of the 
shortest path: what is the least-cost one-way path through a given network of cities to the destination? 
On the other hand, to solve problems in class  efficiently seems to require some non-deterministic 
parallel machine, yet solutions can be verified as correct in a deterministic manner. An example of a 

-complete problem is that of the traveling salesman: what is the least-cost round-trip path via a 
given network of cities, visiting each exactly once? 

It appears, although it has not been proven, that the traveling salesman problem [3] and numerous 
other  problems in mathematics, physics, biology, economics, optimization, artificial intelligence, 
etc., [4] cannot be solved in deterministic manner in polynomial time unlike the shortest path problem 
and other  problems. Yet, the initial instances of the traveling salesman and the shortest path problem 
seem to differ at most polynomially from one another. Therefore, could it be that there are, after all, for 
the  problems as efficient algorithms as there are for the  problems  but  these  simply  were  not  
found yet?  

In this study insight to the  versus  question is obtained by considering computation as a 
physical process [5,6,7,8] that follows the 2nd law of  thermodynamics  [9,10,11].  The  natural  law was  
recently written as an equation of motion that complies with the principle of least action and Newton’s 
second law [12,13,14,15]. The ubiquitous imperative, known also as the principle of increasing entropy, 
describes a system in evolution toward more probable states in least time. Here, it is of particular 
interest that evolution is in general a non-deterministic process as is class  computation. 
Furthermore, the end point of evolution, i.e., the stable stationary state itself can be efficiently validated 
as the free energy minimum in a similar manner as the solution to a  computation can be verified as 
accepting.  

The recent formulation of the 2nd law as an equation of motion based on statistical mechanics of open 
systems has rationalized diverse evolutionary courses that result in skewed distributions whose 
cumulative curves are open-form integrals [16,17,18,19,20,21,22,23,24,25,26]. Several of these natural 
processes [27], e.g., protein folding that directs down along intractable trajectories to diminish free 
energy [28], have been recognized as the hardest problems in class  [29]. Although, many other 

-complete problems do not seem to concern physical reality, the concept of -completeness [30] 
encourages one to consider computation as an energy transduction process that follows the 2nd law. The 
physical portrayal of computational complexity allows one to use the fundamental theorems concerning 
conserved currents [31] and gradient systems [27,32] in the classification of computational complexity. 
Specifically, it is found that circuit currents remain tractable during the class  problem computation 
because the accessible states of a computer do not dependent on the processing steps themselves. Thus 
the class  state set can be efficiently contracted using a deterministic finite automaton to the accepting 
set along the dissipative path without additional degrees of freedom. In contrast, the circuit currents are 
intractable during the class  problem computation because each step of the problem-solving process 
depends on the computational history and affects future decisions. Thus the contraction of states along 
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alternative but interdependent computational paths to the accepting set remains a non-deterministic 
process.  

The adopted physical perspective on computation is consistent with the standpoint that no 
information exists without its physical representation [5,6] and that information processing itself is 
governed by the 2nd law [33]. The connection between computational complexity and the natural law 
also yields insight to the abundance of natural problems in class  [4]. In the following, the 
description  of  computation  as  an  evolutionary  process  is  first  outlined  and  then  developed  to  
mathematical forms to make the distinction between the computations that belong to classes  and . 

2. Computation as a physical process 

According to the 2nd law of thermodynamics a computational circuit, just as any other physical 
system, evolves by diminishing energy density differences within the system and relative to its 
surroundings. The consumption of free energy [34] is generally referred to as evolution where flows of 
energy naturally select [35,36] the steepest directional descents in the free energy landscape to abolish 
the energy density differences in least time [14]. At first sight it may appear that the physical 
representations of computational states, in particular by modern computers, would be insignificant to 
play any role in computational complexity. However, since no representation of information can escape 
from following laws of physics, computation must ultimately comply with laws of physics. A clocked 
circuit as a physical realization of a finite automaton is an energy transduction network. Likewise, 
Boolean components and shift register nodes are components of a physical network. In accordance with 
the network notion, the  vs.  question can be phrased in terms of graphs [37]. In this study it will 
be shown that the computations in the two computational complexity classes differ from each other in 
terms of physics. Thus it follows that no algorithm can abolish this profound distinction. 

Computation is, according to the principle of increasing entropy, a probable physical process. The 
sequence of events will begin when an energy density difference, representing an input, appears at the 
interface between the computational system and its surroundings. Thus, the input by its physical 
representation places the automaton at the initial state of evolution. A specific input string of alphabetic 
symbols is represented to the circuit by a particular physical influx, e.g.,  as  a  train  of  voltages.  
Importantly no instance is without physical realization.   

The algorithmic execution is an irreversible thermalization process where the energy absorbed at the 
input interface will begin to disperse within the circuit. Eventually, after a series of dissipative 
transformations from one state to another, more probable one, the computational system arrives at a 
thermodynamic steady state, the final acceptance, by emitting an output, e.g., writing a solution on a 
tape. No solution can be produced without physical representation. Although it may seem secondary, 
the condition of termination must ultimately be the physical free energy minimum state, otherwise, there 
would still be free energy that would drive the computational processes further. 

Physically speaking, the most effective problem solving is about finding the path of least action, 
which is equivalent to the maximal energy transduction from the initial instance down along the most 
voluminous gradients of energy to the final acceptance. However, the path for the optimal conductance, 
i.e., for the most rapid reduction of free energy, is tricky to find in a circuit with three or more degrees 
of freedom because flows (currents) and forces (voltages) are inseparable. In contrast, when the process 
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has no additional degrees of freedom in dissipation, the minimal resistance path corresponding to the 
solution can be found in a deterministic manner.  

In the general case the computational path is intractable because the state space keeps changing due 
to the search itself. A particular decision to move from the present state to another depends on the past 
decisions and will also affect accessible states in the future. For example, when the traveling salesman 
decides for the next destination, the decision will depend on the past path, except at the very end, when 
there are no choices but to return home. The path is directed because revisits are not allowed (or 
eventually restricted by costs). This class, referred to as , contains intractable problems that describe 
irreversible (directional) processes (Fig. 1) with additional (n  3) degrees of freedom.  

In the special case the computational path is tractable as decisions are independent of computational 
history. For example, when searching for the shortest path through a network, the entire invariant state 
space is, at least in principle, visible from the initial instance, i.e., the problem is deterministic. A 
decision at any node is independent of traversed paths. This class, referred to as , contains tractable 
problems that describe irreversible processes without additional degrees of freedom. Moreover, when 
the search among alternatives is not associated with any costs, the process is reversible (non-
directional), i.e., indifferent to the total conductance from the input to output node.  

 

 

Fig. 1. Computation is considered as a dissipative process. The input as an influx of energy disperses from the input 
interface (top) through the network that evolves during the computation, according to the 2nd law of thermodynamics by 
dissipative transitions that acquire high (blue) and yield low (red) density in energy, toward the stationary state (bottom). 
Reversible transitions, i.e., conserved currents (purple), do not bring about changes of state and advance the computation. 
Driving forces (free energy between the nodes) and flows (between the nodes) are inseparable when there are additional 
degrees of freedom (n  3), i.e., alternative but interdependent paths for the dissipative processes to proceed along. Then 
the flows are intractable and the corresponding algorithmic execution is non-deterministic.   

 
Finally, it is of interest to note the particular case when a particular physical system has no 

mechanisms to proceed from a state to any other by transforming absorbed quanta to any emission. 
Since dispersion relations of physical systems are revealed first when interacting with them [38,39], it is 
impossible to know for a given circuit and finite influx, a priori, without interacting whether the system 
will arrive at the free energy minimum state finishing with emission or remain at an excited state without 
output forever. This is the physical rationale of the halting problem [40]. It is impossible to decide for a 
given program and finite input, a priori, without processing whether the execution will arrive at the 
accepting state finishing with output or remain at a running state without output forever. These 
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processes that acquire but do not yield, relate to problems that cannot be decided. They are beyond 
class  [41] and will not be examined further. Here the focus is on the principal difference between 
the truly tractable and inherently intractable problems. 

3. Self-similar circuits 

The physical portrayal of problem processing according to the principle of increasing entropy is 
based on the hierarchical and holistic formalism [42]. It recognizes that circuits are self-similar in energy 
transduction (Fig. 2) [21,43,44]. A circuit is composed of circuits, or equivalently, there are networks 
within nodes of networks. The most elementary physical entity is the single quantum of action [15,45]. 

Each node of a transduction network is a physical entity associated with energy Gk. A set of identical 
nodes Nk > 0 representing, for example, a memory register, is associated, following Gibbs [46], with a 
density-in-energy defined by k = Nkexp(Gk/kBT) relative to the average energy density kBT. The self-
similar formalism assigns to a set of indistinguishable nodes in numbers Nk a probability measure Pk 
[12,45]  

 

 exp ! !
kkn

Ng

kn kn
k n kn k

n B

G QP N g N
k T

 (3.1) 

 
in a recursive manner, so that each node k in numbers Nk is a product of embedded n-nodes, each 
distinct type available in numbers Nn. The combinatorial configurations of identical n-nodes in the k-
node are numbered by gkn. Likewise, the identical k-nodes in numbers Nk are indistinguishable from each 
other in the network. The internal difference Gkn = Gk – Gn and the external flux Qkn denote the 
quanta of (interaction) energy.  

 

Fig. 2. According to the self-similar formulation of energy transduction the nodes of network are themselves networks. 
Any two densities j and k at the nodes j and k are distinguished from each other by a dissipative jk- transformation Qjk 
 0.   

 
The computational system is processing from one state to another, more probable one, when energy 

is flowing down along gradients through the network from one node to another with concurrent 
dissipation to the surroundings. For example, a j-node can be driven from its present state,  defined by 
the potential j = kBTln j [34], to another state by an energy flow from a preceding k-node at a higher 
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potential k and  by  an  energy  efflux  Qjk to the surroundings (Fig. 2). Subsequently the j-node may 
transform  anew  from  its  current  high-energy  state  to  a  stationary  state  by  yielding  an  efflux  to  a  
connected i-node  at  a  lower  potential  coupled  with  emission  to  the  surroundings.  Any two states  are  
distinguished  from  each  other  as  different  only  when  the  transformation  from  one  to  the  other  is  
dissipative Qjk  0 [12,13,14]. When thermalization has abolished all density differences, the 
irreversible process has arrived at a dynamic steady state where reversible, to-and-fro flows of energy 
(currents) are conserved and, on the average, the densities remain invariant. 

It is convenient to measure the state space of computation by associating each j-system with 
logarithmic probability  

 

 ln 1 1jk jk jk
j j j

k kB B

Q V
P N N

k T k T
 (3.2) 

 
in analogy to Eq. 3.1 where jk/kBT = ln j – gjkln( k/gjk!) is the potential difference between the j-node 
and all other connected k-nodes in degenerate (equal-energy) numbers gjk. Stirling’s approximation 
implies that kBT is a sufficient statistic [47] lnPj for so that the system may accept (or discard) a 
quantum without a marked change in its total energy content, i.e., the free energy Vjk = jk – Qjk  

kBT. Otherwise, a high influx Vjk  kBT, such as a voltage spike from the preceding k-node or heat from 
the surroundings, might “damage” the j-system, e.g., “burn” a memory register, by forcing the 
embedded n-nodes into evolution (Fig. 2). Such a non-statistic phenomenon may manifest itself even as 
chaotic motion but this is no obstacle for the adopted formalism because then the same self-similar 
equations are used at a lower level of hierarchy to describe processes involving sufficiently statistic 
systems.  

According to the scale-independent formalism the network is a system in the same way as its 
constituent nodes are systems themselves. Any two networks, just as any two nodes, are distinguishable 
from each other when there is some influx sequence so that exactly one of the two systems is 
transforming. In computational terms, any two states of a finite automaton are distinguishable when 
there  is  some  input  string  so  that  exactly  one  of  the  two  transition  functions  is  accepting  [2].  Those  
nodes that are distinguishable from each other by mutual density differences are non-equivalent. These 
distinct physical entities of a circuit are represented by disjoint sets and indexed separately in the total 
additive measure of the entire circuit defined as  

 

 
1 1

ln ln 1 jk
j j

j j k j B

V
P P N

k T
. (3.3)  

 
The affine union of disjoint sets is depicted as a graph that is merged from subgraphs by connections. 

In the general case the measure lnP (Eq. 3.3) implies a complicated energy transduction network by 
indexing numerous nodes as well as differences between them and in respect to the surroundings. In a 
sufficiently statistical system the changes in occupancies balance as Nj = – Nk since the influx to the j-
node results from the effluxes from the k-nodes (or vice versa).  The  flows  along  the  jk-edges are 
proportional to the free energy by an invariant conductance jk > 0 defined as [12] 
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The form ensures continuity so that when a particular jk-flow is increasing the occupancy Nj > 0 of the 
j-node, the very same flow is decreasing the occupancies Nk < 0 at the k-nodes (or vice versa). 
Importantly, owing to the other affine connections, the jk-transformation will affect occupancies of 
other nodes that in turn affect Vjk. Consequently when there are, among interdependent nodes (n  3), 
alternative paths (k  2) of conduction, the problem of finding the optimal path becomes intractable 
[12,14]. As long as Vjk  0 the gradient system with n  3 degrees of freedom does not enclose 
integrable (tractable) orbits [32]. 

Conversely in the special case, when the reduction of a difference does not affect other differences, 
i.e., there are no additional degrees of freedom, the changes in occupancies remain tractable. The 
conservation of energy requires that when there are only two degrees of freedom, the flow from one 
node will inevitably arrive exclusively at the other node. Therefore it is not necessary to explore all 
these integrable paths to their very ends as the outcome can be predicted and the particular path in 
question can be found efficiently. Moreover, when there are no differences Vjk = 0, there are no net 
variations in occupancies, i.e., no net flows either. These conserved, reversible flows are statistically 
predictable even in a complicated but stationary ( lnP = 0) network with degrees of freedom. When the 
currents are conserved, the network is idle, i.e., not transforming. In accordance with Noether’s 
theorem also the Poincaré-Bendixson theorem holds for the stationary system [27,32]. 

The overall transduction processes, both intractable and tractable direct toward more probable 
states, i.e., lnP > 0. However when a natural process with three or more degrees of freedom is 
examined in a deterministic manner, it is necessary to explore all conceivable transformation paths to 
their ends. The paths cannot be integrated in closed forms (predicted) because each decision will affect 
the choice of future states. The set of conceivable states that is generated by decisions at consequent 
branching points of computation can be enormous.   

The physical portrayal of computational complexity reveals that it is the non-invariant, evolving state 
space of class  computation that prevents from completing the contraction by dissipative 
transformations in deterministic manner in polynomial-time. Since the dissipated flow of energy during 
the computation relates directly to the irreversible flow of time [14], the class  completion time is 
inherently longer than that of class . Thus it is concluded that  is a proper subset of . 

4. Computation as a probable process 

When computation is described as a probable physical process, the additive logarithmic probability 
measure lnP is increasing as the dissipative transformations are leveling the differences Vjk  0 ( Vjj = 

0). When the definitions in Eq. 3.4 and jk( Nj)/kBT = Nj/Nj are used, the change lnP  
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is found to be non-negative since the squares ( Vjk)2 and  ( Nj)2 are necessarily non-negative and the 
absolute temperature T > 0, jk  0 and kB > 0.  

The definition of entropy S = kBlnP yields from Eq. 4.1 the principle of increasing entropy S = –
j Nj k Vjk/T  0. Equation 4.1 says that entropy is increasing when free energy is decreasing, in 

agreement with the thermodynamic maxim [34] and Gouy-Stodola theorem [ 48 , 49 ] and the 
mathematical foundations of thermodynamics [50,51,52]. In other words, when the process generator L 

> 0, there is free energy for the computation to commence from the initial state toward the accepting 
state where the output will thermalize the circuit and L = 0. Admittedly, dissipation is often small, 
however, not negligible but necessary for any computation to yield an output [5,6,33].  

During the computational process the state space accessible by L > 0 is contracting toward the free 
energy minimum state where L = 0 and no further changes of state are possible. Consistently, when lnP 
is increasing due to the changing occupancies Nj, the change in the process generator [27] 

 

 
2

1 1

2 2 0jj jk
jk

j k jj B j

NN V
L

N k T N
 (4.2)  

 
is found to decrease almost everywhere using the definition in Eq. 3.4 because the squares ( Nj)2 and 
( Vjk)2 are necessarily non-negative and Nj > 0 for any spatially confined energy density [14]. The 
equations 4.1 and 4.2 show that during the computation the state space is contracting toward the 
stationary state where L = 0.  

The free energy minimum partition lnPmax = Nj
ss corresponds  to  the  solution.  It  is  a  stable  state  of  

computational process in its surroundings because any variation Nj below (above) the steady-state 
occupancy Nj

ss will reintroduce Vjk < 0 (> 0) that will drive the system back to the stationary state by 
invoking a returning flow Nj > 0 (< 0). Explicitly, the maximum entropy system is Lyapunov stable 
[27,32] according to the definitions lnP = L( Nj) < 0 and L( Nj) > 0 that are available from Eqs. 4.1 and 
4.2. The dynamic steady state is maintained by frequent to-and-fro flows between the system’s 
constituents and the surroundings. These non-dissipative processes do not amount to any change in P. 

In general the trajectories of natural processes cannot be solved analytically because the flows Nj 
and Vjk are inseparable in L (Eq.  4.1)  at  any  j-node  where  cardinality  of  {j,k}  3. Nonetheless, the 
inherently intractable trajectories can be mapped by simulations where T, Vjk and Nj are updated after 
each change of state. The occupancies Nj keep changing due to the changing driving forces Vjk that, in 
turn, are affected by the changes Nj. In terms of physics the non-Hamiltonian system is without 
invariants of motion and Liouville’s theorem is not satisfied because the open dissipative system is 
subject to an influx (efflux) from (to) its surroundings. The non-conserved, gradient system is without 
norm. Thus the evolving (cf. Bayesian) distribution of probabilities Pj cannot be normalized. The 
dissipative equation of motion P/ t = LP for the class of irreversible processes cannot be integrated in 
a closed form or transformed to a time-independent frame [14] to obtain a solution efficiently.  

According to the maximum entropy production principle [53,54,55,56,57,58,59,60,61,62,63,64,65] 
energy differences will be reduced most effectively when entropy increases most rapidly, i.e., most 
voluminous currents direct along the steepest paths. However, when choosing at every instance a 
particular descent that appears as the steepest, there is no guarantee that the most optimal overall path 
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will be found because the transformations themselves will affect the future states between the initial 
instance and the final acceptance. To be sure about the optimal trajectory it takes time (dissipation) 
because the deterministic algorithmic execution of the class  problem  will  have  to  address  by  
conceivable transformations the entire power set of states, one member for each distinct path of energy 
dispersal.  

In the special case when the currents are separable from the driving forces, the energy transduction 
network will remain invariant. In terms of physics the Hamiltonian system has invariants of motion and 
Liouville’s theorem is satisfied. The deterministic computation as a tractable energy transduction 
process will solve the problem in question because the dissipative steps are without additional degrees 
of freedom. The conceivable courses can be integrated (predicted). Hence the solution can be obtained 
efficiently, e.g., by an algorithm that follows the steepest descent and does not waste time in wandering 
along paths that can be predicted to be futile.  

5. Manifold in motion 

Further insight to the distinction between computations in the classes  and  is obtained when 
the computation as a physical process is described in terms of an evolving energy landscape [66,67,68]. 
To this end the discrete differences  that denote properly transforming forces and quantized flows, are 
replaced by differentials  of continuous variables. A spatial gradient Ujk xj is a convenient way to 
relate a density labeled by j at a continuum coordinate xj with another one labeled by k but displaced by 
dissipation Qjk t at xk [13,14]. When the j-system at xj evolves down along the scalar potential 
gradient Ujk xj in the field Qjk xj, the conservation of energy requires that the transforming current vj 

= dxj/dt = – dxk/dt.  The  dissipation  Qjk t is  an  efflux  of  photons  at  the  speed  of  light  c to the 
surrounding medium (or vice versa).  

The continuum equation of motion corresponding to Eq. 4.1 is obtained from Eq. 3.3 by 
differentiating and using the chain rule (dPj/dxj)(dxj/dt) [14] 

   

   
,

jk
j

j k B

V
L D

k T
 (5.1)  

 
where directional derivates Dj = (dxj/dt)( / xj) span an affine manifold [69] of energy densities (Fig. 3). 
The total potential Vjk = Ujk – iQjk is decomposed to the orthogonal scalar Ujk and vector Qjk parts [70]. 
All distinguishable densities and flows are indexed by j  k. The evolving energy landscape is concisely 
given by the total change in kinetic energy (2K)/ t = kBTL = S/ t [13,14]  
 

 
, , , , ,

2jk jk jkk
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 (5.2)  

 
where  the  transforming  flows  with  three  or  more  degrees  of  freedom  (n  3)  are  indexed  as  j  k ± 1. 
Conversely, the flow without additional degrees of freedom (n < 3)  is  indexed  as  j = k ± 1. In fact the 
derivate should be denoted as inexact ( ) because in general the entered state depends on the past path. 
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The equation for the flows of energy can also be obtained from the familiar Newton’s 2nd law [71] 
for the change in momentum pjk = mjkvk  

 

   
, , , , , ,

jk jk jk jk
jk jk k k

j k j k j k j k j k j kj j j

m V U Q
p m a v

t t x x v t
 (5.3)  

 
by multiplying with velocities. The gradient Vjk xj is  again  decomposed  to  the  spatial  and  temporal  
parts. The sign convention is the same as above, i.e., when Ujk xj < 0, then vj > 0. Since momenta are at 
all times tangential to the manifold, the Newton’s 2nd law (Eq. 5.3) requires that the corresponding flow 
at any moment 

 

 jk jk
j

k B j

V
v

k T x
 (5.4)  

 
is proportional to the driving force in accordance with the continuity vj = – vk across the jk-edges 
between nodes of the network (Eq. 3.4) [12]. The linear relationship in Eq. 5.4 that reminds of Onsager 
reciprocal relations [50], is consistent with the previous notion that the densities-in-energy (the nodes) 
are sufficiently statistic. Otherwise, a high current between xk and xj would force the underlying 
conducting system (jk-edge), parameterized by the coefficient jk, to evolution. In such a case the 
channel’s conductance would depend on transmitted bits [33].  

 

 

Fig. 3. The curved energy landscape, covered by triangles, represents the state set of intractable computation. The non-
Euclidian manifold is evolving by the contraction process itself toward the optimal path of maximal conduction (red 
arrows) corresponding to the solution. During the contraction the path with additional degrees of freedom (exemplified at 
a branching point) from the initial instance (top) toward the final acceptance (bottom) is shortening but remains non-
integrable (unpredictable) due to the dissipation. In contrast the paths (blue arrows) on the invariant Euclidean plane 
(grey) do not mold the landscape and thus they do not have to be followed to their ends but can be integrated (predicted).   

 
A particular flow vj funnels by dissipative transformations down along the steepest descent – Vjk xj, 

i.e., along the shortest path sjk = d vjmjkvk) known as the geodesic [50,72,73]. At any given moment 
the positive definite resistance rjk = kBT jk

-1
 > 0 in Eq. 5.4 identifies to the mass mjk > 0 that as the metric 

tensor defines the geometry of the free energy landscape [74] (cf. Lorentzian manifold). Formally sjk can 
be denoted as an integral, however in the general case of the evolving non-Euclidean landscape it 
cannot be integrated in a closed form [32]. The curved landscape is shrinking (or growing) because the 
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surroundings are draining it by a net efflux (or supplying it with a net influx) of radiation Qjk/ t  0 
and/or a material flow Ujk/ t  0.  When  the  forces  and  flows  are  inseparable  in  L, the non-invariant 
landscape is, at any given locus and moment, a result of its evolutionary history. The rate of net 
emission (or net absorption) declines as the system steps, quantum by quantum, toward the free energy 
minimum, which is the stationary state in the respective surroundings. Only in the special case, when the 
forces and flows are separable, can the trajectories be integrated in a closed form. 

Finally, when all density differences have vanished, the manifold has flattened to the stationary state 
(dS/dt = 0). The state space has contracted to a single stationary state where L = 0. In agreement with 
Noether’s theorem the currents are conserved and tractable throughout the invariant manifold. Also in 
accordance with Poincaré’s recurrence theorem the steady-state reversible dynamics are exclusively on 
bound and (statistically) predictable orbits. Moreover the conserved currents, i.e., mjk t = 0, bring 
about no net changes in the total energy content of the system. Hence Eq. 5.3 reduces to  

 

 
, , ,

2 jkk
j jk k j jk j

j k j k j k j
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 (5.5)  

 
which implies in accordance with the virial theorem that the components of kinetic energy 2K match the 
components of potential U everywhere.  

According to the geometric description of computational processes, the flattening (evolving) non-
Euclidean landscape represents the state space of the class  computation whereas the flat Euclidean 
manifold represents the state space of the class  computation. The geodesics that span the class  
landscape are arcs whereas those that span the class  manifold are straight lines. According to Eq. 5.2 
the class  state space is, due to its three or more degrees of freedom (n  3), larger in dissipation by 
the terms vjdmjkvk > 0 indexed with j  k ± 1, than the class  state space without additional degrees of 
freedom (n < 3) for dissipation given by the term vjdmjkvk > 0 indexed with j = k ± 1.  In  other  words,  
class  is larger than  because the curved manifold cannot be embedded in the plane. The measure 
lnP  of the non-Euclidean landscape is simply larger by the degrees of freedom (n  3) in dissipation 
than the measure lnP  of Euclidean manifold.  

The argument for the failure to map the larger  manifold one-to-one onto the smaller  manifold 
is familiar from the pigeonhole principle PHP  applied for manifolds lnP  > lnP . The quanta that are 
dissipated during evolution from diverse density loci of the curved, evolving  landscape are not 
mapped anywhere on the flat, invariant  landscape. Thus it is concluded that  is  a proper subset of 

.  

6. Intractability in the degrees of freedom 

The transduction path between two nodes can be represented by only one edge, hence there are k = n 

– 1 interdependent currents (Eq. 3.4) between n densities [27]. The degrees of freedom are less than n 
by 1 because it takes at least two densities to have a difference. In the general case n  3, there are 
alternative paths for the currents from the initial state via alternative states toward the accepting state. 
The intractable evolutionary courses are familiar from the n-body (n  3) problems [75,76]. Accordingly, 
the satisfiability problem of a Boolean expression (n-SAT) belongs to class  when there are three or 
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more literals (n  3) per clause [30]. In the special case n = 2, the energy dispersal process is 
deterministic as there are no alternative dissipative paths for the current. When only one path is 
conducting, the problem for the maximal conduction is 1-separable and tractable. The two-body 
problem does not present a challenge. Accordingly, 2-SAT is deterministic and 1-SAT is trivial, 
essentially only a statement.  

For example, the problem of maximizing the shortest path by two or more interdicts (k  2) is 
intractable. When the first interdict is placed, flows are redirected and, in turn, affect the decision to 
place the second interdict. Similarly the search history of the traveling salesman for the optimal round-
trip path is intractable. A decision to visit a particular city will narrow irreversibly the available state 
space by excluding that city from the subsequent choices. Thus, at any particular node one cannot 
consider decisions as if not knowing the specific search history that led to that node. When each 
decision will open a new set for future decisions, the computational space state of class  is a tedious 
power set of deterministic decisions. On the other hand when optimizing the shortest path, a choice for 
a particular path does not affect, in any way, the future explorations of other paths. At any particular 
node one may consider decisions irrespective of the search history. In the deterministic case it is not 
necessary to explore all conceivable choices because the trajectories are tractable (predictable). 
Likewise, the problem of maximizing the shortest path by a single interdict k = 1 can be solved 
efficiently. Any particular decision to place the interdict does not affect future decisions because there 
are no more interdicts to be placed. When the state space is not affected by the problem-solving process 
itself, at most, a polynomial array of invariant circuits, i.e., deterministic finite automata, will compute 
class  problems.  

The  vs.  question  is  not  only  a  fundamental  but  also  a  practical  problem  for  which  no  
computational machinery exists without physical representation. A particular input instance is imposed 
on the computational circuit by the surroundings and a particular output is accepted as a solution by the 
surroundings. The communication between the automaton and its surroundings relates to information 
processing that was understood already early on to be equivalent to the (impedance) matching of 
circuits for optimal energy transmission [77]. When the matching of a circuit will affect the matching of 
two or more connected circuits, the total matching of the interdependent circuits for the optimal overall 
transduction is intractable. Although in practice the iterative process may be converging rapidly in a 
non-deterministic manner, the conceivable set of circuit states is a power set of the tuning operations. 
Conversely, when the matching does not involve degrees of freedom, the tuning for optimal 
transduction is tractable.  

In summary, the class  problem solving process is inherently non-deterministic because the 
contraction process will itself affect the set of future states accessible from a particular instance. The 
course toward acceptance cannot be accelerated by prediction but the state space must be explored. On 
the other hand when dissipative steps between the input and output operations have no additional 
degrees of freedom, the search for the class  problem solution will itself not affect the accessible set of 
states at any instance. The invariant state set can be contracted efficiently by predicting rather than 
exploring all conceivable paths. Therefore, the completion time of the class  deterministic computation 
is shorter than that of . Thus it is concluded that  is a proper subset of . 
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7. State spaces of automata 

The computational complexity classification to  and  by  the  differing  degrees  of  freedom  in  
dissipation relates to the algorithmic execution times, which are proportional to circuit sizes. A Boolean 
circuit that simulates a Turing machine is commonly represented as a (directed, acyclic) graph structure 
of a tree with the assignments of gates (functions) to its vertices (nodes) (Fig. 2).  

The class  problems are represented by circuits where forces (voltages) are inseparable from 
currents. Since there are no invariants of motions, the ceteris paribus assumption does not hold when 
solving the class  problems [78]. Consistently, no deterministic algorithms are available for the class 
of non-conserved flow problems but, e.g., brute-force optimization, simulated annealing and dynamic 
programming are employed [79].  

The class  problems can be considered to be computed by a non-deterministic Turing machine 
(NTM). For each pair of state and input symbol there may be several possible states to be accessed by a 
subsequent transition. The NTM 5-tuple ( , , , 1, ss) consists of a finite set of states , a finite set 
of input symbols including blank, an initial state 1  , a set of accepting (stationary) states ss   
and a transition function :  ×    × ×{R,L} where L is left and R is right shift of the input tape. 
Since Turing machine has an unlimited amount of storage space for computations and eventually an 
infinite input as well, such a machine cannot be realized. Therefore, to consider the computational 
complexity in context of a finite state machine by the physical principle is more motivated, however, 
without compromising conclusions. For example, a read-only, right-moving Turing machine is 
equivalent to a non-deterministic finite automaton (NFA) where for each pair of state and input symbol 
there may be several possible states to be accessed by a subsequent transition. The NFA 5-tuple ( , , 

, 1, ss) consists of a finite set of states , a finite set of input symbols an initial state 1  , a set 
of accepting (stationary) states ss   and a transition function :  ×   P( ), where P( ) denotes 
the power set of . A circuit for the non-deterministic computation can also be constructed from an 
array of deterministic finite automata (DFA). Each DFA is a finite state machine where for each pair of 
state and input symbol there is one and only one transition to the next state. The DFA 5-tuple ( , , , 

1, ss) consists of a finite set of states ( ), a finite alphabet , an initial state ( 1  ), a set of accepting 
states ( ss  ) and a transition function :  ×   .  

In the general case when the forces are inseparable from the flows, the execution time by the DFA 
array grows super-polynomial as function of the input length n, e.g., as O(Nn). For example, when 
maximizing the shortest path by interdicts (k  2), any two alternative choices will give rise to two 
circuits that differ from each other as much as the currents of the two DFAs differ from each other. 
These two sets are non-equivalent due to the difference in dissipation, and one cannot be reduced to the 
other. Accordingly, the circuit for the NFA is adequately constructed from the entire power set of 
distinct DFAs to cover the entire conceivable set of states of the non-deterministic computation (Fig. 4). 
The union of DFAs is non-reducible, i.e., each DFA is distinguished from all other DFAs by its distinct 
transition function.  

The class  problems are represented by circuits where forces are separable from currents. When the 
proposed questions do not depend on previous decisions (answers), the problem can be computed 
efficiently by DFA. Consistently in the class  of flow conservation problems many deterministic 
methods deliver the solution corresponding to the maximum flow in polynomial time. For example, 
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during the search for the maximally conducting path through the network, currents disperse from the 
input node k to diverse alternative nodes l but  only  the  flow along  the  steepest  descent  arrives  at  the  
output node j and establishes the only and most voluminous flow. The other paths of energy dispersal 
terminate at dead ends and do not contribute or affect the maximum flow at all. Importantly, on an 
invariant landscape these inferior paths do not have to be followed to their very ends as is exemplified 
by Dijkstra’s algorithm [80]. The search terminates at the accepting state whereas other paths end up at 
nil states. These particular sequences of states “died”. The shortest path problem can be presented by a 
single DFA because the non-accepting dead states that keep going to themselves, belong to , the 
empty set of states. However, as has been accurately pointed out [2], technically this automaton is a 
non-deterministic finite automaton, which reflects understanding that the single flow without additional 
degrees of freedom (n = 2) is the special deterministic subclass of the generally (n  3) non-deterministic 
class. Likewise, the special case of maximizing the shortest path by a single interdict (k = 1) is 
deterministic in contrast to the general case of two or more interdicts (k  2). The special 1-separable 
problem can be represented by a linear set of distinct circuits in contrast to the general inseparable 
problem that requires a power set of distinct circuits. Accordingly, the automaton for the special cases 
of deterministic problems is adequately constructed at most from a polynomial set of distinct DFAs and 
the corresponding deterministic computation is completed in polynomial time.  

Since the class  varying state space is larger, due to its additional degrees of freedom, than the 
class  invariant state space, it is concluded that  is a proper subset of .   

 

 

Fig. 4. A circuit (O) containing nodes with degrees of freedom (n  3) represents an NFA. The computation steps from a 
state to another when currents are driven from the input instance (top) down along alternative but interdependent paths 
toward the output acceptance (bottom). Since the currents affect each other by affecting the driving forces, the circuit 
corresponds to the NFA having a power set of states. It can be decomposed to the distinct circuits (A – E), one member for 
each conceivable current without additional degrees of freedom, that are representing an array of DFAs each having at 
most a polynomial set of states.   

8. The measures of states 

To measure the difference between the classes  and , the thermodynamic formalism of 
computation will be transcribed to the mathematical notation [51]. Consistently with the reasoning 
presented in sections 2 – 7, the computational complexity class  will be distinguished from  by 
measuring the difference in dissipative computation due to the difference in degrees of freedom. 
Moreover, since the computation does not advance by non-dissipative (reversible) transitions, these 
exchanges of quanta do not affect the measure.  

To maintain a connection to practicalities, it is worth noting that tractable problems are often 
idealizations of intractable natural processes. For example, when determining the shortest path for a 
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long-haul trucker to take through a network of cities to the destination, it is implicitly assumed that 
when the computed optimal path is actually taken, the traffic itself would not congest the current and 
cause a need for rerouting and finding a new, best possible route under the changing circumstances.       

The state space of a finite energy system is represented by elements  of the set  [51]. 
Transformations from a state to another are represented by elements , referred to as process 
generators of the set .  The  computation  is  a  series  of  transformations  along  a  piecewise  continuous  
path s( , ) in the state space. According to the 2nd law the paths of energy dispersal that span the affine 
manifold , are shortening until the free energy minimum state has been attained. Then the state space 
has contracted during the transformation process to the accepting state.  

Definition 8.1 A system is a pair ( , ), with  a set whose elements  are called states and  a set 
whose elements  are called process generators, together with two functions. The function    
assigns to each  a transformation , whose domain ( ) and range ( ) are non-empty subsets of  
such that for each  in  the condition of accessibility holds.  

 
   (i)  : : ,  (8.1a)  

 
where  is the entire set of states accessible from ,  with  the  assertion  that,  for  every  state  ,  
equals the entire state space . Furthermore, the function ( ´, ´´)  ´´ ´ assigns to each pair ( ´, ´́ ) 
the (extended) process generator ´´ ´ for the successive application of ´´ and ´ with the property:  
 

 

1
´

´́ ´ ´´ ´

* *

(ii) if ´´ ´ , then ´´ ´ ´´

and, for each  in ´´ ´ there holds , ´´ ´

when for any other ´ .

 (8.1b)  

 
The extended process generators ´´ ´ formalize the successive transformations with less than three 
degrees of freedom. When the transformation ´ is emissive, its inverse ´

-1 is absorptive.  
Definition 8.2 A  process  of  ( , )  is  a  pair  ( , ) such that   ( ). The process generators 

transform the system from an initial state via intermediate states to the final state. The set of all 
processes of ( , ) is  

 
   , : , .  (8.2)  

 
According to definitions 8.1 and 8.2 the states and process generators are interdependent (Fig. 5) so 
that:  

(i) When the system has transformed from the state  to the state , the process generator  has 
vanished.  

(ii) When the system has transformed from  to , the system is no longer at  available for 
another transformation  by another process generator * to .  

(iii) When the system has transformed from the initial state  to an intermediate state ´  and 
subsequently from ´  to ´´ ´ , the final state ´´ ´  is identical to the state resulting from the 
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extended transformation from  to ´´ ´ , only when ´  is not a domain ( *)  of  any  other  
transformation .  

Definition 8.3 [51] Let t > 0 and let t: [0, t)  , be piecewise continuous, and define ( t) to be 
the set of states   = (N, G)   such that the differential equation  

 

 
( ) ( ), ( )t

dN dG
dt dt

 (8.3)  

 
has a solution   (N( ), G( )) that satisfies the initial condition (N(0), G(0)) =  and follows the 
trajectory {(N( ), G( ))|  [0, t]} which is entirely in . In other words,   ( t)  if  and  only  if   + 

0 t( )d  is in  for every  [0, t].    
When Eq. 8.3 is compared with Eq. 4.1, t is understood in the continuum limit to generate a 

transformation from the initial density  = (N(0), G(0)) (cf. the definition of energy density in Sec. 3) to 
a succeeding density  = (N( ), G( )) during a step   [0, t] via the flow v = dN/dt that drains the free 
energy.  

 

 

Fig. 5. (Left) The system evolves, according to the definitions 8.1 and 8.2, from an initial state (top) to other states by a 
sequence of transformations  (arrows) that are directional, i.e., dissipative due to the distinct domains  and ranges  
for distinct elements  of process generators. (Right) The successive transformations ´ and ´´ can be reduced to ´´ ´ 
only when the intermediate state cannot be transformed by any other process *.   

 
Definition 8.4 [51] Define  to be the set of functions t for which ( t)  . For each t  , 

define t : ( t)   by the formula  
 

 
0

( )
t

t

t d . (8.4)  

 
If s( t, ) denotes the path determined by     + 0 t( )d     [0, t], then t  is taken to be the final 
point of s( t, ). Moreover   ( t)  s( t, )  .  

The step of evolution along the oriented and piecewise smooth curve from  to t  is the path s( t, 

)   determined  by  the  formal  integration  from  0  to   (Eq.  8.4).  In  the  general  case  of  dissipative  
transformations with degrees of freedom (n  3)  the  integration  is  not  closed.  An  open  system  is  
spiraling along an open trajectory either by loosing quanta to or acquiring them from its surroundings. 
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Consequently the state space   ( t) is contracting by successive applications of t´ and t´´ that 
diminish the free energy almost everywhere such that ( t´´)  ( t´). The dissipation ceases first at the 
free energy minimum state where the orbits are closed and the domain and range are indistinguishable 
for any process.  

Definition 8.5 [52] After a series of successive applications of t´´ and t´ the evolving system 
arrives at the free energy minimum. Then the open system is in a dynamic state defined as the -steady 
state by a fixed non-zero set  = { } such that during  if and only if, for all   , there exists    
such that for all   , it follows  

 
 . (8.5)  

 
At the -steady state there is no net flux over the period of integration   [0, t]. Thus the probability P 
may fluctuate due to sporadic influx and efflux but its absolute value may not exceed  so that the 
system continues to reside within . The set value  defines the acceptable state of computation, 
otherwise in the continuum limit   0 the state space would contract indefinitely. In practice the state 
space sampling by brute-force algorithms or simulated annealing methods is limited by , e.g., 
according to the available computational resources.  

Definition 8.6 [81] A family  of subsets of the state space  is an algebra, if it has the following 
properties:  

 

 

0 0

1, 1

(i)  ,
(ii) 

(iii) 

from these it follows
(i)  ,

(ii) the algebra  is closed under countable intersections and subtraction of sets, and 
(iii) if  then  is said to be a

c

k
i ii k i

k  sigma-algebra.

 (8.6)  

 
Definition 8.7 [81] A function :   [0, ) is a measure if it is additive for any countable 

subfamily { i, i  [1, n]}  , consisting of mutually disjoints sets, such that  
 

 

11

1 2 1

It follows:
(i) 0,

(ii) if , and , and

(iii) if , and and , 1, sup .

n n

i i
ii

n
n i i i ii

i n

 (8.7)  

Moreover, if  is a sigma-algebra and n  }, then  is said sigma-additive. The triple ( , , )  is  a 
measure space.  
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Definition 8.8 [51] An energy density manifold is a set  whose elements  are called energy 
densities together with a set  of functions i:    called energy scale, satisfying:  
 

1

(i) The range of  is an open interval for each ,

(ii) for every , and , 

(iii) for every , , is a continuous, strictly increasing function.

i

A
 (8.8a)  

 
(i) asserts that each energy scale takes on all values in an open interval in , while (ii) guarantees that 
each such scale establishes a one-to-one correspondence between energy levels and real numbers in its 
range. By means of (iii) the set  determines an order relation  on  written as:  
 

 there exists  such that .i  (8.8b)  

 
Physically speaking the energy densities are in relation to each other on the energy scale given in the 
units of  = kBT.  

Definition 8.9 Entropy is defined as   
 

 
1 1 ,

ln 1 jk
B j B j

j j j k B

V
S k P k N

k T
 (8.9)  

 
where the absolute temperature T > 0 and the Boltzmann’s constant kB > 0 in accordance with the 
equation 3.3.  

Definition 8.10 The change in occupancy Nj is defined proportional to the free energy  
  

  jk
j jk

k B

V
N

k T
 (8.10)  

 
in accordance with the equation 3.4.  

Theorem 8.11 The principle of increasing entropy. The condition of stationary state for the open 
system is that its entropy reaches the maximum. 

Proof. From the definitions 8.9 and 8.10 and jk( Nj)/kBT = Nj/Nj, it follows that  
 

 
2

21

1 , ,
0jk jk

B B j B jk j B jk
j k j k j kB B

V V
S k L k N k N k

k T k T
 (8.11)  

 
because the squares are non-negative, the conductance jk > 0 and its inverse, i.e., resistance, jk

-1
 = 

mjk/kBT > 0 and kB > 0.  
The proof is in agreement with S = kB lnP = kBL  0 given by Eq. 4.1. The principle of increasing 

entropy has been proven alternatively by variations  using the principle of least action := 0
t

dt = –
0

t
TSdt  0 [52] where the Lagrangian  integrand (kinetic energy) defined by the Gouy-Stodola 

theorem, is necessarily positive.  
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Theorem 8.12 The state space  contracts in dissipative transformations. 
Proof. As a consequence of the definitions 8.10 and 8.11 it follows that  
 

 
2

1 1

( ) 2 2 0jj jk
B jk B

j k jj j

NN V
S k L k

N T N
 (8.12)  

 
because the squares are non-negative, the occupancies Nj > 0 for non-zero densities-in-energy, the 
conductance jk  0, T > 0 and kB > 0.  

When entropy S is increasing, the state space accessible by the process generator L is decreasing. In 
the continuum limit the theorem for contraction has been proven earlier [52]. In practice the contraction 
of the state space by a finite automaton is limited to a fixed non-zero set  = { }. Then any member in 
 is qualified as solution. 

Definition 8.13 The definition for the class  state space measure  follows from the definitions 
8.7 and 8.9 

 

 
1 1 1

ln 1 .
n n n n

jk jk
j j

j k j j k jB B

Q
P N N

k T k T
 (8.13)  

 
The non-dissipative (reversible) and dissipative (irreversible) components have been denoted separately. 
In fact, the indexing k  j is redundant because for the indistinguishable sets k = j there is no difference, 
per definition jj = 0. The conserved term jNj(1 – j jk) is invariant according to Noether’s theorem 
[31]. The non-zero dissipative term jNj k=j±1 Qjk defines class  to contain at least one irreversible 
deterministic decision with two degrees of freedom (n = 2).  

Definition 8.14 The definition for the class  state space measure  follows from the definitions 
8.7 and 8.9 

 

 
1 1 1 1 1

ln 1 .
n n n n n n

jk jk jk
j j j

j k j j k j j k jB B B

Q Q
P N N N

k T k T k T
 (8.14)  

 
The conserved components have been denoted separately from the dissipative components that have 
been decomposed further to those with two degrees of freedom using the indexing notation k = j ± 1 as 
well as to those with three or more degrees of freedom using the indexing notation k  j ± 1. The 
conserved and dissipative components with only two degrees of freedom are the same as those in 
definition 8.13. The non-zero dissipative term jNj k j±1 Qjk defines class  to  contain  at  least  one  
irreversible decision between at least two choices, i.e., with the three or more degrees of freedom.  

Definition 8.15 The -complete problem contains only dissipative processes with three or more 
degrees of freedom, i.e., jNj k j±1 Qjk > 0 and none with two degrees of freedom jNj k=j±1 Qjk = 0.  

Theorem 8.16   .  
Proof. It follows from the definitions 8.13 and 8.14 that the state space set of class  is larger than 

class  measured by the difference  
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1 1

0
n n

jk
j

j k j B

Q
N

k T
. (8.16)  

 
If and only if Qjk = 0 for all k  j ± 1, the measure – ( ) = 0 but this is a contradiction with definition 
8.14 that class  contains at least one irreversible decision with three or more degrees of freedom, 
i.e., jNj j±1 Qjk > 0. Thus class  is a proper (strict) subset of class .  

The difference between the classes can also be measured by P ln(P /P ) > 0 in accordance with the 
non-commutative measure known as Gibb’s inequality or Kullback–Leibler divergence that gives the 
difference between two probability distributions.  

The class  problem can be reduced to the class -complete problem by removing the 
deterministic steps denoted by k = j ± 1, i.e., by polynomial time reduction [30,82]. In graphical terms the 
reduction of the  problem to the -complete problem involves removal of nodes with less than 
three degrees of freedom (Fig. 6). In geometric terms the non-Euclidean landscape is reduced to a 
manifold covered by non-equivalent triangles each having a local Lorentzian metric.  

  

 

Fig. 6. The network representing the class  problem (O) is reduced (O  A  B) to the network representing the class 
-complete problem by removing nodes along deterministic dissipative paths to yield a network of triangles.   

 
In summary the computational complexity classes are related to each other as   -C   (Fig. 

7).  
 

 

Fig. 7. Venn diagram for the computational complexity classes , -complete and  based on the thermodynamic 
analysis of computation. The class  problems can be computed by dissipative processes that have less than three degrees 
of freedom whereas the class  problem computation involves in addition dissipative processes with three or more 
degrees of freedom. The class -complete problem computation contains only dissipative processes with three or more 
degrees of freedom.   
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9. Discussion 

At first sight it may appear strange for some that the distinction between the computational 
complexity class  and  was made on the basis of the natural law because both classes contain many 
abstract problems without apparent physical connection. However, the view is not new [83,84,85,86, 
87]. The adopted approach to classify computational complexity is motivated because the practical 
computation is a thermodynamic process hence inevitably subject to the 2nd law of thermodynamics. Of 
course, some may still argue that the distinction between tractable and intractable problems ought to be 
proven without any reference to physics. Indeed, the physical portrayal can be taken merely as a formal 
notation to express that the computation is a series of time-ordered (i.e. dissipative) operations that are 
intractable when there are three or more degrees of freedom among interdependent operations. Also 
non-commutative operations and non-abelian groups formalize time series [ 88 , 89 ]. The essential 
character of non-deterministic problems, irrespective of physical realization, is that decisions affect set 
of future decisions, i.e., the driving forces of computation depend on the process itself. The process 
formulation by the 2nd law of thermodynamics is a natural expression because the free energy and the 
flow of energy are interdependent.  

The natural law may well be the invaluable ingredient to rationalize the distinction between the 
computational complexity classes  and . It serves not only to prove that    but to account 
for the computational course itself. For both classes of problems the natural process of computation is 
directing toward increasingly more probable states. When there are three or more degrees of freedom, 
decisions influence the choice of future decisions and the computation is intractable. The set of 
conceivable states generated at the branching points can be enormous, similar to a causal Bayesian 
network [ 90 ]. Finally, when the maximum entropy state has been attained, it can be validated 
independent of the path as the free energy minimum stationary state. The corresponding solution is 
verifiably independent of the computational history in deterministic manner in polynomial time.  

Furthermore, the crossing from class  to  is found precisely where n-SAT, n-coloring, n-clique 
problems and maximizing the shortest path with interdicts become intractable, i.e., when the degrees of 
freedom n  3. The efficient reduction of  problems to -complete problems is also understood as 
operations that remove the deterministic dissipative steps and eventual redundant reversible paths. 
Besides, when the problem is beyond class , the natural process does not terminate at the accepting 
state with emission. For example, the halting problem belongs to the class -hard. Importantly, the 
natural law relates computational time directly to the flow of energy, i.e., to the amount of dissipation 
[14]. Thus the 2nd law implies that non-dissipative processing protocols are deemed futile [91].    

The practical value of computational complexity classification by the natural law of the maximal 
energy dispersal is that no deterministic algorithm can be found that would complete the class  
problems in polynomial time. The conclusion is anticipated [92], nonetheless, its premises imply that 
there is no all-purpose algorithm to trace the maximal flow paths through non-invariant landscapes. 
Presumably the most general and efficient algorithms balance execution between exploration of the 
landscape and progression down along the steep gradients in time. Perhaps most importantly, the 
universal law provides us with holistic understanding of the phenomena themselves to formulate 
questions and computational tasks in the most meaningful way.   
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