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Abstract

Log-normal distributions describe data from diverse disciplines of science. However, the fundamental
basis of log-normal distributions is unknown. We suggest that the skewed distributions are outcomes of
natural processes i.e. they result from the principle of increasing entropy. Fluctuations during the course
of evolution toward more probable states yield multiplicative variations about the mean. The non-linear
dispersion of thermodynamic states, i.e. matter and energy defined by chemical potentials, underlies the
skew. Cumulative curves of skewed distributions without integrable analytical forms are characteristic of
natural processes.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Skewed distributions [1,2] describe variable variations in many fields of science [3–5] ranging,
e.g. from ecology to economy and from medicine to material sciences. For example, variations
in animal and plant species just as in incomes appear log-normal, i.e. normal when presented
as a function of logarithm of the variable. Dose–response relations just as grain sizes from grind-
ing processes show log-normal distributions. Also a variable, such as atmospheric aerosol size,
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may display more than one log-normal modes that relate to distinct processes [6,7]. The cumula-
tive curves of skewed distributions are characteristic of organism growth and population dynam-
ics as well as epidemic courses.

The probability density function [8,9] is defined for the logarithm of a normal random variable x
f ðx; l;rÞ ¼ 1

xr
ffiffiffiffiffiffi
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p exp � ln x� lð Þ2
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; ð1Þ
where l and r are the median and standard deviation. Typically a variable that is a result of many
small independent factors as a multiplicative product can be modeled as log-normal. The charac-
teristic skew of log-normal distributions is understood to arise from fluctuations in successive
steps that are subject to non-linear confines [10]. The law of proportionate effect, i.e. the change
in the variable at any step of the process is a random proportion of the previous value, underlies
log-normal distributions. Especially biological processes generate log-normal data [11,12]. Skewed
distributions are common when variance is large. Indeed ‘exceptional’ values may indicate a mul-
tiplicative normal distribution rather than anomalies, often rejected from an analysis predestined
to comply with an additive normal distribution.

The log-normal distribution, in spite of its mathematical simplicity and universality, has not
been derived from fundamental grounds. Of course the log-normal distribution does not have
to be the exact description but an effective approximation for diverse variable variations found
in nature [12]. In this study, we seek for the general basis for skewed distributions from natural
processes that refer to the particular processes where entropy increases. Our aim is motivated
by the words of Jacobus C. Kapteyn, who laid the foundation of the theory of frequency curves
[2] as early as 1903 – the connection between the form of the curve and the causes that yield it,
may lead us to precious indications about the nature of the true causes.
2. Natural processes

The exponential transformation from a log-normal to a normal distribution directs us to look
for the basis of log-normal distribution from exponential stationary-state partitions that corre-
spond to the maximum entropy [13]. Natural processes, e.g. molecular diffusion, heat conduction
and chemical reactions, evolve towards more probable states, i.e. increase in entropy by decreas-
ing free energy using various mechanisms of energy transduction [14,15]. Since x P 1 we reason
that the log-normal distribution stem from physical processes with conserved positive quantities,
e.g. matter.

We consider log-normal distributions to arise from natural processes on the basis of recently
formulated statistics of open systems [15] that underlies their thermodynamics. The statistics re-
lates a state of system, i.e. distribution of constituents, with a probability P. The objective is,
according to the principle of increasing entropy dS > 0, to find the distribution corresponding
to the maximum probability. The entropy S = RlnP of an open system is [15]
ln P � 1

RT

X
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X
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Fig. 1. Non-linear densities-in-energy /j identify to the energy contents of entities. An entity in class j is viewed to have
assembled from base units of matter N1 and quanta of energy e1. The associated density-in-energy /j ¼ N j

1 expðje1Þ
converts to a linear scale (dashed) by a transformation xj = ln/j/j that is used to display a skewed distribution as a
normal distribution on a logarithmic scale.

T. Grönholm, A. Annila / Mathematical Biosciences 210 (2007) 659–667 661
where variables Nj enumerate various entities of the system in classes j. When entities interact
with each other the system evolves toward more probable states by energy transduction that
diminishes the free energy. For example, molecules are entities of systems known as cells,
and cells are entities of systems known as organisms, and organisms are entities of ecosystems.
Matter and energy in chemical and biological aggregates e.g. molecules, cells, organism, etc., are
characterized by exponential densities-in-energy [16] /j = Nj exp(Gj/RT), usually given by loga-
rithms i.e. chemical potentials [17] lj = RT ln[Nj exp(Gj/RT)] where Gj is the Gibbs free energy
relative to the thermal energy RT e.g. per mole (Fig. 1). External energy DQjk may also couple
to aggregate assembly processes, such as to a growth of an organism or a population. Disinte-
gration processes that dissipate energy from the system may happen spontaneously or induced
using external energy. Thermodynamics obviously limits also constructions and destructions by
man. The Eq. (1) expresses these thermodynamics imperatives that all aggregate systems have to
comply with.

The maximum probability distribution has been attained when d(lnP) = 0. At the stationary
state all potentials across all jk-transitions (reactions) are equal [15]
dðln PÞ ¼ 0() lj ¼
X

k

lk þ DQjk

() Nj ¼
Y

k
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: ð3Þ
The most probable distribution of entities is exponential in agreement with the law of mass action
[18]. Ingredients Nk in the form of a product shows that the outcome Nj is a result of k-multipli-
cative operations. The stationary non-equilibrium state is maintained by the external energy, in
other words determined by external conditions in agreement with LeChatelier’s principle.

Since every entity is composed of base units N1, e.g. atoms, densities-in-energy can be expressed
recursively
/j ¼ N j expðejÞ ¼ N j�1N 1 expðej�1 þ e1Þ
¼ N j

1 expðjeÞ ¼ expðj ln /1Þ ð4Þ
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where we have used a shorthand notation ejk = (DQjk � DGjk)/RT for energy contributions that
govern occupancies of each class. The last expression is simplified in the statistical sense so that
the addition of each base unit of matter to the aggregate entity, e.g. a growing individual, would
involve a quantum of energy e. Obviously strengths of chemical bonds depend on the particular
atoms involved however the approximation is justified since, e.g. all biological organisms are on
the average assembled from the same basic constituents.
3. Stationary state distributions

A distribution serves to distinguish entities from each other by a property that relates to a
parameter value. In general the choice of property under an examination is inherently a subjective
decision. In other words a distribution not only displays the parameter variation but also reflects
the criteria to accept an entity to the distribution. A common choice is to include in a distribution
entities from adjacent classes. These differ according to Eq. (3) by the number of k-multiplicative
operations. Certainly, not only the number of steps but also the amount of matter and energy in-
volved in each step of assembly could vary. However for quantized matter and energy, a step with
variation is in fact a varying sequence of smaller steps. Hence the adjacent classes differ only by
one unit of j according to Eq. (4). Obviously we would hardly think of classifying, e.g. animals in a
population with the resolution of an atom but molecules, e.g. DNA are routinely sequenced to
this precision. For example the gene length distribution of Escherichia coli is also found skewed
[19].

To qualify an entity to the distribution depends often also on its functional properties. For
example, a seemingly simple variable ‘the weight of a female wolf’ is in fact a complex criterion.
Variation in weights results from fluctuations in a number of nested hierarchical steps of assembly
and each step is subject to some criteria to yield the characteristic functional properties.

According to Eq. (4) the density-in-energy, i.e. the amount of matter and energy in a class j + n,
is
/jþn ¼ exp½ðjþ nÞ/1� ¼ /j expðn ln /1Þ: ð5Þ
A distribution of densities-in-energy /j�n . . . ,j+n in adjacent classes j � n . . . ,j + n is obtained in the
familiar logarithmic form
lj�n...;jþn ¼ RT ðln /j þ
X

n

n ln /1Þ ¼ lj þ
X

n

ln; ð6Þ
which is normal according to the central limit theorem, when n� j. Thus the distribution of adja-
cent classes resulting from a natural process is log-normal. The mean lj corresponds to the most
probable parameter value. Thus we conclude that the principle of increasing entropy underlies
log-normal distributions that are the stationary-state distributions of natural processes.

The spread and skew of a distribution depends on how much the non-linear density-in-energy
changes within the span of variation that is typically determined by functional criteria (Fig. 2).
For example, without the functional factor of a female wolf, weights xj of all kinds of objects with
densities-of-states /j in all kinds of classes j would qualify to the distribution. When the functional
criteria of energy transduction are acknowledged the distribution begins at the class j0 that meets



Fig. 2. Skewed distributions result from natural processes when the system has evolved toward more probable states.
The states are customarily described in terms of thermodynamics by exponential densities-in-energy. The amount of
variation (lnr = 1.4,2.0,4.0,8.0), in the densities-in-energy about the mean (lnx = 100) dictate the spread and skew of
the distribution.
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the minimum qualifications (Fig. 2). Thus the parameter value xj0 associates with /j0. It is the nat-
ural unit of normalization [11] for the dimensionless parameter distribution x = xj/xj0 P 1. The
positive lower bound x = 1 coincides with the minimum functional characteristics associated with
the parameter. In this special case a failure in any step of assembly would lead to a
disqualification.

Often a biological assembly process will terminate naturally because a functionally deficient en-
tity cannot sustain subsequent jk-transitions of energy transduction that would be vital for further
growth, differentiation or in general evolution. Spontaneous degradation processes, exoergic reac-
tions are usually not subject to particularly stringent functional criteria. When the natural process
requires no sophisticated mechanisms to advance the distribution comes with a wide variation.
For example a grain size distribution is wide with a substantial skew because the parameter does
not carry much functional specifications about the grinding process.

In general natural distributions speak about flows of matter and energy down along the free
energy gradients during natural processes. The flows are subject to non-linear thermodynamic
confines expressed by chemical potentials. These are encountered in stochastic search for more
probable states. An unobstructed abstract process, i.e. one not involving matter and energy, will
give a symmetric distribution, i.e. the Gaussian distribution. An obstructed ideal process, e.g. a
random flight next to a wall will yield a skewed, however not log-normal, distribution [20,21].
4. Time courses towards stationary states

Many growth processes yield cumulative curves. When plotted at logarithmic scale the growth
curve is a sigmoid of time corresponding to the cumulative curve of a skewed distribution. Also
dose–response curves are of this nature [5,12].

The entropy increase rate [15] of a system is obtained from the time derivative of Eq. (2)
d ln P
dt
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Fig. 3. Cumulative concentrations curves Nj vs. time t obtained from a simulation of an example chemical reaction
2N1 + N2MN3 using Eq. (8). The substrates (1 and 2) are consumed when the product (3) is forming until the stationary
state given by Eq. (3) is reached. The sigmoid curve can be closely approximated, e.g. by the logistic equation with an
initial growth rate r and a constant carrying capacity K. However, the curves as well as Eqs. (7) and (8) reveal that the
evolution rate is following changing thermodynamic forces, the diminishing free energy differences between the
substrate and product densities-in-energy.
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where the flow vj = dNj/dt of matter to entities Nj is driven by the potential difference, thermody-
namic driving force also known as affinity [14] Aj, towards the equilibrium where Aj = 0. The con-
servation of matter requires that a flow vj to Nj is exactly opposite to vk from Nk consistently with
stoichiometries of reactions [15]
vj ¼ r ln

Q
k/k

/j
¼ r

Aj

RT
; ð8Þ
where r depends on particular reaction or activation mechanisms. The cumulative curves of Nj(t)
are sigmoids (Fig. 3). These time courses are often approximated by logistic equations or modeled
as stochastic processes and analyzed using mathematical and statistical techniques [4].

Likewise, a sigmoid action–response vj vs. lnNk curve arises when the response rate vj is limited
by the dissociation rate r of activator–product complexN*. At this steady state, flows to and from
an activated complex vanishes [22]
v� ¼ ra lnð/k/a=/�Þ � r lnð/a/j=/�Þ ¼ 0; ð9Þ
where RTln/* denotes the chemical potential of the activated complex of the substrate k and the
activator a, e.g. catalyst. When ra� r the potential of dose ln/* = ln(/k/a) limits vj (Fig. 4).The
sigmoid cumulative curves from natural processes have no analytical expression because the mo-
tion of probability is intrinsically non-integrable in the sense of Poincaré [15]. Motion is driven by
the potential energy differences that keep changing during the evolution. Thus there is no trans-
formation that would separate the driving forces from the probability in motion. This is an inher-
ent property of dissipative evolution.

Natural processes such diffusion, spontaneous and autocatalytic reactions, have been related to
the log-normal distributions [3,11]. The typical form is lnxj(t) = lnxj0 + f(t) where the function f(t)
is subject to normally distributed fluctuations about the most probable value. It is obtained from
integration of dNj/dt. For example a process dNj/dt = �rNj will give f(t) = �rt where r is the first
order-rate constant subject to fluctuations. Likewise an autocatalysis dNj/dt = rNj will give
f(t) = rt. The exponential, i.e. Malthusian form, accounts well for the initial growth phase that



Fig. 4. Response rate vj vs. a dose concentration Nk obtained from simulations of Eq. (9). The derivate curve (grey)
peaks at the dose concentration corresponding to half-maximal affinity when half of the initial thermodynamic driving
force has been exhausted.
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is often followed by power-law dependence. The logistic form or Verhulst–Pearl equation by its
two-timing form [23] approximates well courses due to diminishing potential energy differences.
5. Discussion

The principle of increasing entropy by decreasing free energy underlies many processes in nat-
ure. We find that the resulting parameter distribution characterizing matter and energy in aggre-
gates is skewed because densities-in-energy, i.e. chemical potentials of entities are non-linear
functions. When the natural process is subject to fluctuations a log-normal distribution closely
captures the resulting natural distribution. This finding is consistent with earlier results. Chemical
reactions, autocatalytic processes and diffusion as a function of time, all natural processes, have
been associated with log-normal distributions consistent with our reasoning about their common
basis [11,12]. Skewed distributions have also emerged when outcomes of historical and evolution-
ary sequences have been placed in categories of time as demonstrated here for a simple model sys-
tem undergoing chemical reactions.

The principle of increasing entropy directs the flows of matter and energy toward more prob-
able partitions along the fast routes of entropy increase [15]. The existence of a preferred path, i.e.
the steepest gradient, clarifies the validity of small fluctuation approximation, i.e. variation in the
chemical potential can be linearly approximated when ln(1 + dNj) � dNj and exp(de) � 1 + de.
The meaning of linearity is more profound than a mere approximation – it often defines entities
that are qualified to a distribution. An entity that contains substantially more or significantly less
matter and energy than its counterparts may not be regarded as an entity that should belong to
the parameter distribution.

The natural distribution is narrow and the skew is small when entity assembly expenses in terms
of matter and energy are large and accompanied functional criteria are stringent. Then fluctua-
tions are inherently small since a large fluctuation would be either thermodynamically expensive
or cause a functional failure in the continuation of the natural process. In this case the resulting
distribution may even be mistaken for an additive normal distribution because the underlying
chemical potential does not change markedly over the parameter span. For example, parameter
distributions of animal populations are often narrow and without much of a skew. On the other
hand the natural distribution is wide and its skew is large when the classification criteria allow to
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include results from a wide spread of activities. In these cases large fluctuations are thermodynam-
ically afforded and they do not jeopardize the continuation of process. For example, a distribution
of incomes contains both minimal individual efforts required for survival and multinational
orchestrated enterprises granting superfluous existence.

The entropy expression by Eq. (2) not only enumerates entities but includes also potential en-
ergy gradients and identifies interactions, i.e. mechanisms of energy transduction that drive evo-
lution. The interactions define an entity, e.g. a biological unit, by properties, i.e. phenotype that
support its existence. Thus the natural statistics denotes all the attributes that we may recognize
when accepting an entity to a distribution.

It may appear amazing that a seemingly simple formula of entropy that only serves to express
probable scenarios and outcomes accounts for copious complex phenomena. The statistical
description in the multiplicative form remains the same despite increasing complexity because
the equation for S is self-similar for various scales of matter, energy and time. Following the rea-
soning by Jacobus C. Kapteyn, we conclude that the connection between the log-normal form of
the curve and its cause is the principle of increasing entropy. It leads us to the precious informa-
tion about the nature of many processes.
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