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The physical character of information

BY MAHESH KARNANI
1, KIMMO PÄÄKKÖNEN

2
AND ARTO ANNILA

1,2,3,*

1Department of Biosciences, 2Institute of Biotechnology, and
3Department of Physics, University of Helsinki, 00014 Helsinki, Finland

The mathematical theory of communication defines information in syntax without
reference to its physical representation and semantic significance. However, in an everyday
context, information is tied to its representation and its content is valued. The dichotomy
between the formal definition and the practical perception of information is examinedby the
second law of thermodynamics that was recently formulated as an equation of motion.
Thermodynamic entropy shows that the physical representation of information is not
inconsequential in generation, transmission andprocessing of information.According to the
principle of increasing entropy, communication by dissipative transformations is a natural
process among many other evolutionary phenomena that level energy-density differences
between components of a communication system and its surroundings. In addition,
information-guided processes direct down along descents on free energy landscapes. The
non-integrable equation for irreversible processes reveals that there is no universal
analytical algorithm to match source to channel. Noise infiltration is also regarded by the
second law as an inevitable consequence of energy transduction between a communication
systemand its surroundings.Communication is invariably associatedwithmisunderstanding
because mechanisms and means of information processing at the receiver differ from
those at the sender. The significance of information is ascribed to the increase in thermo-
dynamic entropy in the receiver system that results from execution of the received message.

Keywords: communication; energy transduction; entropy; evolution; free energy;
natural selection
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1. Introduction

Information theory has its roots in statistical mechanics (Szilard 1929; Fisher
1935; Shannon 1948; Kullback 1959; Shannon & Weaver 1962; Jaynes 2003).
This foundation is apparent in the central theorems of Shannon (1948) and
Shannon & Weaver (1962). The source coding theorem defines average
information per message as entropy H,

H Z k
XN
jZ1

pj log
1

pj

� �
; ð1:1Þ

where pj is the probability of a message j normalized by all messages N and kO0
is a mere constant of a unit of measure, in analogy to Boltzmann’s constant kB
that relates to the average energy T in units of kelvin. Shannon’s noisy-channel
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coding theorem says that the message j, eventually represented in redundant
numbers NjO1, can be communicated reliably when encoded so that the rate of
communication, including noise, is below the channel’s capacity. These two well-
known theorems, however, speak neither about the means to represent the
message nor about the significance of the message. At first sight, our concern for
the representation may appear downright secondary and our interest in the
significance categorically specific. Is information not abstract by its nature and
its content associated with context?

At least genetic information is chemically coded in nucleic acid genomes, just
as data are deposited on magnetic or optic media, but, in general, we suspect that
there is no information without representation. Consistent with the represen-
tation requisite of information, energy densities are known to set the ultimate
bounds for entropy (Brillouin 1960). These physical bounds, as we will show,
influence structuring of information on any medium or communication channel.
Therefore, natural data structures are skewed, nearly lognormal distributions
(Kapteyn 1903; Limpert et al. 2001), that sum up sigmoidally, approximately in
a power-law manner, e.g. lengths of genes (Zhang 2000), words of natural
languages (Naranan & Balasubrahmanyan 1992; Sigurd et al. 2004) and edges in
the World Wide Web (Albert & Barabasi 2002). The physical nature of
information can be examined by the second law using its recent formulation
(Sharma & Annila 2007) that explicitly links increasing thermodynamic entropy
with decreasing free energy. The formalism reveals that communication is a
natural process, one among many others to disperse energy. The holistic tenet is
known as the maximum-entropy production principle (Ziegler 1983; Swenson
1989, 2000; Mahulikar & Harwig 2004; Martyushev & Seleznev 2006) that has
been used to describe various evolutionary phenomena (Ulanowicz & Hannon
1987; Brooks & Wiley 1988; Salthe 1993; Schneider & Kay 1994; Matsuno &
Swenson 1999; Brooks 2000; Lorenz 2002; Dewar 2003). Specifically, the
maximum-entropy production principle allows one to address physical
information in evolution (Swenson & Turvey 1991).

In this study, we find from the principle of increasing entropy, when it is given
as an equation of motion, that information is affected by its physical
representation and communication is directed by thermodynamic driving forces
via mechanisms of energy transduction. The differential equation of motion for
natural processes can also be given as the principle of least action (Kaila &
Annila 2008) and associated with Newton’s second law (Tuisku et al. 2009) to
rationalize diverse evolutionary courses (Grönholm & Annila 2007; Annila &
Annila 2008; Annila & Kuismanen 2008; Jaakkola et al. 2008a,b; Würtz & Annila
2008; Karnani & Annila 2009; Sharma et al. 2009). Although the following results
concerning the physical nature of information and thermodynamic imperatives in
information processing are not conceptually new, they are derived directly from
the second law given in the form of an equation of motion. We will first define the
thermodynamic entropy associated with physical representations of information.
Subsequently, the definition is inspected to show that it qualifies as a measure of
information. Then, the principle of increasing entropy is used to understand
evolution of data structures and imperatives in information processing and
transmission. Finally, the thermodynamic theory of communication allows one to
associate the significance of a message with the entropy increase in the receiver
system resulting from the execution of the message.
Proc. R. Soc. A
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2. Thermodynamic information

We are by no means the first to claim that information is physical (Szilard 1929;
Landauer 1961, 1991, 1996a,b; Swenson 1989; Lloyd 2000), but wish to underline
that all information processing, i.e. generation, encoding, transmission, decoding
and interpretation, belong to the class of natural processes (Kondepudi&Prigogine
1998; Sharma & Annila 2007) where entropy increases by dispersal of energy. The
role of thermodynamics in communication cannot be ignored because a message
must be constructed for it to exist and executed for it to signify. For example, any
observation, as a means of collecting information, is an irreversible energy
transduction process (Brillouin 1960; Tuisku et al. 2009). Our objective is to use the
physical portrayal of information and processing to resolve the dichotomy between
the formalmathematical definition of information limited to the syntaxby equation
(1.1) and the practical association of information with its significance.

Let us consider a medium where all bits are initially set to 0. It will take a
quantum of energy in a transition to turn a bit from 0 to 1, i.e. to write the simplest
message. The energy input is the necessary ingredient that distinguishes the
0-state from the 1-state. In a biological context, this transformation operation from
one state to another could correspond to absorbance of a photon in a retinol
molecule or to a synthesis of a nucleic acid residue. Thus, according to the adopted
thermodynamic viewpoint, there is information in deviations, ‘up or down’, from
the average energy density, i.e. in the free energy. Conversely, there is no flow of
information when all thermodynamic gradients have vanished. We will proceed to
establish the thermodynamic entropy as a measure of information.

In a thermodynamic system (e.g. an organism or a file server), the amount of
energy that is required to build and maintain a data structure (e.g. a genome or
an electronic archive) may be minute in comparison with other maintenance
costs (e.g. of cellular metabolism or air conditioning), but it is still necessary.
The energy density that is invested to represent a message j in identical copies of
Nj is given by FjZNj exp(Gj/kBT ), where the Gibbs free energy Gj is relative to
the average energy kBT (Gibbs 1993–1994). For example, the energy densityÐ
dFj integrated over the medium relates to temperature T via Boltzmann’s

constant kB. Owing to the physical representation requisite, all forms of
information processing must comply with thermodynamics. Thus, according to
the thermodynamic standpoint, any form of density-in-energy holds information,
irrespective of whether it is explicitly referred to as a message or not. Information
ascribed to a message depends on the surroundings because the free energy in
deviations is relative to the surrounding average density. The dependence is
apparent in information-guided processes, e.g. gene expression and protein
folding, which direct in different ways in differing surroundings.

The natural process of energy dispersal (Carnot 1824; Boltzmann 1905;
Kondepudi & Prigogine 1998) advances most rapidly when the most voluminous
flows of energy funnel from high densities to low densities down along the
steepest available descents of the free energy (Darwin 1859; Sharma & Annila
2007; Kaila & Annila 2008; Tuisku et al. 2009). This is the principle of maximal
entropy production. The thermodynamic entropy SZk B

P
ln Pj used here is

derived from statistical physics (Sharma & Annila 2007). It is an additive
logarithmic probability measure of an open system where each ln Pj term denotes
the energy requirements to represent a message j in numbers Nj on a medium
Proc. R. Soc. A
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Figure 1. Information is physically represented by densities-in-energy FjZNj exp(Gj/kBT ) (filled
objects). A message j in numbers Nj is represented by the density Fj at an energy level Gj given in
relation to the average energy density kBT (dotted line). The physical representations of
information result from dissipative processing via jk-transitions (vertical arrows) that couple to
changes in Gibbs free energy KDGjk and possibly also recruit external energy DQjk (wavy arrows)
in the assembly process. During the transformations of representations, flows of energy channel
via various mechanisms sjk (depicted as varying thicknesses of arrows). According to the principle
of least action, the most voluminous transforming flows direct along the steepest descents in the
free energy landscape to increase entropy most rapidly. In this way, information processing
and communication are formulated as thermodynamic processes that are connected to the
surrounding processes.
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; ð2:1Þ

where Nk denotes the physical representatives of symbols that are available to
construct the messages Nj. The energy required for the coding is given by the
difference GjK

P
GkZDGjk between the message j and its constituents k that are

eventually used in degenerate numbers gjk for each message j. The amount of
external energy DQjk that is required in the synthesis is also denoted. The form
of S is self-similar, i.e. densities are composed of densities, describing hierarchical
organization of energy transduction networks (Salthe 1985, 2002). When S is
multiplied by T, the resulting formula of energy expresses, for each message j,
how much energy NjkBT is bound in its representations and how much energy
Nj(SmkCDQjkKmj)O0 is still free to increase the number of representations Nj.
The representations Nj result from statistically independent actions, denoted byQ

k, when constituents Nk react with each other and bring about concomitant
changes in energy DQjkKDGjk. The natural process aims at balancing the potential
mkZkBT ln Fk/gjk! associated with the physical representations Nk and the
available energy DQjk in the surroundings with the potential mjZkBT ln Fj that is
associated with the physical representations Nj (figure 1). Equation (2.1), unlike
earlier statistical physics entropy formulae, is valid for open systems. It is consistent
with Carnot’s definition of entropy and the basic maxim of thermodynamics that
the entropy maximum coincides with the free energy minimum.
Proc. R. Soc. A
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The rate of entropy increase is obtained from equation (2.1) by differentiation
and using the chain rule (Sharma & Annila 2007)

dS

dt
Z
X
jZ1

dSj

dNj

dNj

dt
Z k B

X
jZ1

dNj

dt

X
k

ln
Nk=gjk!

Nj

C
DQjkKDGjk

k BT

 !

Z kB

X
jZ1

dNj

dt

P
k mk CDQjkKmj

k BT

� �
R0: ð2:2Þ

It reveals that entropy is increasing when flows dNj/dt via various jk-pathways are
creating and destroying representations of messages by levelling various potential
energy differences

P
mkCDQjkKmj. In practice, the jk-indexing defines algorithms

(physical processes) that yield the representations Nj from the representations Nk

via syntheses or degradations (e.g. dissipative transformations that flip bits). The
inequality characteristic of the second law merely states that the information
processing system will always move towards more probable states. For example,
when free energy is available Nj(

P
mkCDQjkKmj)O0, the system will generate the

j-messages. Otherwise (when less than 0), the j -messages will be corrupted, as
their representations will be consumed in other transformations. The rate criterion
dS/dtR0 implies maximal increase that is achieved when the system evolves at
maximal rates (dNj/dt)(

P
mkCDQjkKmj), i.e. via the most voluminous flows

dNj/dt of representations (e.g. communication) down along the steepest gradients
mkCDQjkKmj. The natural process aims at the free energy minimum partition by
abolishing all energy-density differences, i.e. Nj(

P
mkCDQjkKmj)Z0.

The connection between entropy and free energy provided by equation (2.1)
and between their rates by equation (2.2) means that it is impossible to create or
destroy information without a change in free energy. Information defined by
thermodynamic entropy is embodied in existing representations kB

P
Nj and in

the free energy kBNj(
P

mkCDQjkKmj)/kBT, which is available to make more
representations. At the maximum-entropy state, the information processing
system houses the free energy minimum distribution (partition) of messages.
Importantly, the surrounding densities-in-energy, denoted by DQjk, influence the
structuring and processing of information. Eventually, in the expanding
Universe, all energy-density differences in material forms will dissipate and,
since the free energy will disappear, all information will also vanish (Tuisku et al.
2009). The thermodynamic description links information and its processing
systems seamlessly with their surroundings.

The flow of information is the flow of its representations dNj/dt. The flow is
proportional to the free energy per kBT (Sharma & Annila 2007),

dNj

dt
Z
X
k

sjk ln
Nk=gjk!

Nj

C
DQjkKDGjk

k BT

� �
Z
X
k

sjk

P
k mk CDQjkKmj

k BT

� �
;

ð2:3Þ

where the coefficient sjk denotes the mechanistic capacity (conductance) of a
channel for the particular message j in its material representations that
transform from Nk. When there is more than one algorithm to construct a
particular message, or more than one channel to transmit it, the flows of
Proc. R. Soc. A
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information distribute among diverse processes and channels (figure 1) so as to
maximize the overall rate dS/dt. This is just to say that receiver systems depend
on their channel capacities when acquiring information from their surroundings.
This implies that the receiver systems are competing for information, as they are
competing for free energy in general. The thermodynamic bias, known as the free
energy, will direct evolution towards increasingly more effective mechanisms to
detect, acquire and process free energy from the surrounding sources.

It is worth pointing out that, when the law of mass action or the logistic
equation is used to model flows, instead of using equation (2.3), the kinetics is
decoupled from the thermodynamics. Consequently, the inaccurate models direct
investigations to various kinetic mechanisms, hoping to find those that would
reproduce the observed characteristics, rather than realizing that functional
structures and hierarchical organizations emerge naturally to consume free
energy (Annila & Annila 2008).
3. Properties of information

To justify the adopted physical formalism, we will proceed to relate equations
(2.1)–(2.3) to the basic concepts of information theory and to the known
mathematical properties of information (Fisher 1935; Mathai & Rathie 1975).
The part kB

P
Nj ln(1/Nj) of the first term on the second line of equation (2.1)

resembles the average information per message given by equation (1.1).
However, the physical representation of the message j in numbers Nj, given by
equation (2.1), is not normalized by all messages N so that it would correspond
exactly to the probability pjZNj/N in equation (1.1). The reason for not
normalizing in the thermodynamic context is that the total number of messages
may not be known a priori when the physical medium and the amount of energy
to deposit and transform information on the medium are not defined. In other
words, the information processing system is evolving. Therefore, the upper index
of j-summation in equations (2.1) and (2.2) has also been left open. For example,
a genome as a repository of information may grow larger or shrink down during
evolution (Gregory 2005). Likewise, increasingly larger hard disks are currently
acquired to deposit more information in electronic form. The reason for not
normalizing probabilities is more fundamental than a mere unawareness of the
available load and capacity. The principal reason is that all information
processing systems are open to their surroundings in order to carry out
dissipative transformations that distinguish identities from each other (Tuisku
et al. 2009). Thus, there is no conserved quantity to qualify for a norm. When the
driving forces and flows are inseparable from each other, the information
processing system is non-Hamiltonian.

Thermodynamic entropy S representing information is non-negative, as is
information entropy H. To show that S, like H, is convex, we insert equation (2.3)
into equation (2.2) to obtain the quadratic form dS/dtZkB

P
sjk[(

P
mkKmjC

DQjk)/kBT ]2R0, which is non-negative because a communication machinery is
inevitably realized from non-negative Fj, hence all conductance sjkO0. The
second law of thermodynamics dSR0 underlies the mathematically established
convexity of information. The correspondence between the physical and
mathematical definitions of information is further strengthened because the
Proc. R. Soc. A
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thermodynamic entropy does not depend on the order of terms that represent
messages, hence S of equation (2.1), in analogy to H of equation (1.1), is an
additive measure of information. However, as will be described later, the rate of
entropy increase dS/dt at any given moment during the information processing
at the receiver system does depend on the order in which messages are received.
In other words, two messages that associate with equally large total dissipation
can be distinguished from each by their different rates of dissipation.

Since thermodynamic driving forces are not all independent of each other
(Kondepudi & Prigogine 1998), a change in a potential mk will affect any
other potential mj in the communication system. For example, when the storage
capacity cannot rapidly adjust in response to a demand, the memory space that
is used for one message is away from the capacity available to other messages.
Dissipative transformations among the interdependent physical representations
of information are invariably coupled to the entropy change. Hence S, similar to
H, is continuous. This is in accordance with the Radon–Nikodym theorem that
tells us how to change from one probability measure to another.

The rate of change in thermodynamic entropy, given by equation (2.2),
clarifies that emergence of a nested hierarchical data structure of ‘messages
within messages’ is a probable evolutionary scenario. For example, a genome
contains chromosomes that, in turn, are composed of gene regulatory networks,
which house genes written by codons that are made of bases (Gregory 2005).
Likewise, a book contains chapters that, in turn, are composed of paragraphs
that house sentences written by words made of letters. Such an organization of
information is a natural outcome, as it results from evolution towards the free
energy minimum state. The optimum partition is most effective in energy
dispersal. At every level of hierarchy, the jk-indexing in equation (2.2) denotes
how to construct each message j from k by dissipative processes, with
concomitant changes in energy. This self-similar branching principle is familiar
from diverse evolutionary processes that manifest themselves, e.g. as phylogenic
trees. In information theory, the self-similar branching characteristic is referred
to as recursivity.

Differences in dissipative transformations are necessary for the message j to
distinguish from all other representations corresponding to other messages ksj
in the same information processing system (Kaila & Annila 2008; Tuisku et al.
2009). For example, entropy of a word will change when a letter j is exchanged to
another symbol k, but S remains intact in a conserved exchange of j for the
identical symbol j or for another symbol that the processing system fails to
distinguish from j. It is worth noting that a given letter in upper case is a
different symbol from its lower case. They are associated with different energies,
and the processing system is said to understand this when it is able to distinguish
energetically one from the other. Likewise, a mutation in a nucleic acid codon
associates inherently with a change in energy. Bases are distinguished from each
other precisely by energy differences in pairing interactions (Almlöf et al. 2007).
However, a change at the molecular level is not necessarily distinguished at a
cellular level. Not every genetic mutation will lead to a phenotype manifestation.

The information measure, referred to as directed divergence, is the first term
Nj ln(Nk/Nj) in equation (2.1) and its sum is the divergence (Kullback 1959), also
known as the Kullback–Leibler divergence or relative entropy, which satisfies
Gibbs’ inequality. Accordingly, thermodynamics is formulated in terms of
Proc. R. Soc. A

http://rspa.royalsocietypublishing.org/


Figure 2. Information processing is dissipative transformations of physical representations from an
energy density Fk to another Fj that together form an energy-density landscape. The data
structure is formed and maintained by an influx of energy DQjk from surroundings (e.g. via current
from a power chord or by combustion of metabolites) that couples to the information processing.
The flows of energy (red and blue arrows) channel down along differences in energy mkCDQjkKmj
by various mechanisms, e.g. sjk. Since potentials mj are in relation to each other, the flows of
information keep changing with the changing landscape (present, solid curve; prior, dashed curve),
leaving no invariants of motion to predict precise trajectories. There is, therefore, no universal
deterministic algorithm that would enable the use of full capacity at all times to transmit a priori
unknown data streams.
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relative measures; differences between mj are important, not their absolute
values, and Gj are given relative to kBT. In the same relative sense, a change in
entropy S, or equivalently a reduction in free energy by an energy flow, is the
thermodynamic measure of discriminating between representations of messages
(Kullback 1959). For example, two messages j and are distinguished from each
other when the processor finds an energy difference in their physical
representations, otherwise the processor regards the two as indistinguishable
(Kaila & Annila 2008; Tuisku et al. 2009). Specifically, when no energy-density
differences between the two representations are found during encoding, the
messages are, according to equation (2.1), indistinguishable at the source.
Likewise, when no energy differences between the two representations are found
during decoding, the receiver system regards the corresponding messages as
identical. However, a communication system may evolve in its mechanisms to
distinguish finer and finer energy differences, e.g. to improve in concept analysis.
In all cases, when there is no change in entropy according to equation (2.2), there
is no information processing or communication.

Thermodynamic entropy and the Kullback–Leibler divergence share the
topological properties of distance, except for the symmetry and triangle
inequality (Kullback 1959). Thermodynamic divergence is the differenceP

mkKmj between potentials j and k. The physical reason for divergence not
being a proper distance is that dissipative transformations are not symmetric
under time reversal (Tuisku et al. 2009), i.e. the exoergic jk-reaction releases a
quantum of energy, whereas the endoergic reaction consumesDQjk (figures 1 and 2).
Also, the non-Euclidian characteristic means that the directional distance
traversed during a jk-transition in a free energy landscape will be altered when
other densities-in-energy begin to interact with Fj or Fk. Owing to the continuous
interdependency among all Fj in a communication system, the ‘distance’ in energy
among any two constituents is affected by a change in any other. The mutual
Proc. R. Soc. A
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relationships are not invariants of motion because a change in identity is invariably
associated with a gain or loss of energy. In the algorithmic context, the topological
properties of the manifold mean that, when there are alternative ways to produce
the representations Nj of message j from representations Nk, those with minimal
changes in energy, i.e. least dissipation are favoured (figures 1 and 2). Although
the principle itself is simple, it may be tricky to find the most optimal way of
generating information when the transformation pathways are coupled to each
other. A change in state will affect the set of accessible states in future.

In many cases, it is apparent that information is represented in deviations
from the average energy kBT. For example, information in a speech is
represented in pressure perturbations about ambient atmospheric pressure, the
average energy density. Likewise, a chemically coded data structure will collapse
when the ambient energy density (i.e. temperature) is increased enough. In the
derivation of equations (2.1) and (2.3), we have implicitly assumed that entropy
is a sufficient statistic (Kullback 1959) because the kBT term emerged as a
constant from Stirling’s approximation. The system is sufficiently statistical
(steady) when the energy influx or efflux does not change its average energy
markedly, i.e.

P
kBNj(

P
mkCDQjkKmj)/kBT. The assumption fails when the

system fails to redistribute received influx rapidly enough to maintain internal
balance. For example, when a processor does not cool rapidly enough in response
to a work load and overheats, the computational architecture will soon
be ruined. The assumption of being sufficiently statistical also fails when a
transmission line itself does not remain invariant, but begins to evolve. When
the conduction system is evolving, the channel capacity depends on the
transmitted message. For example, close to the high-frequency cut-off, dispersion
relationships of conducting media are nonlinear and hence all messages are not
transmitted equally well. The flow exceeds the channel’s capacity for physical
representations, and the linearity of equation (2.3) is broken down. Then, the
transmission is a function of the driving force, rather than being a constant sjk.
In those cases, when the system is not sufficiently statistical, underlying
evolutionary processes of the constituent systems at a lower level of hierarchical
organization of matter can be described by the same scale-independent
thermodynamic formalism.

All in all, thermodynamic entropy shares, by the aforementioned properties,
the well-known mathematical characteristics of information entropy. Thus, we
conclude that the form of equation (2.1) qualifies as a genuine measure
for information. Moreover, we claim that the terms in equation (2.1), which
are additional to those in equation (1.1), are not of secondary importance but are
essential in understanding what information is. The thermodynamic entropy
distinguishes states in energetic terms, whereas information entropy dis-
tinguishes by configurations. Sometimes the difference is communicated as a
distinction between functional and configurational organization (Majernı́k 2002).
The universal function is that of the energy dispersal. We accept that coherent
and incoherent configurations of states are different from each other; however,
the difference is recognized in detection first by a dissipative transformation. The
value in understanding the physical nature of information is that it allows us to
rationalize consequences of thermodynamic imperatives in communication, as
well as giving, by the entropy increase, a functional meaning to a message.
Proc. R. Soc. A
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4. Natural data structures

Natural data structures, such as genomes, books, file systems and data servers,
are repositories of information that share common characteristics. Most notably,
they display skewed distributions and hierarchical organization. The physical
representation of information allows us to understand that these ubiquitous
characteristics are consequences of the second law.

External energy is necessary to maintain a data structure, i.e. different energy
densities. The physical representation of information is a non-equilibrium state
that will begin to corrupt towards the equilibrium when external energy is
diminished. Thus, communication systems are no different from other open
systems that evolve towards stationary states in their respective surroundings
(Bertalanffy 1953; Nicolis & Prigogine 1976; Sharma & Annila 2007; Kaila &
Annila 2008; Tuisku et al. 2009). Under a steady influx of energy, the distribut-
ion of messages on any medium will evolve towards a stationary-state
distribution that is obtained from equation (2.2) when imposing the familiar
steady-state condition (Sharma & Annila 2007)

dS

dt
Z 05mj Z

X
k

mk CDQjk5Nj Z
Y
k

Nk

gjk !
exp

ðDQjkKDGjkÞ
k BT

� �
: ð4:1Þ

The recursive formula for the steady-state maximum-entropy partition implies a
nested hierarchical organization of information, i.e. messages are within
messages. For example, a eukaryotic genome, a message itself, is organized in
chromosomes; each of them in turn, with its own organization, houses coding and
non-coding sequences. Genes are flanked by intergenic regions, and a gene is
fragmented by non-coding DNA sequences similar to files on a computer hard
disk that fragment due to numerous input–output operations. Genomic
operations, such as mutations, insertions, deletions, duplication, gene transfer,
exon shuffling, intron gain and loss, as well as polyploidy, all maintain the
genomic information in the skewed steady-state maximum-entropy partition
(Grönholm & Annila 2007; Jaakkola et al. 2008b; Würtz & Annila 2008; figures 3
and 4). For example, frequency of amino acid versus its rank is similar to letter
frequency versus its rank. Discrete power-law probability distributions, such as
Zipf’s law in linguistics (Zipf 1935, 1949; Altmann 2002) and Lotka’s law (Lotka
1926), we recognize as approximations of equation (4.1).

The characteristically skewed distribution of information is particularly easy to
illustrate when the physical representations Nj of message j are constructed from
base constituents in non-degenerate (gjkZ0) numbers N0 and using quanta jDQ10.
Then, equation (4.1) yields the formula for the maximum-entropy distribution,

Nj ZNj
0 exp

jðDQ10KDG10Þ
kBT

� �
Z expðKj3Þ; ð4:2Þ

where 3Z(DG10KDQ10KkBT ln N0)/kBT. The total number of base constituents
NZ

P
jNj is distributed with a skewed probability density P( j )ZjNj and a

sigmoid cumulative curve is dominated by the ubiquitous power-law region
(Balasubrahmanyan & Naranan 2000; Naranan & Balasubrahmanyan 2000;
figure 3).
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Figure 3. Maximum-entropy distribution of physical representations of information Nj versus j and
cumulative curve (thin curve).
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Natural data structures emerge from non-integrable processes given by the
equation of motion (equation (2.2)). An initial thermodynamic driving force, e.g.
for making a data structure such as a genome, may be large but means and
mechanisms of information processing limit the initial growth of data. For
example, when the numbers of physical representations for bits in a message are
increasing, combinatorial choices among them are increasing rapidly, but soon
every additional bit contributes to S less and less. Later, the rate of increase
levels off when thermodynamic potentials are consumed in making all those
diverse messages that do not differ all that much from each other in functional
characteristics. When the physical resources are simply running out in making
diverse messages, it becomes important for the system (e.g. an organism) what is
deposited and transmitted to its surroundings. We claim that these material
considerations are not insignificant but essential for understanding the nature of
information and its processing according to the second law.
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It is worth noting that the maximum-entropy distribution (equation (4.1)) was
obtained directly from the condition dSZ0, not ad hoc by introducing and
solving for two Lagrange multipliers aZ

Q
Nk and bZ1/kBT as usual. Lagrange’s

method has previously been used to determine the optimal rate of transmission
relative to the fidelity evaluation, although it was understood that the matching
of information flow is a non-deterministic process similar to tuning several
coupled electric circuits for optimal total transmission (Shannon 1948; Shannon &
Weaver 1962). Since the usual objective of statistical mechanics is to determine
only the stationary partition, it is easy to miss that information processing is
driven by the free energy because it has vanished at the steady state. By
contrast, when the probabilities of messages are associated with matter and
energy, the characteristics of information (equation (2.1)) are obtained without
imposing further constraints as natural consequences of thermodynamics
governing their representations.

The maximum of equation (2.1) (i.e. natural data structure of equation (4.1))
is not the maximum of equation (1.1) when all pj are equal. Such an equipartition
does not correspond to reality, which displays skewed distributions. Never-
theless, if one so wishes, the mathematical and physical information measures
can be related to each other by an exponential transformation at the stationary
state where neither H nor S contain free energy terms. It removes from S all
medium dependence (i.e. matter and energy constraints) by equalizing energy
densities for diverse representations of messages. However, the resulting fallacy
of abstract and medium-independent information makes it difficult to understand
properties of information, imperatives in processing and communication, as well
as emergence of hierarchically organized information networks. Alternatively,
one may attempt to tailor boundary conditions in a deterministic way to
reproduce skewed distributions from equation (1.1) hoping to match natural data
structures. However, such a deterministic approach does not yield understanding
of non-deterministic evolution of data structures, archives and networks.
5. Information in transmission

The transmission of a physical representation of message j at the rate dNj/dt via
a channel with a specific capacity sjk for the particular message j devours free
energy. Although contemporary biotic and electronic information processing
systems consume only little energy per bit in encoding, transmitting and
decoding, even these minute thermodynamic costs (Zurek 1989) in processing
have non-negligible consequences. The rate of entropy increase is the criterion of
natural selection and evolution naturally selects for the maximal energy dispersal
by the most voluminous flows that channel along the steepest gradients in
the free energy landscape (Kaila & Annila 2008). This is also pointed out by the
constructal law (Bejan 1997). We emphasize that the notion of evolution by
natural selection is not limited to biotic systems. For example, increasingly more
effective world-wide communication systems are currently emerging. In this
context, natural selection is often communicated as proportional growth or
preferential attachment (Adamic et al. 2001; Albert & Barabasi 2002), but not
provided directly by the second law of thermodynamics in the scale-independent
formulation (equation (2.2)) to describe evolution of complex networks (figure 1).
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The idea of encoding is to transform the original energy-density representation
of a message to a transmissible energy density. The encoding aims to limit the
flow of physical representations to the maximum transmission rate provided by
the dS/dt-limited channel capacity. To exploit limited capacity more effectively,
data are compressed by removing redundancy. However, the compression is not
without drawbacks because the non-redundant data do not tolerate errors that
may filter in during noisy transmission (Shannon 1948; Shannon & Weaver
1962). Achieving error-free communication is further compromised when a
receiver perceives the degree of redundancy differently from the transmitter.
According to the noisy-channel coding theorem, transmission of a message as a
physical representation over a noisy channel is analogous to the aforementioned
noiseless transmission, as noise is represented in the same way as information
(Shannon 1948; Shannon & Weaver 1962). In the physical picture, the noise is
also an energy density, with typically random fluctuations about the average
energy. Noise infiltration is a consequence of the second law. Communication is
deteriorating when the density-in-energy, representing the encoded message, leaks
from the channel or medium to the surroundings, which is typically lower in density.
By the same token, when the representation of a message as a deviation from kBT is
almost negligible, i.e. close to the noise level, the transmission is unreliable. For
example, high-resolution devices are cooled to reduce the thermal contribution in a
faint signal. Owing to the channel’s physical properties, the typical transmission
band is a skewed distribution and the dispersion relationship of transmission is
sigmoid (figure 5). Its power-law region (linear on a log–log plot) ismost amenable for
transmission. Protected channels, such as bacterial pili, myelinated axons and
shielded cables, enhance isolation from the surrounding densities-in-energy to
ensure transmission by limiting noise infiltration. Likewise, speech is encoded for a
long-distance transmission on an electromagnetic carrier wave, which does not,
Proc. R. Soc. A
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unlike sound waves, couple markedly with surrounding densities-in-energy,
most notably the atmospheric medium, but couples first to electrons of the
receiver antenna.

Encoding for redundancy is also a way to ascertain communication (Shannon
1948; Shannon & Weaver 1962). Since all natural data structures will eventually,
without dissipative maintenance, corrupt towards kBT, the message, or parts of
it, are often encoded redundantly, i.e. in copies of Nj to ascertain the
transmission. For example, bacteria that are exposed to radioactivity maintain
redundant copies of their entire genomes (Hansen 1978; Samoı̆lenko 1983; Cox &
Battista 2005). Apparently, the genetic code is unambiguous and redundant to
secure high fidelity over long periods of deposition, as well as over translation and
transcription (Sonneborn 1965; Woese 1967; Copley et al. 2005). Likewise, words
of natural languages are redundant in letters (Shannon 1948; Shannon & Weaver
1962) to secure communication despite impaired hearing or reading, and data
files are backed up to avoid losses. The problem of optimal coding is a
fundamental one because the second law of thermodynamics, given as the
equation of motion (equation (2.2)), has, in general, no analytical solution.
The fact that there are no invariants of motion (Sharma & Annila 2007) in
communication was already recognized by Shannon in the problem of matching
(Shannon 1948; Shannon & Weaver 1962). Probabilities keep changing during
processing. For example, a message in transmission takes capacity from other
messages. How much is in use depends on the particular message. In terms of
physics, trajectories are non-integrable and the irreversible process associated with
degrees of freedom is non-deterministic. Hence, when the number of messages and
their order in transmission are not known a priori, it is, in general, impossible to
predict the optimal usage of capacity, but algorithms that are able to adapt their
encoding on the basis of statistical analysis of input data streams are expected to
provide the highest transmission rates (MacKay 2003). In practice, the expected
data stream can often be compressed highly efficiently using a frequency-sorted
binary tree (Huffman 1952). Finally, it is of interest to note that the bestmatch of S
at the source to the channel capacity Sc gives transmission efficiency in analogy to
thermodynamic efficiency hZQc/QZTcSc/TS%1. The equality holds only
for reversible transmission, since all other processes are dissipative. However,
reversible transmission is not communication because both the transmitter and the
receiver are sending and acquiring the very same messages that they already
possess. The entropy status of the receiver does not change.
6. The meaning of message

Recently, the difficulty of quantifying meaning and context, two critical aspects
of biological information, has been seen as a major obstacle for developing a
mathematical formalism to describe information in living systems (Corning &
Kline 1998; Gatenby & Frieden 2007). Customarily, the mathematical theory of
communication is considered to be limited to syntax in information. However, as
was pointed out by Weaver, the mathematical theory bears potential for also
addressing semantic questions (Shannon 1948; Shannon & Weaver 1962). Using
the thermodynamic definition for information, the significance of a message is
attributed to the ensuing increase in entropy in the receiver system. The idea to
Proc. R. Soc. A
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quantify meaning by the receiver’s entropy status is, of course, not new as such
(Bennett 1988; Elitzur 1994), but formulated here by the second law as an
equation of motion.

The significance of a message for a receiver system is exemplified by
considering the transmission of an antibiotic resistance gene from one bacterium
to another. Owing to the common genetic code, the standard in communication
using chemically represented information, the received message can be decoded
by transcription and executed by translation to yield functional agents. The
thermodynamic significance of the message is that the newly acquired resistance
allows the bacterium to produce entropy by rapid reduction of energy gradients.
However, if the bacterium happened to have the resistance gene already before
the transmission, the acquired additional copy has less value in retaining the
metabolic state that is quantified by the thermodynamic entropy. Further copies
would contribute less and less to the free energy reduction. Finally, if the
bacterium is never exposed to the particular antibiotic, the corresponding
resistance gene would have no apparent thermodynamic value. In this case, the
piece of information required to raise the particular resistance will eventually be
lost in order to free the associated maintenance to power some other functions
that are potentially more rewarding in terms of dS/dt.

In general, the more a message will increase entropy, the more meaningful it is
for the receiver system. The acquired information will allow the receiver to access
and consume more free energy. A message that does not lead to a marked change
in S is considered indifferent. Obviously a message, such as a viral genome, can
also be harmful for the receiving host system, i.e. lead to decreased dissipation by
curtailing access to the free energy. For the virus system, on the other hand, this
corresponds to increased dissipation and access to free energy. Therefore, the
message, consisting of the host system, is thermodynamically meaningful for
the virus system, which might equally well be considered a receiver. An overall
local ecosystem might also be the receiver. We conclude that the transmitted
syntax obtains its significance in the dissipative process executed by the
particular receiver system. The viewpoint of subjective information interpre-
tation for increased entropy is inherent in the physics of open evolving systems
(Tuisku et al. 2009).

Owing to differences in mechanisms and driving forces between transmitter
and receiver systems, the processing at the two sites differs accordingly.
The discrepancy between the evolutionary course that is anticipated by the
transmitter and that actualized by the receiver causes misunderstandings. When
the transmission capacity and free energy are limited, it may not be possible to
communicate effectively enough to remove all doubts. Therefore, the receiver
system will have no alternatives but to decode transmitted information and
generate understanding by its own mechanisms and driving forces. Generated
data structures by the receiver may not map one-to-one to those instructed by
the source (figure 6). This concept of receiver-biased interpretation is well
understood in communication theory (Dobkin & Pace 2006); here, it is found as a
thermodynamic consequence.

As the thermodynamic theory of communication requires any message to have
a physical representation, the thermodynamic cost of information processing
may be quantified. Channel capacities are often insufficient to maintain incessant
communication to level all density differences. The desire to keep all informed is,
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nevertheless, motivated as it articulates the imperative to diminish any emerging
potential difference as soon as possible by processes that are statistically
independent of each other. Communication is a means of interacting, and
interactions define systems. Frequent interactions diminish density differences
rapidly among the system’s constituents, whereas differences tend to build up
when communication is sporadic among weakly coupled components. Perfect
understanding would mean a state where all potential differences are abolished
by frequent communication. Because the free energy resources are finite, the
state of perfect understanding is difficult to attain. On the other hand, when all
energy is dispersed evenly, there is no free energy and hence no information to be
conveyed among the transmitter and receiver systems that have evolved to
become indistinguishable.
7. Discussion

According to the common contemporary consent, the second law of thermo-
dynamics is perceived to drive disorder. Therefore, it may appear, at first sight,
inconceivable that this universal law could possibly account for the existence and
orderly characteristics of information, as well as for its meaningful content.
However, the second law, or equivalently the principle of increasing entropy,
merely states that differences among energy densities tend to vanish. When the
surrounding energy density is high, the system will evolve towards a stationary
state by increasing its energy content, e.g. by devising orderly machinery for
energy transduction to acquire energy. Accordingly, communication is regarded
in this study, among many other processes, as a way to disperse energy, and
communication systems are viewed, among many other mechanisms, as
machinery for energy transduction. The view of evolving nature as a flattening
energy landscape forms the core of the presented argumentation that
Proc. R. Soc. A
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communication systems are machineries that facilitate rapid dispersal of energy.
Means and methods to communicate are perceived to rise naturally when
surrounding densities-in-energy are high. These conclusions are supported by the
fact that the second law is found to account for the physical representation of
information, characteristics of data structures, imperatives in transmission and
for significance in interpretation.

The strictly material and operational tenet perceives information exclusively
via its physical presentations. The adopted standpoint strikes a contrast with the
mathematical theory of communication, which considers probabilities as mere
numbers that denote relative frequencies of messages and disregards the physical
quantities, referred to as densities-in-energy, that represent information.
Thermodynamic entropy distinguishes states, i.e. distinct representations, from
each other in energetic terms. This is in contrast to the informational entropy
that distinguishes energetically identical configurations on the basis of relative
phases. The configurations may be in the same phase to exhibit orderly coherence
or in different phases to display disordered incoherence. Either way, the
probability is the same (Griffiths 1995; Sharma & Annila 2007; Tuisku et al.
2009); hence, thermodynamic entropy is also the same. The definition of
information via thermodynamic entropy does not anticipate gains in information
processing from quantum computing because changes in computational states
are irrevocably coupled with dissipation. We do recognize that a particular
information processing system may also execute reversible computation (Bennett
1982). However, such a system, corresponding to dS/dtZ0, is closed, i.e. there
are no net fluxes to or from it. Such a computational circuit cannot communicate,
e.g. to deliver answers or take up questions from its surroundings, because all obser-
vations are dissipative processes (Fisher 1935; Brillouin 1960; Tuisku et al. 2009).

Syntax of information, when described by thermodynamics, is associated with
the entropy of the physical representation, and significance of information is
associated with the entropy increase in the receiver system when it executes the
encoded instruction. For example, a microbe may benefit from acquired genetic
information simply by digesting the physical representation or richly by
executing the encoded instruction. A nutrient as such is a high-energy-density
deviation with respect to the surroundings, but it is also a chemotactic signal of
additional free energy for the receiver to consume. Messages are valued by the
entropy increase that is realized by consuming the free energy. The acquired
densities-in-energy that subsequently enable enhanced dissipation beyond mere
combustion of their physical representations are regarded as highly informative.
The thermodynamic analysis thus sheds light on the origin of information and
information-guided processes. Apparently, the immediate value in the free
energy contained in the physical representation transformed during evolution to
instruct an access to even more free energy (Gibson 1966; Swenson & Turvey
1991; Bejan 1997). In addition, the idea that meals are messages has been an
inspiration to many anthropologists (Harris 1979).

The thermodynamic theory of communication is self-consistent by relating all
information generation, transmission and interpretation to the principle of
increasing entropy. Nevertheless, it may be difficult to see that ultimately
all activities do disperse energy. However, without detailed knowledge of all
processes, it follows, from the second law of thermodynamics, that no process
can be driven without free energy and without transduction mechanisms. Energy
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transduction networks organize themselves at all scales in nested hierarchies
to increase the rate of energy dispersal (Annila & Kuismanen 2008). According
to the thermodynamic theory of communication, information networks that
share the same self-similar architecture are no different from other energy
transduction networks. Therefore, skewed distributions and their sigmoid
cumulative curves that are dominated by power-law regimes are also
characteristics of data structures. Moreover, communication standards, such as
alphabet and grammar, became established as means to disperse energy
effectively, just as amino acid chirality consensus emerged as a means to attain
states higher in entropy (Jaakkola et al. 2008a). The definition of information by
thermodynamic entropy is transparent in the description of information-guided
processes. For example, information in an amino acid sequence is, by the
thermodynamic definition, the free energy with respect to the surrounding energy
density. Thus, the quest to diminish free energy directs protein folding towards a
stationary-state partition that depends on the surrounding energy density
(Sharma et al. 2009). Likewise, genetic information is associated with free energy
that directs the development of an organism towards a stationary state in its
specific surroundings. Although these evolutionary trajectories are non-
deterministic, hence unpredictable in detail, the overall course takes towards
the free energy minimum where the driving forces expire.

Generation of information and its subsequent transmission are motivated by an
anticipated increase in energy dispersal that the sender system aims to accomplish
together with the informed receiver systems. Alternatively, the source may signal
to decoy receivers in its surroundings, hoping to continue its own energy
transduction by exploiting the surrounding systems. Importantly, the surround-
ings must be wealthier in total than the system to motivate such behaviour.
Consequently, we reason, on the basis of the theory of evolution by natural
selection founded on thermodynamics, that ultimately all communication aims to
enhance energy transduction to level differences among energy densities. During
continual communication, common coding protocols and other standards will be
established, just as they were and are being established to facilitate energy
transduction by contemporary economic systems. For example, the primordial
world settled for the common genetic code and today the global communication
systems are settling for international Internet protocols.We expect that the overall
course towards the increasingly more integrated global communication system is
also sigmoid, the ubiquitous characteristic of natural processes. The initial phase
was slow, when communication systems struggled to establish common protocols,
basic concepts and language. Now, later, the natural process has gained speed
and is levelling to the state of maturity where all that is new is rapidly distributed.

Undoubtedly, there are many more aspects in the theory of information and
communication than we have been able to address. For example, it seems that
evolution of memes (Dawkins 1976) and their propagation could be rationalized
using the physical representation requisite. Nonetheless, we expect that the
study conveys an obvious but clarifying thought, namely that information is
nothing but physical, to imply that the thermodynamic, rather than the
mathematical, theory accounts for communication.
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