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Abstract – The 2nd law of thermodynamics as an equation of motion is derived from statistical 
physics of open systems. It describes, by the principle of increasing entropy, systems in evolution 
from one state to another, more probable one when energy flows from high to low densities along 
the paths of least action, i.e., geodesics toward the stationary state of free energy minimum in 
respective surroundings. The universal law equates changes in kinetic energy with changes in 
scalar and vector potentials, as is given by equations of basic, continuum and quantum 
mechanics as well as by those of fluid, electro- and thermodynamics. The Law in its scale-
independent form gives holistic understanding of nature in motion with no distinction between 
animate and inanimate. Copyright © 2009 Praise Worthy Prize S.r.l. - All rights reserved. 
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kBT  average energy per particle  
  energy density

2K  kinetic energy  
U  scalar potential  
Q  vector potential 
A  free energy 
S  entropy 

I. Introduction 
The 2nd law of thermodynamics is often praised as the 

supreme among the laws of nature. Yet, the general 
principle is seldom pronounced explicitly in diverse 
disciplines of physics, i.e., in basic, continuum and 
quantum mechanics or in fluid and electrodynamics or 
in optics. Likewise, the Law is rarely related directly to 
other universal imperatives, e.g., to the principle of 
increasing entropy, minimum energy, minimum time, 
least action or to the maximum power principle. It may 
well be that by today physics has submerged to 
specialties that recognize no reason to call for the 
common ground. Nonetheless, the unifying principle is 
valuable in providing holistic view on how nature works.  

In the old days, when natural philosophy was 
diversifying into sciences, the aim was to maintain broad 
oneness, and nowadays too, when sciences are branching 
further, the struggle is to attain unity in each field. In the 
quest for the universal understanding few names stand 
out from the history of science. Louis Moreau de 
Maupertuis struck that both Newton’s laws of motion 
and Fermat’s principle of least time were articulated in 
the principle of least action [1]. His heirs, though, 
thought that it was ambiguous to minimize an adjunct 
momentum-coordinate (geometric) product [2], and 
revised integrand for Lagrangian. Ludwig Boltzmann, in 
turn, in admiration of Darwin came up with the 
astounding idea that nature is in motion toward 
increasingly more probable states. His successors hailed 

the simple theory of complex systems [3] but apparently 
Boltzmann himself remained distressed. The statistical 
theory did not fully comply with the 2nd law but limited 
to closed systems whereas living systems are 
unmistakably open to energy flows from surroundings.  

We will begin this study by re-examining the 
probability notion that Boltzmann placed as the corner 
stone of his statistical mechanics when trying to bridge 
from reversible microscopic phenomena to irreversible 
macroscopic processes following the 2nd law. Boltzmann 
adopted the probability concept from Decartes, Fermat, 
Pascal and others who had computed combinatorial 
possibilities in context of gambling but Boltzmann could 
have also resorted to the posthumous paper [4] of the 
Reverend Thomas Bayes who had considered 
circumstantial possibilities in context of collecting 
information [5]. It turns out that new insights to the 
supreme law of nature are available from these old 
thoughts. Although we fail to present any novel results, 
hopefully it will be found gratifying to recognize that 
some central concepts in diverse disciplines are in fact 
re-expressions of the 2nd law of thermodynamics.   

II. Physical Probability  
Boltzmann enumerated, just as counting pips on dice, 

isoenergetic configurations that are commonly referred 
to as microstates. This invariant, Cartesian probability 
notion is constant in energy and thereby it identifies to 
conserved systems. Hence the statistical theory, by 
founding solely on it, limits to changes in phase of 
stationary systems. In contrast, the Bayesian probability 
varies in energy and thereby it relates to non-conserved 
systems. Hence the statistical theory, by including it, will 
extend to changes in state of evolutionary systems.  
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The distinction between the Cartesian and Bayesian 
probability concepts can be exemplified by examining a 
chemical system. Chemical reactions, like other natural 
processes, direct toward the most probable state, i.e., the 
entropy maximum. That dynamic steady state resides in 
the free energy minimum which depends on surrounding 
conditions as stated by Le Châtelier’s principle [6].  

A chemical system, for example, a reaction mixture 
in a vessel at an organic chemistry laboratory or a 
metabolic network in a living cell may house a myriad of 
molecules. In statistical physics the system is depicted as 
a level diagram where distinguishable molecules occupy 
distinct energy levels (Fig. 1). Reactions bring about 
changes in populations. These transformations from one 
molecular state to another are either absorptive, i.e., 
endergonic or emissive, i.e., exergonic transitions. 
Conversely, configurational swapping of entities at any 
level is isergonic exchange without net influx or efflux.  
 

 
 

Fig. 1. A system is represented by a diagram where distinct j-entities in 
numbers Nj populate levels of energy Gj relative to kBT. The system 
evolves from one state to more probable one by diminishing energy 

differences, i.e., consuming free energy in endergonic Qjk or exergonic  
– Qjk transitions until the steady state is attained in its surroundings. 

 
The probability Pj of a particular molecule, indexed 

by j, depends on its substrates as well as on energy in the 
surroundings that couples to the transformation from 
substrates to the product. When any one vital k-substrate 
is missing entirely (Nk = 0), no jk-synthesis will yield the 
j-product. No j-product will be obtained either when the 
surroundings do not supply any quanta for the endergonic 
reaction or cannot accept any quanta from the exergonic 
reaction. When substrates and energy are available, the 
yield, i.e., Pj will depend on the difference Gjk = Gj – 
Gk between energy Gj of  the  j-product and Gk of its k-
substrate. That difference, given in the exponential form, 
can be bridged by the energy influx Qjk from the 
surroundings that couples orthogonal to the jk-
transition. These circumstantial considerations define 
the conditional probability as [7,8] 

 
 /jk jk BG i Q k T

j k
k

P N e   (1)  

 
where the energy difference – Gjk + i Qjk is relative to 
kBT. The ingredients in Eq. 1 are densities-in-energy k 
= Nkexp(Gk/kBT) as defined by Gibbs [9].  

During the natural process the energy difference 
between the j and k-repositories of energy (fermions) 

that form space by excluding each other, is bridged 
orthogonally, hence denoted by i, by the flux of quanta 

Qjk (bosons) that form the flow of time [8]. In the 
continuum these two forms of energy are referred to as 
the scalar and vector potentials. A gradient of the former 
is the conserved, irrotational part and the latter is the 
non-conserved, rotational part of the force. 

In addition to the circumstantial conditions given by 
Eq. 1 the probability depends, as usual, on the isergonic 
configurations. The k-substrates that are incorporated in 
the j-product as indistinguishable (symmetric) copies are 
numbered by the (stoichiometric) degeneracy gjk. 
Likewise, Nj enumerates indistinguishable j-products. 
These combinations are taken into account by factorials 
to give Pj for a pool of j-products [7,8]  
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And the probability of the entire system P = Pj is 
obtained by considering actions over all levels of 
hierarchy as statistically independent [7,8] 
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The obtained nested (recursive), self-similar formula 
means that each k-substrate is considered as a product of 
some earlier evolutionary processes. For instance, 
elements, that make molecules, are products of nuclear 
reactions in stars. In turn, molecules are substrates for 
cellular assembly, and cells are ingredients for 
individual development, and so on.  

Since thermodynamics pictures everything in terms of 
energy, the scale-independent form (Eq. 2) that was 
derived exemplifying chemical reactions specifically, is 
generally applicable to various natural processes, 
including transport phenomena, like diffusion where 
dissipation is in practice negligible but conceptually 
central. Since it remains impossible to recognize any 
unambiguous border line between animate and inanimate, 
abiotic phenomena are viewed as evolutionary processes 
that are naturally happening as soon as possible. 
Conversely, biotic systems are looked upon as 
undergoing merely time-dependent physical processes 
that are naturally selecting the steepest directional 
descents toward the free energy minimum. As will be 
shown in the subsequent section, the probability P (Eq. 
3) relates to some familiar forms of physics.    

III. Forms of Energy Dispersal 
The  2nd law of thermodynamics is conceptually 

simple. It says, when adopting the words of Carnot [10]: 
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Wherever there exists a difference of energy density, a 
flow of energy can appear to diminish that difference. 
The energy difference is the motive force and the flow of 
energy is motion that naturally selects the fastest ways, 
i.e., the most voluminous steepest descents to level the 
free energy landscape in least time. Thus, when the 
system is evolving from one state to another toward the 
free energy minimum, entropy S = kBlnP,  as  the  
logarithmic, hence additive, probability measure [5], 
will not only be increasing but it will be increasing as 
soon as possible. This principle of least time [11] for 
flows of energy is equivalent to the maximum power 
principle [12] and also, as will become apparent below, 
equal to the maximum entropy production principle [5]. 
The differential equation of motion along an extremum 
path, i.e., geodesic, is known in its integral form as the 
principle of least action [13]. The 2nd law as the equation 
of motion for flows of energy has been given in a variety 
of forms in various branches of physics.  

III.1. Statistical Mechanics 

A system of many bodies allows us to use Stirling’s 
approximation lnNj!  NjlnNj – Nj valid for large Nj to 
simplify the equation of P (Eq. 3) to the additive 
statistical status measure [7,8] 

 

 ln ln 1B B j B j jk B
j j k

S k P k P k N A k T   (4) 

 
where the free energy Ajk = jk – i Qjk, i.e., affinity [14], 
is the motive force that directs the transforming flow 
dNj/dt from Nk to Nj. The logarithmic density difference 
is usually denoted as the scalar (chemical) potential 
difference jk = j – k = kBT(ln j – gjkln k/gjk!). The 
statistical approximation implies that the j-system is able 
to absorb or emit quanta without a marked change in the 
average energy density Ajk/kBT << 1. Otherwise, e.g., 
when a population Nj goes extinct or emerges, the 
particular lnPj is not a sufficient statistic for kBT [15]. 
When an ensemble of entities is not sufficiently tied 
together by mutual interactions to establish common 
kBT, it is not a system, rather surroundings of sufficiently 
statistical systems at a lower level of hierarchy where the 
self-similar equations apply [16,17]. 

When the system is transforming from a state to more 
probable one by consuming Ajk, S is increasing [7,8] 

 
 

,
ln 0t B t t j jk B

j k
d S k P d N A T k L   (5) 

 
Curiously, the flows dtNj and forces Ajk are inseparable 
in L = – dtNjAjk/kBT when there are alternative paths for 
energy dispersal [8,18]. In other words, the open system 
with three or more degrees of freedom is non-
Hamiltonian, and the seemingly simple equation of 

motion tP = LP cannot be solved. The non-conserved 
system has no norm hence there is no unitary 
transformation to yield eigenvalues of the characteristic 
equation. Likewise the equation cannot be integrated to 
a closed form hence open evolutionary trajectories are 
inherently intractable. Finally, when evolution has 
arrived at a stationary state tP = 0, conserved currents 
circulate on closed orbits governed by the symmetry of 
Hamiltonian [19]. These motions can be transformed to 
a standstill, time-independent frame.   

The principle of increasing entropy is equivalent to 
the conservation in the flows energy [7,8] 
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t t j jk t j jk jk
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found from Eq. 5 by multiplying with T. When Ajk > 0 (< 
0), the j-system is higher (lower) in energy than its 
surroundings and dtNj < 0 (> 0) will diminish that 
difference. Thus, the free energy minimum state is 
Lyapunov-stable S( Nj) < 0, dtS( Nj) > 0 against 
perturbations Nj [20]. The influx to the system must 
match exactly the efflux from its surroundings. 
Therefore, there is no justification for the common 
caveat put against the 2nd law that entropy of a biotic 
system would be decreasing at the expense of increasing 
entropy in its abiotic surroundings. That statement 
violates the conservation of energy. However, it is 
possible, though statistically unlikely, that energy would 
be  flowing  up  against  gradients  and  entropy  both  of  a  
system and its surroundings would be decreasing. 
 A population change in a statistical system is 
proportional to Ajk by a conductance jk [7,8]  

 
 t j jk jk B

k
d N A k T   (7) 

 
to satisfy the conservation of energy across jk-interfaces. 
However, anyone jk is not necessarily invariant because 
the conducting mechanism is a system of its own that 
may evolve further to facilitate the flow. Also entirely 
new transduction mechanisms may emerge when the 
energy influx incorporates into the system’s constituents. 
Likewise, old mechanisms will face extinction when the 
flows redirect and abandon them.     

III.2. Basic and Continuum Mechanics 

In continuum the discrete change – dtNj jk in the 
chemical potential is considered as the continuous 
directional derivate –vx xU of the scalar (internal) 
potential U and the quantized flux dtNj Qjk as  the  
continuous temporal gradient tQ of the vector (external) 
potential Q. Likewise, the change TdtS is  recognized as  
the change dt2K in the kinetic energy. This equivalence 
is apparent, e.g., from the maximum entropy partition of 
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gas whose internal energy U matches pressure p in  a  
volume V. At a steady state TS = NjkBT = pV = F·dx = 

tp·v = 2K = –U. The continuum flow balance (Eq. 6) is  
 

 
, ,

2t x x t x
x y z

d K v U i Q   (8) 

 
so  that  a  change  in  2K balances changes in U and Q. 
The evolving system spirals along an open trajectory due 
to the action over a time-interval dt to satisfy the 
conservation 2K + U = Q. Conversely, the stationary 
system stays on a closed orbit over the period to satisfy 
2K + U = Q  = 0 which is the familiar virial theorem.  

The continuum equation (Eq. 8) is also available from 
the Newton’s 2nd law of motion F = dp/dt when taking a 
product with v and using the famous relation in the 
differential form dm = dE/c2 = dQ/v2. The 2nd law as the 
equation motion in Cartesian components j,k = {x,y,z}  

 

 , , ,

, , ,
2

j

j jk j jk k j t jk k
j k j k j k

t jk j x jk t jk
j k j k j k

v F v m a i v m v

d K v U i Q
  (9) 

 
says that the change in 2Kjk = vjmjkvk equals the changes 
in Ujk and Qjk. The force is composed of the irrotational 
gradient – xjUjk = mjkak that is defined, as usual, for the 
Cartesian combinations and of the divergence-free field, 
i.e., the gradient of the vector potential which dissipates 

tQjk = vk tmjk)vj (Fig. 2). Dissipation stems from the 
changes in the mass given by the energy equivalent 
dmjkc2 = dEjk = n2dQjk that can be radiated in the 
respective surroundings defined by the isotropic index of 
refraction n = c/v. The mass change is often ignored but 
it signifies the changes in interactions when the system 
evolves from one state to another. Thus, the mass is 
understood by E = mc2 only  as  a  convenient  way  to  
denote a stationary system’s the total energy content that 
can be radiated to the surroundings.  
 

 
 

Fig. 2. (a) Force F as the change in momentum dtp = dt(mv) is a resultant 
of conserved ma and non-conserved v tm parts that bring about a change 

in state from x0 to x1. (b) The corresponding balance for the flows of 
energy equates the change dt2K with the change – tU and tQ. 

 
Change in energy density is the hallmark of evolving 

systems but the lack of norm renders evolutionary 
trajectories non-integrable. For this reason Eq. 9, known 
also as Cauchy momentum equation or in fluid dynamics 

as Navier-Stokes equation does not have solution when 
there are three or more degrees of freedom [21].   

III.3. Quantum Mechanics 

A system that is not sufficiently statistical to accept or 
discard quanta without a marked change in kBT, is 
referred to as microscopic. It is characterized by P = 

* dx =  as a sum over densities-in-energy, just 
as P is a measure of the macroscopic system (Eq. 3), but 
since the microscopic system is perturbed by mere 
observation, dynamic densities are denoted by the wave 
function (x,t) and its complex conjugate orbiting in the 
opposite sense. At the most probable state Pmax, i.e., at 
the steady state the spatial U and temporal iQ 
components of A balance over the period of integration 
so that e–A/kBT = e–(U–iQ)/kBT = 1. During dt the density 
moves t  = L̂  by the operator L̂  whose expectation 
value is the force L = L̂  = – tA/kBT. Likewise, the 
complex conjugate moves t  =  – †L̂  by the adjoint 
operator (Fig. 3). When expanding  = ck k  in a basis 
k  of the unit operator P̂ = k k , the equation of 
motion [8,22] 

 

 
†

†

ˆ ˆ

ˆ ˆ ˆ ˆ 2

t t t

t

P L L

LP PL LP
  (10) 

 
describes transition of state driven by L. The system is 
stepping from one stationary orbit to another by 
emission or absorption. Concomitantly the phase of 
precession relative to the detector is changing t  = 

t  – t . Free energy is consumed along the 
directional action denoted by the momentum-coordinate 
(geometric) product. The non-Abelian characteristic is 
also embedded in the commutation relation [ ,  ] = –i . 
When net dissipation vanishes Q̂  = 0, the system 
arrives at the stationary state tP = 0 where the operator 
is unitary. In the Hamiltonian system only the phase 
precession prevails among the energetically equivalent 
configurations (microstates) at a constant rate, i.e., t t 
=  relative to the frame of detection. 

 Interference effects arise from phase-coherent 
motions, well-known from Aharanov-Bohm experiment 
[23], where a geometric phase difference [24]  = a – 

b develops between the flows of energy via distinct 
paths a and b through differing densities. A change tAjk 
 0, will change the path length and so will the 

diffraction pattern also change t  0. 
The  2nd law emphasizes that the detection transforms 

the system via the energy transduction that is inherent in 
any observation [22]. A macroscopic system does not 
mind much but P of the microscopic system will jump 
when the detection forces an abrupt change in its status, 
and the ensuing evolutionary step may appear as 
incomprehensible trajectory [25,26]. 

 

p̂ x̂
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Fig. 3. (a) The energy density of a microscopic system is represented by 
(x,t) and its counter rotating complex conjugate (x,t) that contain the 

spatial x scalar and temporal t vector potentials. (b) At a stationary state 
there are no net fluxes between the system and its surroundings, hence tP 
= t  = 0. Conversely, detection induces transduction of energy from 
the system to the surroundings or vice versa depending on the phase of the 

system’s motions relative to the detector frame.  

III.4. Electrodynamics 

The  2nd law as the equation of motion for flows of 
energy is in electrodynamics known as Poynting’s 
theorem. It is customarily derived from Maxwell’s 
equations. Alternatively, one may obtaining it by 
starting from the definition of electric field E =  –  – 

tA due to the scalar  and vector A potential gradients. 
The force density f = E is equivalent to the Newton’s 
2nd law of motion (Eq. 9). Thus when multiplying with v 
(cf. Eq. 8), the familiar form [8,27] 

  
1

t tuJ E v v E A E B   (11) 
 
is obtained where the definition of current J = v and 
the identity tA = v ·A = –v× ×A = –v×B have been 
used. In electrodynamics the 2nd law says that charge 
density  moves along the field lines of E with velocity v 
by consuming the scalar density u =  and dissipating 
light orthogonally (Fig. 4). 
 

 
 

Fig. 4. (a) Kinetic energy flow as a charged density e moving at velocity 
v in an electric field E is balanced by the changing scalar potential e / t 

and the perpendicularly dissipated light c2 (E B). (b) When light 
propagates in a homogenous medium without sources and sinks E = 0, 

the oscillating t  balances the divergence of vector potential c2 A 
according to the Lorenz gauge. Energy is conserved in frequency shift 
when light refracts at a density boundary specified by indexes nk

2 > nj
2 

relative to the universal reference no
2 = c2

o o = 1.  
 
In a medium without sources and sinks, e.g., in the 

vacuum density, Eq. 11 yields by the steady-state 
condition of constant t2K the Lorenz gauge o o t  + 

·A = 0. Conversely, Eq. 8 delivers by the maximal-rate 
condition t

22K = 0 the familiar wave equation t
2  = 

v2 2 . For example, when is crossing from a medium to 
a higher density of the refraction index n2 = c2/v2, energy 
is conserved t  + n2 ·A = 0 along the path of least 
action, i.e., Fermat’s principle of least time and light is 
refracting according to Snell’s law. 

III.5. Field Equations 

 The  2nd law of thermodynamics, when given as an 
equation of motion (Eq. 8), pictures by its directional 
spatial and temporal derivates the system as a curved 
energy landscape in evolution toward a stationary state 
evenness. The spatial densities are tied together to an 
affine manifold by flows of energy in mutual 
interactions. The evolving landscape is described in 
differential geometry by a non-vanishing Lie’s derivative 
[28]. Evolution is non-commutative because the flows 
direct from heights to lows. The force is not collinear 
with the spatial (conserved) gradient – U but departs by 
the temporal (non-conserved) part tQ. In plain 
language a river, as it flows, is eroding its gorge.     

The curved, non-Euclidean landscape can be 
approximated over a short spatial dx and  over  a  short  
temporal dt coordinate  by  a  short  path  ds on  a  slanted,  
Euclidean plane (Fig. 5). The L2-norm ||ds||2 = ds*ds is 
given by the familiar Lorentzian metric dx2 = ds2 – c2dt2 
[29]. Thus the Lorentz transformation is recognized as 
an expression for the conservation of energy about a 
small space-time locus.  
   

 
 

Fig. 5. (a) The free energy landscape is curved about a space-time locus 
(x, t) between x0 and x1 when the opposite spatial and temporal gradients 

are of unequal lengths. The difference forces evolution as a tangential 
flow of energy toward a steady, even landscape. (b) In a neighborhood 
(dx,dt) of the locus (x,t), the manifold can be regarded as Euclidean.  

 
When the evolving, differentiable manifold (Eq. 8) is 

written in the form of a field equation, the spatial x and 
temporal t gradients are given as the 4-vector  
 
 / , / , , ,t t x y zc c  (12) 

 
that acts on U and Q,  also  given  as  the  free  energy  4-
vector in the one-form space-time basis  
 
 , , , , .x y zA U U Q Q QQ  (13) 
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The curvature in the two-form F = dA is represented by 
the covariant antisymmetric rank 2 tensor  
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0

0

0
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z y x

F F F

F R R
F A A

F R R

F R R
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where dtp = F = – U + tQ/c and R =   Q. The 
invariants F F  = 2(F2 – R2) and F F  = 4F  R and 

F F  = 2(F2 + R2) contain the continuity in tp, i.e., 
F and in the change in angular momentum dtL, i.e., 
torque . When the system is stationary without sources 
and  sinks  ( 2U = 0),  there  is  no  curvature.  This  
particular condition dF = 0 of the flat landscape yields 
the Maxwell’s equations for light propagating in a 
homogenous medium, i.e., the Lorenz gauge, A  =  0.  
Likewise, when the system is closed (dm = 0), the law of 
motion tv = – U governs  the  body  with  mass  m on 
the least-action orbit p   = ma.  

The open, evolving system as the manifold in motion, 
is represented by dt2K  equal to 

  

 

0

0

0

0

x x y y z z

t x y z z y

t y x z z x

t z x y y x

v U v U v U

Q v R v R
F v

Q v R v R

Q v R v R
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where the 4-vector velocity v  = (–c, vx, vy, vz). The 
tensor contracts to the 0-form dt2K = dt2K  = –v  U + 

tQ + v  R. The overall change in 2K balances changes 
in U due to matter in motion and changes in Q due  to  
radiation. When the system communicates with its 
surroundings exclusively via radiation, Eq. 15 is familiar 
from electrodynamics. Conversely, when the system is 
stationary over the period when to-and-fro flows vanish 
so that tQ + v  R = 0 and the stable orbits are governed 
by t2K + v  U = 0 which is integrable to the virial 
theorem 2K + U = 0.  

IV. Conclusion 
The  2nd law of thermodynamics, when given as the 

equation of motion for the flows of energy, is recognized 
in many familiar formulas of physics – as it should be 
for being the supreme law of nature. However, it has 
perhaps remained obscure that the holistic view of 
nature describes non-conserved systems in evolution 
along open and hence non-deterministic and even 
chaotic trajectories. This is in contrast to the reductionist 
account on conserved systems orbiting along closed, 
modular and hence deterministic tracks. Despite that the 
equation of evolution possesses no precise predictive 
power,  the  2nd law delineates dispersal of energy along 

the steepest directional descents, equivalent to the paths 
of least time. This imperative imposes common 
characteristics and patterns of nature. It allows us to 
realize that numerous nested natural networks [30], such 
as organisms [31], ecosystems [32], economies [33] and 
communication systems [34] emerge and evolve to 
provide the paths of least action for the maximal 
dispersal of energy [13]. The 2nd law underlies also the 
ubiquitous standards [35], skewed distributions [36], 
such as populations of animals and plants, income 
partitions and gene lengths [37], and their sigmoid 
cumulative curves that are on log-log plots mostly power 
laws [38]. The characteristic intractability of natural 
processes is apparent, e.g., in protein folding [39] and 
ecological succession [40] just as it is in the three-body 
problem. 

The  2nd law, since so central, is known besides 
physics in other disciplines but qualitatively and 
descriptively. The theory of evolution by natural 
selection has for long been regarded as an articulation of 
the 2nd law [41] but its firm connection has surfaced only 
recently from the statistical physics of open systems. The 
imperatives of evolution have also been recognized in 
socio-economic contexts [42,43] to alert us from what 
we are. 
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