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A course of a game is formulated as a physical process that will consume free energy in the least time.
Accordingly, the rate of entropy increase is the payoff function that will subsume all forms of free energy
that motivate diverse decisions. Also other concepts of game theory are related to their profound physical
counterparts. When the physical portrayal of behavior is mathematically analyzed, the course of a game
is found to be inherently unpredictable because each move affects motives in the future. Despite the
non-holonomic character of the natural process, the objective of consuming free energy in the least time
will direct an extensive-form game toward a Lyapunov-stable point that satisfies the minimax theorem.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

When John von Neumann formulated game theory as a math-
ematical model of human behavior, he drew inspiration from the
behavior of thermodynamic systems [1]. Also when John Nash ex-
panded the theory with a solution concept for two or more play-
ers, he had in mind the chemical equilibrium of many substances
[2]. Today applications of game theory extend from descriptions of
biochemical and biophysical processes [3] to accounts of impres-
sive breadth of phenomena, most notably in economics [4], biology
[5] and social sciences [6,7] as well as in engineering [8], computer
and information sciences [9]. Therefore, could it be, just as the two
pioneers envisioned, that there is after all a profound correspon-
dence and not only a mere resemblance between human behavior
and physical processes? In this study we consider the possibility
that behavior is governed by the same universal law that directs
natural processes.

The common, basic structure of games, i.e. to optimize payoff,
implies there is some universal principle underlying the behavior
of systems. On the other hand, there are many types of games,
each tailored to model outcomes of specific strategic situations. In
particular there is no consensus about a universal payoff function,
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denoted πi(s) for a strategy profile s = (s1, . . . , si), whose maxi-
mization, i.e., payoff πi(s∗) for the optimal strategy s∗ , would cover
all incentives of player i in competition with other players −i. The
difficulty in formulating a universal theory of games that would
encompass diverse disciplines seems to relate to what exactly be-
havior aims to maximize. In fact, when considering the variety of
circumstances that are confronted during various decision making
processes, it may appear inconceivable that there could be a uni-
versal payoff function.

In economics the payoffs are customarily summed up simply
as ‘money’, or when all other desirables are included, the payoff
is referred to as ‘utility’ ui(s) or ‘expected utility’ Ei(s). On the
other hand, utility is an elusive concept, which makes it difficult
to assign realistic numerical payoff values. Thus, it seems problem-
atic to find an accurate and quantitative formulation for all motive
forces that underlie behavior. Moreover, when considering payoffs,
an individual (referred to as a player) appears at times to act ir-
rationally. For example, sometimes the player seems to settle for
a suboptimal personal payoff depending on other players’ actions,
even when considered from the perspective of optimizing payoff
over multiple sequential games [10]. Also, players may seem to act
inconsistently with respect to their past actions, sometimes almost
‘for the sake of it’. These perplexing findings have been addressed
with bounded rationality [11]. Undoubtedly, the rationality of an
individual is limited by available information, cognitive and other
capabilities as well as by the available amount of time to make
a decision. Nevertheless, it remains difficult to understand what
exactly underlies the variation of behavior. While a consensus is
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still lacking, the discussion may benefit from the ideas offered
herein.

In evolutionary biology, the choice of payoff is also recognized
as crucial when attempting to model behavior realistically. The
payoff is often equated with fitness, but there is no generally ac-
cepted way to quantify fitness [12]. Likewise, there is no unam-
biguous way to quantify utility. Depending on the situation, either
reproduction rates or steady-state population densities could be
used, but these may lead to different outcomes [3]. Nevertheless,
in the context of behavioral ecology, an important breakthrough
was made when natural selection was recognized as the profound
principle that prevents alternative strategies from invading a pop-
ulation when it is practicing an evolutionarily stable strategy [13].

In this Letter we will re-inspect the theory of games from the
physical perspective using the second law of thermodynamics. The
intention here is not to present a new model or to improve on
game theoretical models. Instead, the aim is to relate game theo-
retical concepts to their fundamental physical counterparts. In this
way, it will become apparent that game theory is successful in
modeling the behavior of various kinds of systems because be-
havior itself is a natural process that is governed by a universal
principle. Our undertaking, despite paralleling the original ideas
of von Neumann and Nash, is inspired by the recent derivation
of the principle of increasing entropy as an equation of motion
from the statistical physics of open systems [14]. The revised sta-
tistical theory describes various natural processes, both inanimate
and animate, including behavior of biological, economic and cul-
tural systems within their respective surroundings [15–23]. These
systems at various levels of nature’s hierarchy display power-laws
and skewed, nearly log-normal distributions which are character-
istics of the least-time consumption of free energy [24,25]. This
observation leads us to propose that the behavior of many sys-
tems, including decision-making processes, could be described as
natural processes so that entropy is the universal payoff function.

2. The progress of a game as a natural process

The theory of games, as it was formulated by von Neumann, is
based on thermodynamic theory which, in turn, follows from sta-
tistical mechanics. When depicting behavior as a physical process
directed by various incentives, it was not strange for von Neumann,
as a physicist, to compare all exchangeable entities, i.e., assets,
in terms of energy and to relate any asset to the average energy
density per entity kB T in the thermodynamic system. It was only
when applying the thermodynamic formula to complex practical
systems that von Neumann, in collaboration with economist Os-
kar Morgenstern, abandoned the aim of mapping a physical system
to an economical system one-to-one [1]. With the announcement
that money will serve as the payoff, von Neumann and Morgen-
stern were deeply aware of the limitations caused by the adopted
approximation, but could not do better.

Likewise, when Nash formulated the equilibrium concept that
carries his name, he adopted the notion of chemical equilibrium
from Gibbs [26]. However, Nash did not aim to make a one-to-one
mapping of mathematical variables to energy densities of chemical
compounds, though he did recognize the resemblance. Nonetheless
it is common, especially in economics [27], to see an analogy be-
tween the progress of a chemical reaction toward thermodynamic
equilibrium and the progress of a game toward a Nash equilibrium.
The similarities between mathematical models and physical real-
izations may be even more apparent in evolutionary game theory
where mixed strategies si are commonly interpreted as portions
of a population expressing a specific behavior. According to this
interpretation, suggested by Nash [28], population densities keep
changing, just like reactant concentrations, until a stable point is
reached. The steady state of an actual ecosystem depends on sur-
rounding conditions, just as the chemical equilibrium is a function
of temperature according to Le Chatelier’s principle [29]. For ex-
ample, the species-area relationship reveals that species diversity
depends on the size of available land area in accordance with ther-
modynamics [15]. The stability of a solution condition may also be
lost when a new strategy emerges, corresponding to an addition
of a new agent, be it a reagent or a catalyst, into a chemical reac-
tion mixture. Likewise, the stationary point may shift when a new
species is introduced into an ecosystem. For example, when Spar-
rows were introduced in New Zealand to control insects preying
upon introduced grain crops, they displaced native birds. The new
species, with its characteristic behavior, may use resources more
effectively than its predecessors or even use resources that were
not available to the native species. At these critical events [30], also
known as bifurcations [31], the old, inferior strategies give way to
new, superior strategies as the system evolves further.

Since von Neumann and Nash, the studies of human behavior
in various controlled circumstances, or games, have given rise to
stricter as well as broader solution concepts to classify equilib-
ria. In order to model various situations, different kinds of games
have been formulated. For example, in the basic zero-sum game
the players exchange assets with each other, whereas in a non-
zero-sum game they also compete for external resources. In ther-
modynamic terms, the former variant of the general theme cor-
responds to a closed and fixed energy ensemble that behaves as
a Hamiltonian system [32], whereas the latter corresponds to an
open system that acquires energy from its surroundings. A game
is called non-generic if a small change to one of the payoffs may
remove or add a Nash equilibrium. In terms of thermodynamics,
this means that such a system is not sufficiently statistical. For ex-
ample, a corresponding extensive-form game will progress further
when a player with a new strategy gains access to additional assets
from the exterior. This will increase the total payoff by extending
the boundaries of the game. In the same way, a non-Hamiltonian
thermodynamic system will evolve further when a new reaction
component or mechanism gains access to additional free energy.
This path-dependent process will increase entropy which is equiv-
alent to decrease in free energy, according to the basic maxim of
chemical thermodynamics.

In the quest for a universal theory of games, it is of inter-
est that evolutionary game theory demonstrates scale-independent
forms of games [33]. It is successful in explaining various ecolog-
ical scenarios where populations compete with each other in the
same way as individuals. Moreover, evolutionarily stable strategies
of population games and the Nash equilibria of decision-making
games usually coincide. These examples of scale-free games im-
ply that sentient populations and inanimate processes are basically
alike and operate under a common imperative, only at different
scales. Yet there has been much debate about what exactly the
players, whether molecules, cells, individuals or populations, aim
at maximizing. It seems that a profound principle is required in or-
der to formulate the theory of games to have a common universal
payoff function. Here this possibility is examined using statistical
physics of open systems.

3. Thermodynamic formulation of behavior

The theory of games as it was formulated by von Neumann
and expanded by Nash is founded on Boltzmann’s astounding idea
that nature is in motion toward increasingly more probable states.
Boltzmann adopted the probability concept from Descartes, Fer-
mat, Pascal and others who had computed combinatorial possi-
bilities in the context of gambling. However, he could have also
resorted to the posthumous paper [34] by the Reverend Bayes who
had considered circumstantial possibilities in the context of col-
lecting information [35]. It turns out that new insight into behavior
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and the payoff function can be obtained from a re-examination of
the probability concept that Boltzmann placed as the cornerstone
of his statistical mechanics.

Boltzmann enumerated, just like counting pips on dice, the
isoenergetic configurations that are commonly referred to as mi-
crostates. This invariant, i.e. Cartesian, probability notion is con-
stant in energy and thereby corresponds to stationary systems.
Hence the statistical theory, which is founded solely upon this, is
limited to changes in configurations of conserved systems. In con-
trast, the Bayesian probability P varies due to changes in energetic
conditions, and thereby relates to evolutionary systems. Hence the
statistical theory, based on the conditional probability notion, de-
scribes state changes of non-conserved systems. The equation of
motion for an evolving system expresses the principle of increas-
ing entropy

dt S = kBdt ln P = −
∑

j,k

dt N j A jk/T = kB L � 0 (1)

where the free energy term A jk = �μ jk − i�Q jk contains the
(scalar) potential differences �μ jk = μ j − ∑

μk and i�Q jk is
the energy influx from the surroundings to the open system. The
rate of entropy increase dt S is the payoff function that values the
outcomes of various jk-transactions where k-assets of players are
transformed to j-assets of other players (and vice versa). For ex-
ample, when a player uses money in his possession to buy goods
from another, his actions will bring about changes dt N j in his j-
assets as well as changes dt Nk in the k-assets of the other player.
Not only money and goods are rated by energy differentials but
literally everything can be valued in terms of energy differentials.
Therefore the holistic formalism is able to describe the behavior of
complex systems just as it can describe simple systems. The quest
to consume free energy in least time is ubiquitous and indepen-
dent of mechanisms.

The overall sequence of transactions, referred to as the course
of a game, advances move-by-move when the free energy A jk =
�μ jk − i�Q jk is consumed. The term �μ jk = μ j − ∑

μk denotes
differences in the assets where μ j = kB T ln[N j exp(G j/kB T )] is a
function of the number N j and value G j of the j-asset. When the
driving force contains only these scalar potential differences, the
system is closed to net flows of energy from its surroundings. In
the corresponding zero-sum game the transactions between play-
ers bring about merely an exchange of assets but the total status
over all players remains invariant. The invariant nature of zero-sum
games is stated by the minimax theorem [36]. The energy influx
term i�Q jk denotes flows of assets from the surroundings to an
open, extensive-form game. It distinguishes the statistical physics
of open systems from the conventional formalism used by Boltz-
mann and many others since. The influx, which is often equated
with income, is incorporated in the assets by the players’ actions.
Conversely, a player may lose his assets to the others as well as to
the surroundings by making misfortunate moves.

A move by a player will cause a change in assets. The rate of
change is proportional to the driving force A jk by the coefficient
σ jk [15]

dt N j = −
∑

k

σ jk A jk/kB T . (2)

When A jk < 0, the jk-transaction will increase dt N j > 0, and vice
versa. The particular functional form in Eq. (2) ensures that con-
servation of energy is satisfied in every move [14]. When Eq. (2)
is inserted in Eq. (1), entropy is found to increase almost every-
where dt S � 0 because each square A2

jk � 0. This is the principle
of increasing entropy.

The proportionality coefficient σ jk represents a particular mech-
anism that channels the jk-transaction. For example, a more effec-
tive means of trading will bring about faster changes in the assets.
The rate is not immaterial because the driving force (A jk) is, in
turn, a function of assets (μ j). In other words, behavior and its
motives are inseparable from each other in the thermodynamic
formulation. Indeed, it is witnessed that when stakes are raised,
behavior will change. For example, in the well-known ultimatum
game the probability of rejecting a share, whether fair or unfair,
will decrease when the absolute amount offered increases [37].
However, in classical game theory the amount of assets in players’
possession is customarily ignored.

According to the physical portrayal of games, more effective
mechanisms are favored by the transactions themselves as they al-
low for a faster maximization of entropy. The quest to increase
entropy in the least time is known as the maximum entropy pro-
duction principle [38]. According to the adopted self-similar ther-
modynamic formalism, a game itself is also a mechanism that may
evolve further to facilitate the overall consumption of free energy.
In other words, there are games being played within games, in
accordance with hierarchical system theory [39]. For example, be-
havior of an individual animal can be viewed as a game that is part
of behavior of a herd that can be viewed as a game among other
herds. Likewise, the behavior of a citizen amongst others can be re-
garded as a game that ultimately also contributes to international
relations that, in turn, can be regarded as a game among nations.
In the quest for the maximal dispersal of energy, the systems will
form a coalition, i.e., a larger system that is more effective at ac-
quiring and consuming free energy and distributing the acquired
flows among its constituent systems [40]. This is to say that the
thermodynamic formulation is scale independent, and therefore
there is no need to introduce different models to account for be-
havior at different levels of hierarchy.

Moreover, the functional form of dt S in Eq. (1) implies that the
particular possessions of a player affect not only his or her de-
cisions but those of others as well. The product form of Eq. (1)
states that actions (dt N) are inseparable from possessions (A jk).
This interdependency is the source of unpredictability when an
open, extensive-form game is played by three or more parties [41].
The courses of non-deterministic games vary and they do not nec-
essarily end up with the same outcome, because a move at any
stage depends on past moves and conversely restricts the future
choice of moves (Fig. 1). At the branching points, to be precise, the
derivate dt S (Eq. (1)) is inexact. In terms of physics the game is
a non-Hamiltonian system with three or more degrees of freedom
where the values of driving forces and energy flows are insepa-
rable [14,42]. This thermodynamic interdependency between flows
of energy and the free energy that drives all other flows underlies
the interdependency between the strategy si and its complement,
s−i , the strategies played by all other players. In other words, the
thermodynamic theory gives the reason why the decision made by
a player is dependent on the decisions of other players, which, in
turn, are dependent on the first player’s decision. In fact repeatedly
changing conditions may drive repeated changes of strategies. For
example, prey animals may keep altering their behavior in order to
prevent their predator from learning particular patterns [43]. Like-
wise, it has been shown that in a well studied game, the iterated
continuous prisoner’s dilemma, no strategy is evolutionarily stable
[44]. Moreover, the intractability of extensive-form games is un-
derstood as an inherent characteristic of open systems. Owing to
the net influx or efflux of energy to or from the system, there is
no norm and hence no unitary transformation either to obtain a
solution or to predict the trajectory toward the solution concept.
Even a minor move will perturb the energy content of the system
and hence affect the future course. This is characteristic of chaotic
games [45]. The sequence of moves, i.e., kinetics is, instead of us-
ing Eq. (2), often modeled by the deterministic law of mass action
[46], but then thermodynamics and kinetics become incompatible
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Fig. 1. Extensive-form game branching on the left side is depicted on the right side
as a natural process that brings about changes in diverse assets, indicated by the
solids, that correspond to populations N j on energy levels G j . Move by move, as
denoted by arrows in the sequence of state changes (A–D), the payoff function as
entropy will increase until a solution concept corresponding to a stationary state
of free energy minimum has been attained. This maximum entropy partition as a
thermodynamic steady state is an evolutionary stable solution concept where the
net dissipation (wavy arrows) vanishes. No move is able to bring more assets, i.e.,
energy to the process that settles to the evolutionary stable state.

with each other [14]. Alternatively, a non-holonomic sequence of
moves is modeled as a Markov chain [47]. However, even when
present probabilities depend on the past, the probabilities are not
understood as physical.

At any given time the game, described as a natural process, can
be assigned with the additive logarithmic status measure known
as entropy [14]

S = kB ln P = kB ln
∏

j

P j ≈ kB

∑
j

N j

(
1 −

∑
k

A jk/kB T

)
(3)

over the product of probabilities P j . Entropy will increase toward
the steady state value Smax where all free energy terms A jk = 0.
In this case no strategy, i.e., no choice of jk-moves can be found
by any player to improve the distribution of assets N j among the
players or to acquire more assets from the surroundings. Custom-
arily, the optimal behavior is referred to as the evolutionary stable
strategy (ESS). The free energy minimum state can be proven a
stable point against perturbations δN j using Eqs. (1) and (3) in
the Lyapunov criteria S(δN j) < 0 and dt S(δN j)/dt > 0 [48,49]. In
other words, there is no action that could improve the status and
no strategy that any player could play that would return a higher
payoff, given all the strategies played by the other players.

The steady-state partition of assets is given by the condition
dt S = 0 which yields from Eq. (1)

N j =
∏

k

Nke−(�G jk−i�Q jk)/kB T . (4)

This is the condition of reaction equilibrium [29]. The dispersal of
assets at the free energy minimum is a skewed, nearly log-normal
distribution [24]. Indeed, studies of behavior in multiplayer games
reveal that when the strategies of individuals evolve, the game will
end up in a stationary state in which a few players have gathered
large assets, most players have settled for moderate assets and only
a few players have very few assets. Both the maximum and the
amount of skew for a specific situation depend on the overall en-
ergy content of the system (Fig. 1). This skewed form is familiar
from the distributions of ecosystems [50] and economic systems
[51] and from partitions of elementary chemical and physical sys-
tems [52].

The optimal distribution given by Eq. (4) is the result of a nat-
ural process just as it is the outcome of an extensive-form game.
However, it is worth emphasizing that at the steady state there are
no net fluxes to or from the systems. Then the players’ total assets
at a particular solution concept are no longer changing. This paral-
lels the fixed-energy condition of stationary systems. It means that
even though the outcomes of repeated games differ, each of them
is a feasible solution concept, i.e., the minimax condition [1] just
as in a zero-sum game it is satisfied for all players. Also, the proof
of the folk theorem [2] rests on the invariant nature of an outcome
[53].

4. Motives of behavior

Is it reasonable, as we argued above, to equate incentives of
behavior with the imperative to increase entropy? Would not the
association of animate actions with the physical principle of de-
creasing free energy remove all degrees of freedom from behavior?
These and other concerns about the use of rate of entropy increase
as the universal payoff function deserve to be addressed.

According to the naturalistic tenet, behavior is, just like any
other natural process, confined by free energy because a more gen-
erous stance would violate the conservation of energy. In other
words, free energy sums up by kB T

∑
N j all resources that the

agent has in his possession, and by
∑

N j A j those that are still
free, i.e., available to him. Beyond that no one can act. The supe-
rior role of surroundings in curtailing free energy is apparent, for
example, from actions that a social system is able to take toward
its subordinate individuals. In contrast an individual, even a rich
one, rarely has enough power to act against society for any signif-
icant periods of time. The thermodynamic formalism of behavior
as an energy transduction process indexes all available pathways,
but there is the natural bias for the best path, known also as a
geodesic, that will diminish free energy as soon as possible [24,54].
Staying on an optimal trajectory requires that alternative pathways
are incessantly evaluated and when found more effective in the
free energy reduction, the course of behavior will be redirected.
In other words the game is changing as it is played. Thus, as a
non-holonomic process, behavior cannot be reduced to a precisely
predictable sequence of acts.

The rate of entropy increase in the least time (Eq. (1)) as the
motive of behavior measures all available sources of free energy
(A jk) weighted by rates of their consumption (dt N j). In this sense
entropy, just like utility, considers numerous variables that influ-
ence behavior. However, since the rate of entropy increase eval-
uates everything in terms of energy, it will make all motives of
behavior commensurable with each other. In practice, though, it
may be difficult to accurately assign an energetic value to every
option, but in a statistical sense the behavior itself reveals the
current value of a strategy. One may nevertheless question, how
could the payoff function possibly sum up all motives of behavior?
After all, many motives appear conflicting and even incommensu-
rable with each other. Since according to physics everything can
be expressed in terms of energy, the answer is yes, but only in the
statistical sense. The statistical notion is applicable when any one
move will not change the course of game too much. In physical
terms, the condition is valid when the consumption of A jk is small
in comparison to the average energy content in the system kB T .



J. Anttila, A. Annila / Physics Letters A 375 (2011) 3755–3761 3759
However, events where A jk ≈ kB T , may be infrequent, but they do
happen. This long-tail trait of a probability distribution is charac-
teristic of natural processes [55]. When S = kB ln P (Eq. (3)) is not
a sufficient statistic for kB T , the state of a game is given best by
the probability [14,42]

P =
∏

j

P j =
∏

j

(∏
k

Nke−(�G jk−i�Q jk)/kB T
)N j

/N j !. (5)

The exponential form reveals that any one P j , for which A jk =
�μ jk − i�Q jk � kB T , contributes substantially to P . Therefore the
jk-move corresponding to the consumption of A jk will change
P j significantly, i.e., beyond the statistical approximation ln N j ! ≈
N j ln N j − N j which is applicable to large, quasi-stationary popula-
tions. In this case the probability of a small system will not evolve
smoothly but moves in steps according to dt P = L P (Eq. (1)). In
practice this means that the rate of entropy increase cannot be
used to extrapolate a specific scenario. For example, when an in-
dividual labeled with j happens to strike a particularly prosperous
deal, his status measured by P j will step up abruptly. Neverthe-
less, the status P of the overall course of the game, comprising
many players, will remain sufficiently statistical and it will not be
affected all that much by a single move but instead will proceed
smoothly.

The description of a game as a natural process is holistic so
that any jk-move will, in principle, affect the status of any other
player. The physical probability in Eq. (5) defines by jk-indexing
the interdependency among the densities-in-energy. A pair or a set
of decisions are referred to as strategic complements when they
are constructively reinforcing one another and as strategic sub-
stitutes when they are destructive in offsetting one another. The
course of a game depends on coherent moves, which in terms of
physics, means that the flows of energy interfere with each other
when the affine, curved energy landscape is in evolution toward
the stationary-state flatness [56]. Both sequential and simultaneous
moves are accommodated in the formulation (Eq. (1)) but since
velocities of energy flows are limited, ultimately by the speed of
light, only the sequential actions display causality [42] to affect
subsequent decisions whereas simultaneous moves are indepen-
dent. This is familiar from sealed first-price auctions. Moreover,
individual behavior via social interactions has been understood as
the mechanism that bonds together the affine energy landscape
and generates its evolution [57].

The physical probability that is conditioned in energetic terms
(Eq. (5)) clarifies also why mimicking (imitation) is often a success-
ful strategy. A priori, i.e., at an initial state it may not be obvious
which particular move will consume free energy in the least time,
but pioneers will search for paths, e.g., by trial and error. Initially
the optimality of a path is less important because just about any
strategy will consume free energy, i.e., produce entropy. Moreover,
since no experience, i.e. references, has been accumulated, the op-
timality cannot be assessed. Therefore a successor, when mimick-
ing the established behavior, will follow, if not the best, at least a
reasonable trail formed by the path breakers. Explorations are per
definition suboptimal moves. This is consistent with rational igno-
rance [58] which states that the act of acquiring information on
the best possible strategy or path may be too costly compared to
expected and uncertain benefits to the player. The thermodynamic
theory shows that the mere move to set a path will change the set-
ting for subsequent moves as well [59]. The probabilities of future
decisions are affected by past acts. In other words, a specific state
of a game depends on its history. The conditional interdependence
among strategies is also familiar from cemented suboptimal stan-
dards. It is tedious to improve a widely adopted standard simply
because initial payoff will suffer from the limited scope of applica-
bility of the reform. Conversely, marginal benefits for conformists
are easily available, whereas significant gains are in the sight of a
rebel. The conventional way of thinking as an established means of
energy dispersal is preferred rather than making much additional
effort to explore beyond paradigms. Players are motivated to ex-
plore new strategies when they see a possibility for greater payoffs,
i.e., a larger perceived gradient in energy than is consumed by the
study itself. New strategies may emerge from intentional manip-
ulation or sporadic fluctuations also known as random variations.
For the payoff, i.e. the entropy increase, it does not matter whether
the move is intentional, arbitrary or accidental, since only the out-
come is valued. The changes may be, for example, mutations in
a biological context or reorganizations in the brain in a decision
making context. When a game is maturing toward a solution con-
cept, most new strategies are not so successful, but some may still
tap into potentials better than competitors and gain ground.

5. Discussion

Game theory accounts for behavior in remarkably diverse cir-
cumstances, yet it is pertinent to ask what behavior actually is.
Game theory rationalizes behavior by modeling it as a game that
aims at maximizing payoff. However, the nature of a game as a
process and its objective has remained obscure. Here games are
described as natural processes that increase entropy in the least
time. This tenet, while founded on the principle of least action in
its original form [60] as the universal law, may at first appear su-
perficial and deficient, as if it were neglecting important factors
such as the role and asymmetric distribution of information among
players. However, the naturalistic view is holistic in relating every-
thing to everything in terms of energy. As the flow of energy is the
sole means of conveying information, this means that a piece of in-
formation is also an asset. This stance is valid because any form of
information requires some physical representation [61–63], which,
in turn, is subject to the laws of thermodynamics. Furthermore,
the accumulation of information, e.g., a learning process itself, can
be understood as a natural process of formation and changing of
paths (geodesics) for flows of energy that represent information.
Therefore, the value of information gained by behaving in a certain
way, i.e., by playing a certain strategy which acquires informa-
tion for the future accumulation of assets has to be accounted for.
Hence a change in strategy is a natural consequence of accumulat-
ing assets because the acquired assets will open new opportunities
for the reduction of free energy. The acquisition of information
about other players’ types, e.g., to account for a Bayesian game
[64], is contained in the physical formulation of games as natural
processes. This physical correspondence is also reflected in the pu-
rification theorem. It states that mixed strategy equilibria can be
obtained as the limit of pure strategy equilibria from a perturbed
game of incomplete information. Physically speaking, a mixed state
can be constructed as the limit of pure states that are perturbed
by energy in mutual interactions. A piece of information is physi-
cally represented as energy in a particular form, when defined in
thermodynamic [62,63] rather than mathematical [65] terms. Con-
sequently communication will be impaired due to limited capacity
to store, handle and interpret information.

The intimate interdependency between behavior and its mo-
tives, that are, physically speaking, flows of energy and force, is
apparent when acquired knowledge is used to anticipate moves
by others. During the extensive-form game, knowledge accumu-
lates as to how to act better, and this experience directs the game
toward a self-confirming equilibrium [66]. In the same way, a nat-
ural process spontaneously progresses toward a stable state. An
extensive series of repeated games will eventually reveal, in mu-
tual transactions, all characteristics of all players. Thus all conceiv-
able paths of actions will be open to maximize the total payoff.
This revelation will shift the steady state from the Bayes–Nash
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equilibrium to the ultimate optimum [67,68]. This tedious op-
timization procedure relates to computational complexity [69].
There is no algorithm that would solve this non-deterministic poly-
nomial time problem [70]. At the Lyapunov-stable state there are
no unexposed assets and no strategies that could possibly shift the
equilibrium any further.

The extensive-form game models the fact that behavior de-
pends on surrounding conditions. A change in the surroundings
relates to changes in the values of a payoff matrix, and more effi-
cient strategies to which higher payoffs are available may emerge.
Any such change will bring instability to the game. The approach of
the new equilibrium may even be chaotic because any early move
will affect the set of moves available in the future. Moreover, when
a particularly effective strategy is found and executed, it may con-
sume assets more rapidly than they are replenished. Consequently,
after a period of overexploitation, the system must retract and
abandon the once lucrative, but now unsustainable strategy. For
this reason, animal populations oscillate and economic cycles fol-
low one another.

The connection between the entropy maximum and game the-
oretical equilibrium is, as such, not a novel proposition [71]. How-
ever, here the rate of entropy increase is provided in a mathemati-
cal form that is equivalent to the rate of free energy decrease. This
is essential. Since everything can be valued in terms of energy,
the rate of entropy increase qualifies as the universal payoff func-
tion. Moreover, statistical physics of open systems links the prin-
ciple of increasing entropy to the principle of least action which
guides processes along the optimal paths that bring the system
to the stationary state in the least time [14,54,56,57]. Admittedly,
entropy in a complicated system is a function of many variables
that are indexed by j and k. In this way entropy as the addi-
tive figure of merit is very much in line with observations that
human and other animate behavior is difficult, if not impossible,
to account solely on the basis of a single motive. While the en-
tropy production is justified by the profound principle it may be
tedious to expand the entropy function in every detail to model
practical situations. Rather it would seem sensible to model only
the terms that are anticipated to be significant in particular de-
cisions that are confronted in specified circumstances. Indeed this
is the current consent of game theory. However, thermodynamics
clarifies the underlying reason and also that no precise predic-
tions are available even from very detailed formulation because
the moves themselves will change the conditions and prompt dif-
ferent moves. Moreover, the physical portrayal of games as natural
processes by the rate of entropy increase as the payoff function
gives justification for mixed and varying strategies over pure and
fixed strategies. Diversity in behavior, like biodiversity, allows the
entire system to consume more free energy, faster than would be
possible via individual and invariant strategies.

Entropy increase as the payoff function also clarifies the subjec-
tive nature of decision making when choosing a strategy because
payoff is a function of the possessions and moves that are avail-
able for a specific player. Moreover, in hopes of making a rational
choice the player, who is equipped with appropriate knowledge,
may discount a future payoff when making present-day decisions.
Thus there is no universal rational choice, which is why some ac-
tions may seem irrational to an outside observer. In this sense
the thermodynamic theory addresses some of the critical con-
cerns about rational choice [72]. Furthermore, physical formalism
reveals that there are no observations without interactions. There-
fore an observer will inevitably affect, i.e., integrate himself in, the
course of a game. Common values are approached via integration.
Superior free energy possessions and effective consumption strate-
gies of energy-intense players tend to impose on others what is
deemed as rational, when in fact much of this “rationality” is in
fact mimicry and submission to authority.
The physical portrayal of games as natural processes illuminates
not only competition over assets but also cooperation among in-
dividuals. A coalition is regarded as a strategy, just as any other
mechanism to increase entropy. The group possesses more means
and more assets to access higher status in the rate of entropy in-
crease than any one individual could master independently. The
consensus in decision making is motivated only if it provides the
means for each individual to attain a higher entropic status than
would be available by independent moves. It is not unusual that,
when circumstances change, coalitions will expire or reorganize to
adapt to the new circumstances. This understanding adds to the
ongoing debate concerning the emergence of cooperation, to which
several solutions have been proposed [73,74]. Parameterization of
models with a physical quantity may help to distinguish the type
of game, for example snowdrift or prisoner’s dilemma, to represent
a situation.

Finally, the tragedy of the commons [75] that has also been
analyzed by game theory [76] deserves clarification. The detrimen-
tal scenario that is driven by short-sighted individual incentives
will continue when resources and means of social bonding are in-
sufficient to collaborate. This alerting sequence of moves toward
ruination is understood by the thermodynamic theory as a prob-
able course of events. According to the natural law, when energy
in the surrounding supplies falls, due to exploitation by individu-
als, below that contained in the social system, the flow of energy
is redirected according to the 2nd law away from the society to
the surroundings. Consequently, the social system keeps draining
its cohesion just when it would desperately need more energy to
re-establish vital mechanisms such as social bonding to enforce
co-operation that would be necessary for society to behave in a
sustainable manner.
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