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Natural networks are considered as thermodynamic systems that evolve from one state to another by consum-

ing free energy. The least-time consumption of free energy is found to result in ubiquitous scale-free character-

istics. The network evolution will yield the scale-independent qualities because the least-time imperative will

prefer attachment of nodes that contribute most to the free-energy consumption. The analysis of evolutionary

equation of motion, derived from statistical physics of open systems, reveals that evolution of natural net-

works is a path-dependent and nondeterministic process. Despite the noncomputability of evolution, many

mathematical models of networks can be recognized as approximations of the least-time process as well as

many measures of networks can be appreciated as practical assessments of the system’s thermodynamic sta-

tus. � 2012 Wiley Periodicals, Inc. Complexity 00: 000–000, 2012
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1. INTRODUCTION

I
t is a striking observation that diverse networks are all

similar in their principal properties, i.e., scale-free

characteristics are ubiquitous [1]. Biological networks,

e.g., metabolic [2], gene and protein regulatory networks

[3], and cognitive [4,5] and population networks [6] just as

infrastructures of socioeconomic systems [7–9] display

power laws [10]. Likewise, power laws dominate degree

distribution of interaction networks of physical systems

[11] that range from Bose–Einstein condensates [12] to

percolation of galaxies [13].

The universal network characteristics imply to us that

proportionate progression by preferential attachment

[7,14] could be regarded as a natural process, i.e., a mani-

festation of the supreme law of nature. This profound

principle is not a mystery but known by many names, best

as the principle of least action [15] and the second law of

thermodynamics [16]. Also the maximum power principle

[17], Yule’s process for cumulative advantage [18] and evo-
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lution by natural selection [19] can be recognized as

accounts of the probable processes that consume free

energy in the least time [20,21].

Considering the irrefutable imperative in energy trans-

duction, it is only natural that numerous networks in na-

ture display the scale-free and nondeterministic character-

istics of the least-time free energy consumption. Indeed,

the principle of least-time has already been used for a

long time to describe nature so that its processes will pur-

sue the paths among alternatives which are the most eco-

nomical in terms of work [22,23]. Yet, when describing

complex systems, the variational principle is usually stated

in the form of Lagrangian rather than in its original form

given by Maupertuis [15]. Lagrange’s form describes sys-

tems whose energy is conserved whereas Maupertuis’

form accounts for evolving systems that either acquire

energy from their surroundings or expel energy to their

surroundings systems. Consequently, we argue that Mau-

pertuis’ form of the equation of motion is the appropriate

one to describe evolving natural networks as energy trans-

duction systems.

Objectives of network theory are to model and charac-

terize networks and eventually also to provide quantitative

predictions of network evolution [24]. In contrast, our

objective is to describe evolving natural networks in ther-

modynamic terms to understand why certain models and

distributions as well as measures that are used in the net-

work theory are so successful in reproducing evolutionary

courses and characteristics of natural networks. Specifi-

cally, we will analyze the natural law in the form of equa-

tion of motion to draw conclusions from where the uni-

versal network qualities emerge. In this way, we hope to

communicate why the prominent patterns of networks are

found throughout nature.

2. NATURAL PROCESSES
The essence of physics is to subsume specific details of dis-

tinct systems into universal principles that comply with

conservation laws. To this end, the principle of least action,

in its holistic form given by Maupertuis [15], describes a

system that evolves from one state to another within its

surrounding systems by consuming free energy in least

time. The old principle states that driving forces of evolu-

tion are differences in energy that will level off as soon as

possible. This will happen when flows of energy vary their

paths and naturally select to direct from highs to lows along

the paths of highest throughputs. These least-time paths on

curved energy landscapes are known as geodesics [19,21].

The irrevocable least-time consumption of free energy

results in sigmoid courses of growth or decline as well as

skewed, nearly log-normal distributions [25–28]. Also oscil-

latory, chaotic and nondeterministic behavior [29–31] as

well as power-law scaling and branching are qualities of

natural systems [32–37] that emerge from the universal

quest for the least-time energy dispersal [38,39].

The notion of a network is a powerful way to portray

an energy transduction system. Physically speaking, nodes

represent repositories of potential energy and links corre-

spond to paths for flows of energy. We find this association

of a physical network with its graphical representation

motivated, because all systems must embody at least one

quantum to exist. Moreover, the presentation of a network

as a physical system ensures that energy is conserved and

causality is respected. A flow of energy along a link stems

from one node upstream that has opened itself up and

expelled at least one quantum. The quantum will eventu-

ally be captured by another node downstream as it closes

to a new stationary-state action. Thus, according to the

adopted physical perspective given in mathematical forms

below, natural networks will emerge from and evolve in

their surroundings in the quest for the least-time con-

sumption of free energy.

The driving force of evolution composes, in terms of

physics, differences in scalar and vector potential, e.g.,

between chemical potentials and light. From this thermo-

dynamic viewpoint, an evolving network will naturally pre-

fer those attachments that will further the most effective

free energy consumption. This least-time imperative, as

we will show by analysis below, gives rise to the scale-free

characteristics.

The origin of scale-independent and noncomputable

characteristics of natural networks will become apparent

when the evolutionary equation of motion for the least-

time energy dispersal is formulated and analyzed. To this

end following notation is introduced. In the context of net-

work theory, each node of a particular network as well as

of any surrounding network is regarded as a quantized re-

pository of energy. In accordance with chemical thermody-

namics the node is indexed with j and assigned with

energy density fj 5 Njexp(Gj/kBT), where Nj denotes the

number of constituents (quanta) associated with scalar

potential Gj relative to the average energy density kBT per

node of the network system [40]. As the components Nj of

the j-node are explicitly denoted, the formalism is self-

similar. Accordingly, any constituent of a node at a

lower level of hierarchy can also be regarded as a node

(Figure 1).

The self-similar formalism may not be needed to model

a particular network, but it ensures the conservation of

quanta, i.e., an accurate account of any network in terms

of physics. In other words, for a node to absorb or emit

quanta, it must contain some internal structure to accom-

modate these changes.

During the probable process of network evolution,

energy differences between the nodes and their respective

surroundings will diminish. The natural process is driven by

the consumption of free energy terms Ajk 5 Dljk 2 iDQjk.
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The two components of Ajk comprise the mutual differ-

ences in scalar potentials, known also as chemical poten-

tials, Dljk 5 kBT(lnfj 2 lnfk), as well as differences in

vector potentials that will manifest themselves in

changes of state as dissipation DQjk, such as heat. The

imaginary unit is used merely to emphasize that the sca-

lar and vector potentials are orthogonal to each other

[41–43]. Moreover, it is noteworthy that at the change of

a node’s state, at least one quantum will either be

absorbed to or emitted from the node. Only a reversible

exchange of quanta of equal energy will leave a pair of

nodes intact, i.e., stationary. Also in a thermodynamic

balance, an exact exchange of quanta with the surround-

ings will leave the network invariant. The quantized

flows of energy between the nodes are literally interac-

tions, because each node is regarded as a physical sys-

tem characterized by its action and associated symmetry

[44,45].

The energetic status of a network system in its sur-

roundings can be formulated by statistical mechanics of

open systems [21,39,45]. The additive, hence logarithmic

probability P of a system as a product of Pj, the probabil-

ities of subsystems, is known as entropy:

S ¼ kB lnP ¼ kB
X
j

lnPj � kB
X
j

Nj 1�
X
k

Ajk=kBT

8>>>>:
9>>>>;:

(1)

It contains the bound kBTSNj and free SNjAjk forms of

energy. Entropy is an exhaustive measure of the system’s

thermodynamic status. The Stirling’s approximation for

indistinguishable combinations lnNj! � Nj(lnNj – 1) implies

that kBT is a sufficient statistic, i.e., Ajk/kBT << 1, for the

distribution of energy within the network. In other words,

the statistical approximation means that the heat capacity

of the network is big enough so that absorption or emis-

sion of one quantum will not cause a marked change in

the average energy density kBT of the system. A specific

node or a link cannot be described in the statistical sense

by entropy, when it is about to emerge or to branch out as

well as when it is about to vanish [36,46]. At these critical

steps, manifesting themselves as bifurcations [36], the sys-

tem’s changing status is best characterized directly by the

change dPj/dt. Moreover, the change of P will be abrupt at

a phase transition when the system rapidly reorganizes its

entire interaction network to adapt to a change in its sur-

roundings.

According to the variational principle in its original

form [15], flows of energy will themselves search for paths

and eventually also open new links to consume free

energy in the least time [21,47]. Hence, from this varia-

tional perspective, the network notion of preferential

attachment is subsumed in the natural selection for the

least-time dispersal of energy. Consequently, entropy S will

not only increase,

FIGURE 1

(A) Natural network in thermodynamic terms is a self-similar energy
transduction system of pathways (links) and repositories of energy
(nodes). (B) The expansion exemplifies that within the links there are
nodes too. Each node is a thermodynamic system of its own internal
interactions between its constituent nodes. (C) The natural network
will evolve to diminish differences of energy between the nodes of
the network as well as respect those in the surrounding networks.
Ensuing net flows of energy will cause changes in the network, e.g.,
by altering transduction capacity of links as well as attaching new
nodes or eventually discarding old less effective connections.
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dS

dt
¼ kBL � 0 ; L ¼ �

X
j;k

dNj

dt

Ajk

kBT
(2)

but it will increase in the least time. It is of interest to

note that the least-time imperative is equivalent to New-

ton’s second law F 5 dp/dt 5 mdv/dt 1 vdm/dt which

says that the change in momentum p will keep directing

along the resultant force F 5 SFj [15,47]. Thus, at all times

and at all places, the network will naturally select path-

ways to evolve so that free energy cannot be consumed

any faster. In other words, networks evolve by consuming

forces to attain balance in their surroundings in the least

time. The power law dependence as a ubiquitous charac-

teristic of networks is already apparent from the integrated

Newton’s second law $Fdt/p 5 $dv/v 1 $dm/m 5 lnv 1

lnm 5 constant, which is a straight line on a log–log plot.

The conservation of energy requires that an influx (SAjk

< 0) or efflux (SAjk > 0) will force the node to change its

constituents at a rate [21]:

dNj

dt
¼ �

X
k

rjk

Ajk

kBT
(3)

proportional to free energy. The coefficient of conductance

rjk is a characteristic of the link between the two nodes,

which are indexed with j and k. For example, a city will

grow due to an influx of inhabitants as well as of goods

arriving via roads, railroads, etc., from surrounding rural

areas. According to self-similar formalism, the link itself

can be considered as a network of nodes and links (Figure

1). For example, two cities are rarely linked by a nonstop

train connection, as the train also stops at other major

towns for influx and efflux of passengers and goods. Like-

wise, when a computational task is distributed, a client

and a server do not usually link directly, but instead they

link over a network of hubs and connections.

According to the variational principle, energy tends to

flow along the least-time links. The least action defines the

length s of a geodesic in energetic terms by 2K 5 $(ds/
dt)2dt [48]:

ds

dt

8>:
9>;

2

¼ d2K

dt
¼ T

dS

dt
¼�

X
j;k

dNj

dt
Ajk

¼ 1

kBT

X
j;k

rjkA
2
jk � 0

(4)

being proportional to the magnitudes of free energy com-

ponents. Accordingly, when there is no difference in

energy between the j- and k-nodes, the two nodes will be

indistinguishable from each other; hence, j 5 k and the

particular sjj vanishes (cf. the identity of indiscernibles).

The average of s 5 Ssjk, as a characteristic of network

topology, will decrease with the increasing number of jk

links between an invariant set of nodes. It is noteworthy

that a particular value of the total length s cannot be

determined for an evolving network simply because the

total energy of the system is changing. Physically speaking,

eigenvalues and eigenmodes can, of course, not be deter-

mined when they are changing. New network qualities will

emerge along with increasing energy as new paths, such

as highways, open up for flows of energy [49]. Conversely,

old attributes will vanish when the flows of energy redirect

along more effective paths of free energy consumption

leaving some paths obsolete.

If the transduction rates dNj/dt were suboptimal, coun-

terforces Ajk would rise and redirect the flows of energy

back along the most voluminous gradients. In other words,

even when a sufficiently statistical network is evolving, its

distribution of energy is not expected to depart much

from a quasistationary balance known as Le Chatelier’s

condition [50]:

Aj ¼
X
k

Ajk � 0 , Nj �
Y
k

Nke
�ðDGjk�iDQjkÞ=kBT

� �
(5)

where the product Pk is over all k-substrates. The product

form in Eq. (5) reveals that the j-node emerges from k-

multiplicative operations. The multiplicative form is the

characteristic of a log-normal distribution [51] whose cu-

mulative curve follows a power law. So we reason that the

power-law characteristic of natural networks follows from

the least-time consumption of free energy.

The distribution’s dependence on the average energy is

familiar from the temperature dependence of the

Maxwell–Boltzmann velocity distribution and from the

black-body radiation spectrum, but it is also recognized in

temporal changes during ecological succession [52,53],

economic development [54,55], cultural changes [56,57],

changes in strategies of behavior [58] as well as when

logistic [59] and communication infrastructure are build-

ing up [60].

The above thermodynamic description of networks by

the natural law is formally simple, yet its analysis [Eq. (2)]

reveals that evolution of a network is an intractable pro-

cess meaning that there is no deterministic solution of its

equation of motion describing nonholonomic evolution

[61]. Namely, when a particular source of energy, i.e., a

node is consumed via two or more links, i.e., degrees of

freedom, the flows of energy and the energy difference

cannot be separated from each other to solve Eq. (2) by

way of integration to a closed form [21,47,61]. This prop-

erty clarifies why evolution of natural networks are often

found impossible to predict precisely.

It is a mere consequence of conservation of energy that

an evolutionary step from one state to another is a
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dissipative event. The flow of quanta from the system to

its surroundings or vice versa will alter both the system

and its surroundings. Because of this intrinsic interde-

pendence among all quantized constituents of the system

and its surroundings, evolution is changing its settings,

i.e., the energy landscape that directs the natural process.

The flow itself will affect conduction by urging an increase

in communication capacity or by strengthening lines of

communication, such as synapses of neurons. Another fa-

miliar example would be a river that will by the mere act

of flowing erode the landscape, and thereby affect its own

flow. Also similar to an ecological succession where immi-

grant species will transform the ecosystem, a rural district

will change its way of life as new means, such as fertilizers

and engine power, of energy transduction enter the com-

munity. Accordingly, changes in the surroundings will

inflict new forces on the system, e.g., changing urban

demands will call for changes in the community’s eco-

nomic structure.

Because of dissipation, the change in momentum is

not collinear with the velocity, which is a characteristic of

non-Abelian systems. In other words, natural processes

are dissipative, path-dependent and hence inherently in-

tractable. It is noteworthy that the nondeterministic nature

of network evolution does not stem from network com-

plexity as such, but appears already in the problem of

three bodies [62] and other hard problems with two or

more degrees of freedom [63–65]. Although evolution of

natural network in general is a noncomputable process,

certain mathematical models as approximate accounts of

network evolution can be solved [66,67].

Finally, the above conclusions derived from the formal

analysis of the evolutionary equation of motion [Eq. (2)]

do not depend on how one defines a network system.

When a definition of a network happens to include nodes

that are in imbalance with each other, the development

will manifest primarily as a restructuring of the network

when internal forces are being consumed. For example, a

social system will display this sequence of events during

integration processes of immigrants. Likewise, the conser-

vation of energy in bound and free forms of interactions

will be respected when a definition of a node happens to

subsume nodes. For example, a definition for two cities

may seem arbitrary in subsuming some suburban com-

munities while discarding others. Nevertheless, fervent

communication between the twin cities will establish a

metropolitan area irrespective of its formal boundaries.

3. APPROXIMATE FORMS OF NATURAL DEGREE
DISTRIBUTION
The above thermodynamic formulation of networks as

open systems can be analyzed to unravel why certain

mathematical models account well for the natural net-

works. In particular, the skewed degree distribution, com-

mon to natural networks, can be found as an excellent

approximation of the thermodynamic stationary-state con-

dition (dlnP 5 0) of Eq. (5),

lnNj ¼ ln
Y
k

Nke
� DGjk�iDQjkð Þ=kBT

� �

¼ j lnN1

X
1�m;n�j

�Amn=kBT / j lnN1;
(6)

which is linear on a semi-log scale [28,38]. Here, each

j-node in the hierarchy of the network (Figure 1) is

expressed as being composed of some basic constituents

N1 (quanta), because all nodes are results of some earlier

processes. It follows from this recursive form that the

j-node with Nj constituents embodies an energy density

/j ¼ Nje
Gj=kBT ¼ N

j
1e

j G1þiDQ1ð Þ=kBT ¼ ej ln/1þiDQ1=kBTð Þ

, ln/j ¼ j ln/0
1;

(7)

where the number of quanta jDQ1 that have been incorpo-

rated in the entity whose energy density is denoted with

fj are included in the shorthand notation f1’. Accordingly,

another node with j 1 n constituents comprises an adja-

cent energy density

/jþn ¼ exp j þ nð Þ/0
1

� �
¼ /j exp n ln/0

1

� �

, ln/jþn ¼ ðj þ nÞ ln/0
1:

(8)

This form reveals that when n << j the distribution of

energy densities fj 2 n. . .j 1 n over a range of nodes j2 n

. . . j 1 n about fj

ln/j�n...jþn ¼ ln/j þ
X
n

n ln/0
1 (9)

is normal according to the central limit theorem. The con-

dition of small variation is effectively the criterion by

which the nodes are qualified to the same degree distribu-

tion. For example, when a distribution of cities is compiled

from a network of population centers, small villages, or

suburbs will be excluded. Because of the ubiquitous quest

for the least-time free energy consumption, natural distri-

butions will display scale-free, skewed characteristics irre-

spective of classification criterion.

It is noteworthy that the natural distribution does deviate

from the aforementioned log-normality in the way it tails

off both at low and high ends [68]. According to thermody-

namics, the distribution will tail off when the functional

mechanism of a particular class of nodes becomes increas-

ingly ineffective or energetically expensive as a means of

energy transformation [39]. For example, powerful energy
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transduction mechanisms that are characteristics of a city

such as factories are not supported by small villages. Hence,

villages are not considered in the distribution of cities. Con-

versely, the distribution of cities tails of because an increas-

ingly larger metropolis struggles with increasingly more

acute transportation problems that curtail its further growth.

Because of these imperatives in energy transduction, the

sigmoid cumulative curve will deviate from the power law

at both the low and high ends. The low-end cut-off is usu-

ally referred to as the finite-size effect [69]. For example, the

species–area relationship [25,70–73] is a well-known cumu-

lative curve of ecosystems, which totals from the distribu-

tions of species that populate increasing larger areas [74]. It

mostly follows a power law, but at the low end, the resour-

ces in a small area do not support any species in a particu-

lar genus, as well as, toward the high end, no species of that

genus is capable of harvesting the large but scattered

resources [75–77].

The recursive power-law form of the cumulative proba-

bility distribution, as found above to result from the least-

time free energy consumption, is closely followed by cer-

tain functions. For example, beta distribution for large val-

ues of either of its gamma-function arguments is a good

approximation of certain natural distributions [78]. More-

over, the scale-free stationary distribution Sk-a is propor-

tional to the Riemann zeta function f(a), which in turn

has been associated to the stationary states by the thermo-

dynamic principle [79]. However, these and other mathe-

matical models [18] do rarely account for the entire span

of a natural distribution that tails off at both ends due to

the mechanistic limitations of energy transduction.

4. KINETIC MODELS OF EVOLVING NETWORKS
Evolution of natural networks mostly follows a power law.

This time-dependence can be recognized to result from

the maximal energy dispersal when the equation for evolv-

ing probability dP/dt 5 LP [Eq. (2)] is analyzed.

In practice, it is the number of nodes Nj that can be

monitored during evolution rather than the associated

probability Pj [Eq. (2)]. When Nj of the nascent network is

small in comparison with the stationary population of

nodes Nj
s of the mature network, the change in the free

energy SkqAjk/qt 5 Skrjk is a good approximation inde-

pendent of the energy flow. This deterministic, zero-order

approximation

X
k

@Ajk=kBT

@t
¼ dNj

dt

X
k

@Ajk=kBT

@Nj
�

X
k

rjk

) dNj

dt
¼ rjNj ; when Ajk tð Þ � Ajk 0ð Þ

(10)

will give the exponentially increasing initial growth Nj(t) 5

Nj(0)exp(rjt) when variables are separated and integrated

from 0 to t. Evolution will punctuate off when a transfor-

mation mechanism appears in the system for the first

time and taps into a nascent reservoir of free energy [25].

For example, the initial growth of a business branch is ex-

ponential.

Conversely, the decreasing exponential approximation

will be obtained when energy in the maturing population

Nj(t) has almost attained Nj
s(1) at the stasis where Ajk

s 5

0. Then, the change SkqAjk/qt 5 2Skrjk is nearly constant

X
k

@Ajk=kBT

@t
¼ dNj

dt

X
k

@Ajk=kBT

@Nj
� �

X
k

rjk

) dNj

dt
¼ �rjNj ; when Ajk tð Þ � As

jk ¼ 0:

(11)

The exponential decrease Nj(t) 5 Nj
s – Nj(0)exp(-rjt) at the

late stage will be obtained when variables are separated

and Nj is integrated from Nj(0) to Nj
s. Evolution will settle

to a stasis when the transformation mechanisms have

consumed all free energy. For example, a mature business

branch will saturate a market. Thereafter, the balanced

operation depends only on the amount of steadily avail-

able and renewable potential.

In the intermediate region between the initial increase

and the final decrease, the population Nj is given by Eq.

(6), which is valid for a sufficiently statistical system. This

means that Nj of the quasi-stationary network can be writ-

ten in terms of multiplicative operations of the basic con-

stituents in numbers N1,

Nj ¼
Y
k

Nke
�Ajk=kBT

� �
¼ N

j
1

Y
1�m;n�j

e�Amn=kBT ¼ ajN
j
1;

(12)

where the constant aj 5 Pm,nexp(-Ajk/kBT) is over avail-

able m,n-indexed transformation paths. The multiplicative

form is recognized as a power law. The typical time course

about a quasi-stationary point Ajk
qs follows from the

approximation SkqAjk/qt 5 qAj/qt 5 2rj

dNj

dt
¼ dNj

dN1

dN1

dt
¼ ajjN

j�1
1

dN1

dt
¼ jNj

N1

dN1

dt

) dNj

Nj
¼ jdN1

N1
; when Amn � A

qs
jk :

(13)

When the variables are separated, the integration will give

lnNj 5 jlnN1 1 a constant. Hence, the scale invariance,

which is a characteristic of natural networks, is apparent

from the log–log plot where the curve is a straight line.

The obtained functional form is also familiar from the

law of mass action. However, it is noteworthy that it is

not the number of nodes but the difference in energy

contained between the nodes and relative to their
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surroundings that contributes to the driving force of evolu-

tion Ajk/kBT. Consequently, the law of mass action does

not comply with conservation of energy. Hence, in that

model of network kinetics [80], the forward and backward

flow coefficients are erroneously deemed as if they were

changing during the course of evolution, whereas, in real-

ity, the free energy is decreasing and the conduction coef-

ficient rjk in Eq. (3) is a constant. Obviously, new means

of transformation may also emerge to facilitate the flows.

Finally, we emphasize that the evolutionary equation

[Eq. (2)] is nondeterministic, unlike its mathematical mod-

els that can be integrated to closed forms. Often the over-

all sigmoid course is, to a good approximation, also given

by the logistic equation or Gompertz equation both with

three arbitrary constants, i.e., the upper asymptote, the tie

origin, and the rate constant governing the point of inflec-

tion [81]. The above analysis of the evolutionary equation

[Eq. (2)] and the associated kinetic [Eq. (3)] and balance

equations [Eq. (5)] for the initial, intermediate, and final

stages of growth (or decline) reveals that the ubiquitous

power law characteristics of networks are consequences of

the natural principle of the least-time energy dispersal.

5. GROWTH MODELS OF NATURAL NETWORKS
The preferential attachment model will generate random

scale-free networks with skewed degree distributions

[7,82,83]. The basic algorithm weights the connection proba-

bility Pj(N) of a j-node with its degree N. Hence, new nodes

are most likely to make connections with already densely

connected nodes. We find that this method mimics the nat-

ural process of least-time free energy consumption where

interactions among constituents of a larger and denser sys-

tem form increasingly more effective mechanisms of energy

transduction. The basic algorithm will reproduce a power-

law region, but not the early punctuation and the late set-

tling to stasis, since the thermodynamic limitations of

growth denoted in Eqs. (1) and (2) are not included in Pj.

After all, it is not the number of links that drives the growth

but the energy influx via links that fuels the expansion.

Weighted networks [84] are better models to account

for variation in energy transfer characteristics of natural

links. When the j-node is assigned with strength

sj ¼
X
k

wjk (14)

as a weighted sum of links to neighboring k-nodes, the

degree distribution P(N) is replaced by a strength distribu-

tion P(s). This model can be recognized as an approxima-

tion of Eq. (3) when assuming that the driving forces of

evolution Ajk would be constants and small relative to the

overall energy content, i.e., Ajk/kBT << 1. Then sj would

be equal to the total conductivity rj 5
P

rjk that links the

j-node with its surrounding k-nodes.

When the network algorithm assigns the j-node with

probability

Pj ¼ sj=
X
i

si (15)

to attach to a new k-node [85], the basic idea of the pref-

erential attachment that ‘‘rich get richer’’ will be tran-

scribed for the weighted networks in a form that ‘‘busy get

busier.’’ For example, when a new highway is constructed

between two cities, traffic on older and smaller roads will

reduce. Simple weight-driven dynamics will yield scale-

free characteristics [86]. As an added link introduces varia-

tions to the existing weights across the network, the algo-

rithm conforms to the interdependence among natural

nodes, although Eq. (15) does not express Pj in explicit

terms of energy as Eq. (1) does.

Normalization by the sum of weights relates to the av-

erage energy per node. When Pj is bound, the distribution

will be stationary. However, as the net influx powers the

growth of the natural network, kBT will increase during

evolution. Hence, there is no firm ground for normaliza-

tion. When energy is absorbed into a network, approxi-

mately logarithmic progression of both the degree and

weight of a node i [85] will follow. For example, when a

city becomes more prosperous, more and more people

will move in and the countryside will become desolate.

The urbanization will also result to increase in traffic in

and out of the city thus strengthening the important con-

nections between other growing areas. However, growth of

degree and weight always requires influx of energy, i.e.,

insertion of new nodes.

Intriguingly, a seemingly random process of network

evolution will also generate scale-free characteristics.

Namely, these are obtained by a method that will attach a

new node to the network so that the new node will link to

those nodes that were selected as termination points of a

series of random walks, which were carried out the previ-

ous time step [87]. Yet, this method of selecting the nodes,

albeit random, captures the path-dependent character of

natural processes. In other words, how the network will

grow by linking the new node with the existing nodes is

not truly arbitrary, but the selection of links depends on

the steps that were taken earlier. When the process itself

will affect its future state space, it is nonholonomic. This

character is expressed by the evolutionary equation of

motion given by Maupertuis’ principle.

Moreover, the selection by the random walks method is

in fact not all immaterial, i.e., energetically inconsequen-

tial, because the mere act of marking the end points of

random walks is ultimately represented by some form of a

physical change in the network description. As only those

nodes that differ in energy can be distinguished from each

other, the seemingly immaterial and statistical method of

Q 2012 Wiley Periodicals, Inc. C O M P L E X I T Y 7

DOI 10.1002/cplx



producing scale-free characteristics by random walks will

invariably entail also physical representations that in turn

are subject to the laws of thermodynamics.

6. TOPOLOGICAL MEASURES OF NATURAL NETWORKS
In thermodynamic terms, the lengths of least-time paths,

i.e., geodesics [Eq. (4)] are informative about the network

topology, whereas in network theory, the average length

l ¼ 1

NðN � 1Þ
X
j;k

djk (16)

of a path in a nonweighed graph is defined as the sum

of the shortest distances djk between all combinations of

j- and k-nodes in total N(N – 1). This useful measure par-

allels the total geodesic length when normalizing with all

conceivable jk-combinations. However, according to the

thermodynamic tenet the flows of energy themselves do

value a link by its means rjk and associated driving forces

Ajk. For example, when a logistic network is structuring

itself across a rough terrain, means of transportation and

expected returns will matter more when deciding which

lines of transportation require upgrading than the actual

distances as the crow flies. When weights are applied on

the links, reality will be modeled more precisely.

Clustering coefficients are informative about local link-

age density and eventually, when reduced to an average

figure of merit, also about the average connectivity of the

entire network [88]. In thermodynamic terms, the skewed

degree distribution as a quasi-stationary partition [Eq. (5)]

covers the network of diverse localities. However, this

measure is not normalized with all conceivable connec-

tions. In general, the statistical mechanics of open systems

refrain from normalization because when the total energy

content of an evolving system is changing, and even in a

nondeterministic manner, there are no grounds for nor-

malization.

Finally, the logarithmic dependence L 1 lnN/lnk of the

typical distance L between two randomly chosen nodes on

the total number of nodes N and the number of neighbors

k are related to thermodynamic terms. When a locus is

understood as a closed action of scalar potential energy, a

distance between two loci will also be understood, e.g., as

a difference between one chemical potential lj 1 lnNj and

the other lk. Thus, the typical distance is proportional to

the potential of an entire network l 1 lnN. Moreover, the

typical distance scales down with the logarithm of the

number of neighbors in a small-world network, because

the nearby high-throughput links hardly contribute to the

length of a geodesic [Eq. (5)]. Thus, the total number of

nodes is effectively scaled down by the number of neigh-

bors.

Obviously, the numerical values of topological measures

will change when the network is evolving, but the thermo-

dynamic tenet emphasizes that evolution is by its nature

nondeterministic. This is of course understood in practice,

since trends are followed and extrapolated with reserva-

tions rather than attempting to make precise predictions.

7. CONCLUSIONS
The physical portrayal of networks as energy transduction

systems may appear to some superficial by subsuming

numerous mechanistic details in its general concepts.

However, the mathematical formalism ensures conserva-

tion by enumerating all constituents to a precision of one

quantum. Moreover, the ubiquitous scale-free and nonde-

terministic characteristics of natural networks themselves

imply that there is an underlying universal law in action.

This law is known by many names, here, mostly referred

to as the principle of least action. When it is given as an

equation of motion and analyzed, the principle will reveal

that network evolution and structure can indeed be mod-

eled by preferential attachment and outlined by certain

analytical functions, notably by skewed, log-normal distri-

butions, power laws, as well as logistic and other nonlinear

equations. However, these functional forms are reticent in

revealing the underlying cause of universality, i.e., that

energy differences drive natural networks toward free

energy minima in respective surroundings in the least

time. Likewise, preferential attachment algorithms or path-

dependent protocols of network generation are excellent

models of network growth, branching, and clustering, but

these models are taciturn about the nondeterministic, dis-

sipative character of natural processes, i.e., that evolution

of a network affects its own course by molding the energy

landscape.

Undoubtedly, the physical portrayal of natural networks

according to the statistical mechanics of open systems

does not relate one-to-one with many mathematical mod-

els of networks. Therefore, we find no way to provide an

exact correspondence, e.g., in a form of a proof, but we

were only able to show that many models and measures

used in network theory are excellent approximations of

the thermodynamic process. Specifically, when network

nodes are depicted as identical with each other, there is

no energetic bias, i.e., a sufficient reason, that would

structure the natural network. Likewise, when links are

drawn as having equal capacities, i.e., they are indiscerni-

ble, there is no variation for natural selection to prefer a

particular attachment. In addition, the notion that proba-

bility is physical may appear to some unmotivated and

even bizarre, in particular, because artificial neural net-

works adapt well to various input by adjusting

weights. However, all forms of information are embodied

in physical presentations, so they are also subjects of
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thermodynamics. Hence, the provided description, when

speaking only in energetic terms, is self-consistent.

Finally, we remind that our objective was neither to

question the established mathematical models and meas-

ures nor conclusions founded on network theory, but to

contribute to the discourse on complex systems by com-

municating that the scale-free and nondeterministic net-

work characteristics follow from the least-time free energy

consumption.
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