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Abstract The most comprehensive result of scientific inquiry across disciplines is
that data, irrespective of origin, display skewed distributions, sigmoid curves, and
power laws as well as oscillations and, at times, chaos. While mathematical models
and computer simulations can be made to reproduce these ubiquitous patterns of
nature, science is not only about modeling and mimicking the data but making sense
of it. We argue that the ubiquitous patterns follow from the least-time consumption
of free energy. These natural processes can be described by the many-body theory
of open systems, i.e., nonequilibrium statistical physics for quantized systems. This
theory, also known as the second law of thermodynamics, explains the arrow of time
in terms of flows of quanta as well as non-determinate and path-dependent evolution
that yields the scale-free patterns.

Keywords Atomism · Complexity · Free energy · The principle of least action ·
Scale-free patterns · The second law of thermodynamics

1 Introduction

Today, the spectrum of scientific knowledge extends from tiny elementary particles
to gigantic galaxies and from the richness of genes to the abundance of species.
As startling as it is, the data are highly similar, regardless of what we look at.
The universal characteristics are evident in immense masses of information called
“big data” (Albert and Barabási 2002; Clauset et al. 2009; Newman 2005; Bak
1997; Sornette 2006; Buchanan 2002). The mathematical models of lognormal
distributions, S-curves, and power laws match data irrespective of the field. Complex

A. Annila (�)
Department of Physics, FI-00014 University of Helsinki, Helsinki, Finland

Department of Biosciences, FI-00014 University of Helsinki, Helsinki, Finland
e-mail: arto.annila@helsinki.fi

© Springer Nature Switzerland AG 2022
G. Y. Georgiev, M. Shokrollahi-Far (eds.), Efficiency in Complex Systems,
Springer Proceedings in Complexity, https://doi.org/10.1007/978-3-030-69288-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69288-9_1&domain=pdf
https://orcid.org/0000-0003-2955-2389
mailto:arto.annila@helsinki.fi
https://doi.org/10.1007/978-3-030-69288-9_1


2 A. Annila

systems science is the new discipline that models this great regularity (Waldrop
1993).

Unless headers and units are labeled in the descriptors of different datasets, we
could not say from where the data originates. For example, the length distribution
of genes looks much like the length distribution of words. The distributions of
animal and plant populations are just as skewed as the distributions of genes and
words. Distributions of wages and wealth are also skewed. The size distribution of
earthquakes looks similar to the size distribution of the activated cortical areas in the
brain (Bak 1997). Moreover, natural spirals, such as clamshells, heads of flowers,
hurricanes, and galaxies, all whirl in the same way (Hargittai and Pickover 1992;
McNally 2010). Many growth curves follow the characteristic form of the letter
“S”; that is, they are sigmoidal. For example, a bacterial population grows thus.
Chemical reactions progress and economies develop likewise. The world is clearly
not random but regular. Could it be consistent with just one single rule?

At first, it may seem all crazy to compare any data to any other data without
any unit of measure. But, in this way, we are free from barriers to realizing that the
world is everywhere amazingly similar. Only the units and scales that we have set
ourselves vary from one dataset to another. When we cannot infer the origin of data
from the data itself, we must accept that the data are similar, although not identical.
The regularity stands for that which we cannot distinguish one dataset from another.
What does this point to?

The similarity of the data is inconceivably broad. It is expressly puzzling unless
we can see a common cause. The more general the explanation we must look for,
the more different things share the same shape. Also, Newton was after the same
reason for similar natural phenomena in his rules of scientific reasoning (Rossi
2001). The great regularity has been noticed. It has been modeled but not explained.
For example, the lognormal distribution is a good model of skewed distributions.
However, it does not say why the data distributes nearly lognormally. Likewise, the
logistic curve matches many datasets of growth. However, a good fit does not say
why growth is sigmoidal.

Statistical mechanics, as a theory of many-body systems, has the potential to
explain the origin of the universal patterns. That promise is realized with statistical
physics of open systems. According to that theory, flows of quanta between the
system and its surroundings drive toward the mutual thermodynamic balance in
the least time. The analysis reveals that evolution results in skewed distributions,
sigmoid growth curves, spirals, and power laws that are found throughout nature.

2 Statistical Physics of Open Systems

At one time, Ludwig Boltzmann understood that gas attains thermodynamic balance
by way of the gas molecules colliding on each other and on walls of the tank.
Albert Einstein understood conversely that Planck’s law of radiation accounts for
light as a gas of photons. Willard Gibbs, in turn, comprehended that chemical
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compounds attain thermodynamic balance via reactions. Now, we can understand
likewise the quanta, e.g., photons, as the fundamental elements of everything,
redistribute energetically ever more favorably in all kinds of events. This process
toward thermodynamic balance can be described by the equation of evolution,
which, in turn, can be derived from the equation of state.

2.1 The Equation of State

The equation of state describes any system that comprises the basic building blocks,
the quanta. In events, the system moves from one state to another either by gaining
quanta from the surroundings or by giving away quanta to the surroundings. When
all systems consist of quanta, the description is inherently universal. Thus, we can
start by examining any constituent of any system. A constituent, indexed with j,
exists with the probability 1Pj = φ1φ2φ3 . . . = �kφk, which is the product, �k, of
its ingredients, indexed with k. Thus, if any one entity k is missing altogether, i.e.,
φk = 0, then also 1Pj = 0. For example, an enzyme could not exist if any one of its
ingredients was missing.

The ingenuity of statistical physics is that we can express the probability 1Pj,
even when we do not know what entities φk are in the product �k because ultimately
all entities comprise the quanta. Therefore, the equation of state includes all the
details with the formal precision of the quantum.

When the system houses several entities of equal energy, for example, a cell
having multiple copies of the same enzyme, the probability of the population Pj

= [1Pj][1Pj][1Pj] . . . /Nj! = [1Pj]Nj/Nj! is the product of the partial probabilities,
where Nj is the size of the population. The product form ensures that if any one
entity is missing, i.e., 1Pj = 0, then also Pj = 0. When the entities are identical,
their mutual order makes no difference. Hence, the expression of Pj is divided by
the number of ways Nj! that the entities, in total Nj, can be arranged into a sequence
(Fig. 1).

The total probability P of the system is the product �j of the partial probabilities
Pj:

P =
∏

j=1

Pj =
∏

j=1

[
∏

k=1

φk

]Nj

/Nj ! (1)

where each factor φk = Nkexp[(−�Gjk + i�Qjk)/kBT] denotes the number of
starting materials Nk and the energy difference �Gjk between the starting material,
indexed with k, and the product, indexed with j. The higher the energy of the starting
materials, the less energy i�Qjk is needed from the surroundings to bridge the
energy gaps from the starting materials into the product. The label i in front of the
energy term means that the system is open for the flows of quanta. For example, the
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Fig. 1 When everything comprises quanta, any system can be pictured in terms of an energy-
level diagram. The entities of a system, in numbers Nk, which have the same energy Gk, are
on the same level. The bow arrows indicate their mutual exchange, which changes nothing and
hence causes no change in the average energy of the system kBT either. By contrast, the vertical
arrows indicate events, in which the entities move from one level to another. For example, in a
chemical reaction, starting materials Nk transform into products Nj. The horizontal wave arrows
denote the quanta of light that either come from the environment to the system or go away from
the system to the environment. Since the quanta carry energy �Qjk, the events as flows of quanta
move the system and its surroundings toward the thermodynamic balance. When the energy of
the surroundings is higher than that of the system, the system will evolve toward higher average
energy and the surrounding systems toward lower average energy, and vice versa. The cumulative
probability distribution curve (dotted line) is a sigmoid. When the logarithm of the total probability,
i.e., entropy S, is plotted as a function of [chemical] potential energy μ, the S-shaped curve follows
on the logarithm-logarithm scale mainly a straight line (inset), that is, it follows a power law

photons from the Sun make photosynthesis happen. Conversely, the heat generated
by our body goes away into the surroundings.

Energy differences between the products and starting materials are relative to the
average energy of the system, kBT. Since the concept of temperature T was adopted
long before the concept of energy, T is multiplied by the Boltzmann constant kB to
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make it commensurate with the other terms of energy. Naturally, the average energy
changes in every event. However, when a single event perturbs the average energy
only a little bit, the system evolves smoothly.

The state equation (Eq. 1) is the theory in essence. Thus, it is relevant to sum-
marize the assumptions that have already been made since conclusions just follow
from a straightforward mathematical analysis. (1) The state equation applies when
the same elements make up everything. This atomistic axiom underlies statistical
mechanics in general. (2) The system is statistical when there are numerous entities.
Then the average energy kBT is a meaningful concept, and the energy differences
relative to it can be expressed as exponential functions (exp) (Gibbs 1948; Phillies
2017). When these assumptions hold, the statistical theory explains why data of
various kinds have the same form.

The state of the system is customarily given by an additive measure, which is
obtained as the logarithm (ln) of the state equation (Eq. 1). For historical reasons, the
logarithm of probability, when multiplied by the Boltzmann constant kB, is known
as the entropy:

S = kB ln P = kB

∑

j=1

ln Pj ≈ 1

T

∑

j=1

Nj

(
∑

k=1

−�μjk + i�Qjk + kBT

)
.

(2)

In the equation, �μjk denotes the potential energy difference between the
populations Nk and Nj. The energy that is bound to the k-entity population μk =
kBTlnφk is called [chemical] potential. Similarly, μj denotes the potential energy
of the j-entities. In the equation for entropy (Eq. 2), the entry ≈ stands for the
statistical approximation lnNj! ≈ NjlnNj – Nj, which is excellent when Nj > 10.
It is worth emphasizing that the entropy expression (Eq. 2) is just the logarithm of
probability (Eq. 1). In other words, mathematics does not change anything. It just
keeps conclusions within the atomistic axiom of the theory.

2.2 The Equation of Evolution

The total energy of the system TS equals temperature T times entropy S. It comprises
the system-bound energy �NjkBT and the free energy �Nj(−�μjk + i�Qjk). When
free energy −�μjk + i�Qjk is decreasing, the populations Nj are changing, and
hence, also the total energy of the system TS (Eq. 1) is changing with time t:

T
dS

dt
=

∑

j=1

dS

dNj

dNj

dt
=

∑

j=1

dNj

dt

(
∑

k=1

−�μjk + i�Qjk

)
. (3)



6 A. Annila

It is convenient to denote the change as continuous, i.e., as a differential dNj

because for a statistical system, the change, quantum by quantum, appears as if it
were continuous.

We cannot solve the equation of motion (Eq. 3) because the change in population
is proportional to free energy, i.e., force:

dNj

dt
= 1

kBT

∑

k=1

σjk

(−�μjk + i�Qjk

)
, (4)

where σ jk > 0 represents a mechanism that facilitates the flow of quanta. For
example, an enzyme catalyzes the conversion of starting materials Nk into the
products Nj or vice versa. The flows of quanta naturally select efficient mechanisms
because then the thermodynamic balance is attained in the least time.

While the course of events cannot be predicted because forces and flows cannot
be separated, the process can be simulated step by step, according to Eq. (4). In
this way, the emergence of standards, skewed divisions, growth curves, oscillations,
and chaotic courses can be demonstrated and modeled (Annila and Annila 2008;
Jaakkola et al. 2008a, 2008b; Karnani and Annila 2009; Annila and Salthe 2009).

Equations (3) and (4) describe the flows of quanta so that the imbalance between
the system and the environment decreases in the least time. When we substitute in
Eq. (3) the change in the number dNj/dt with Eq. (4), we see that the entropy cannot
decrease. This is known as the second law of thermodynamics dS ≥ 0. There is no
exception since the quanta, as conserved entities, cannot come out of nothingness
or vanish into nothingness. The quantum that leaves the system will end up in the
environment or vice versa.

According to Eqs. (3) and (4), there are no energy barriers for the evolution from
one state to another. If such barriers existed, thermodynamics and kinetics would
be in conflict with each other. This is not the case. Free energy can only decrease.
For example, the flow does not open until the water level rises over the spillway
crest. Likewise, the chemical reaction does not proceed from the starting material to
the product until the energy of the starting materials, including absorbed photons,
exceeds the energy of the products. The catalyst does not change the energy level
diagram or landscape. It is a mechanism that only speeds up the conversion of the
starting materials into the products or vice versa. According to the theory of time,
the flows direct so that energy differences are diminishing as soon as possible. Thus,
entropy does not just increase, but it increases as fast as possible.

3 The Universal Patterns

The equation of evolution (Eq. 4) reproduces the S-shape of growth piecewise. At
the beginning of the growth, there is a wealth of resources, i.e., free energy. Then,
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we can assume that mechanisms �kσ jk of the system consume free energy −�μjk

+ i�Qjk almost steadily, and hence the population Nj changes with time:

d
dt

1
kBT

∑
k=1

(−�μjk + i�Qjk

) = dNj

dt
d

dNj

1
kBT

∑
k=1

(−�μjk + i�Qjk

) ≈ ∑
k=1

σjk

⇒ dNj

Nj
= ∑

k=1
σjkdt.

(5)

Here dμj/dNj = kBT/Nj. The growth by Eq. (5) is approximately exponential
because initially, the amount of free energy seems as if it were infinite, and
only the mechanisms are limiting the growth. Likewise, the growth is decreasing
almost exponentially when the free energy is dwindling down while the balance is
approached.

The growth between the initial and final phases follows a power law
closely. We see this by expressing the population Nj as the product of the
elements N1 using the atomistic axiom Nj = �kφk = αjN1j. The factor
αj = �mnexp[�Nj(−�μmn + i�Qmn)/kBT] contains the free energy terms that
force the assembly of Nj from the elements N1. So, the change

dNj

dt
= jαjN

j−1
1

dN1

dt
= j

Nj

N1

dN1

dt
⇒ dNj

Nj

= j
dN1

N1
(6)

when integrated follows the power law lnNj = jlnN1 + constant.
When the assumption of a nearly constant change in free energy does not hold,

we can model the change by adding the term –βNj to the equation of the population
change (Eq. 5):

dNj

Nj

≈
(

∑

k=1

σjk − βNj

)
dt ⇒ Nj(t) = Nj (t0)

(
∑

k=1

σjk − βNj (t0)

)
.

(7)

In this model (Mäkelä and Annila 2010; May 1976), the population Nj(t0) at
present t0 determines the population Nj(t) at a later time t. According to the model,
evolution is almost predictable when the change in free energy is small compared
with average energy, i.e., |(−�μjk + i�Qjk)/kBT| << 1. In contrast, oscillations and
chaos occur when the condition is not fulfilled. This is the case, for example, when a
solid-state laser is turned on or when the animal population proliferates and exceeds
the carrying capacity of the environment or when the banks need more money than
is available.

Logarithmic, exponential, or truncated distributions and their power-law-like
cumulative distribution functions are mathematical models of the physical processes
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given by Eqs. (3) and (4). The models allow us to describe and categorize various
data, but they do not explain how the data came about, that is, causality. It is worth
emphasizing that Eqs. (3) and (4) cannot be solved, except at balance, since the
variables cannot be separated. This means that a chain of events is fundamentally
unpredictable due to mutual dependencies rather than due to complexity or uncer-
tainty in the initial conditions.

When the system evolves gradually, the change in energy is small compared with
the average energy, i.e., |(−�μjk + i�Qjk)/kBT| << 1. Therefore, the variation n is
small n << j around a typical or an average factor, indexed with j. When the factors
φj are given in logarithmic terms lnφj = jlnφ1 of the elemental factor φ1, we see
that the natural distribution

lnφj−n,j+n,j,n = lnφj +
∑

n
nlnφ1 (8)

is approximately logarithmic. The distribution of Eq. (8) shows that the typical form
j can be recognized in each member within the distribution j ± n. For example, all-
sized Northern pike looks like pike and not bream. On the other hand, if weights of
pikes and cars were presented in the same figure, we would see two distributions:
one about a typical pike and the other about an ordinary car. Moreover, spiral forms
of nature, such as shells, cyclones, and galaxies, are also approximately lognormal
distributions but in polar coordinates (Mäkelä and Annila 2010). Logarithmic spirals
are thus energetically optimal shapes.

4 Discussion

Statistical physics of open systems accounts for processes as flows of quanta in
accordance with observations and measurements. The correspondence between the
theory and data implies further that everything comprises the indivisible elements,
quanta, and every process seeks thermodynamic balance in the least time. The
natural law is contained in the quantum itself. Planck’s constant h = Et, as the
complementary product of energy and time, determines the change in energy over
time dE/dt = −E/t = −F·v. Thus, the power dE/dt decreases due to motion with
velocity v in the direction of force F.

From this perspective, statistical physics of open quantized systems could be
falsified (i) if a phenomenon were found where the system moves away from the
thermodynamic balance; (ii) if a quantum, say, a photon, was found to split into
pieces; or (iii) if something were found that is not quanta. Earlier, we have argued
that elementary particles, as well as the void, comprise quanta (Annila 2012; Grahn
et al. 2018; Annila 2010; Annila and Kolehmainen 2016).
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5 Conclusions

Traditional statistical mechanics is limited to closed or equilibrium systems. When
no net fluxes are included, the system is stationary, and hence calculations are
precise. In contrast, the statistical physics of open systems, i.e., nonequilibrium
statistical mechanics, includes net fluxes, and accordingly, the system is described
in evolution from one state to another. However, the evolution is nondeterministic
because the boundary conditions, the surroundings, which are the sources and sinks
of the fluxes, are changing too. The future is genuinely unpredictable.
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