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The observed but unexpected changes in velocity during spacecraft flybys of Earth are
examined using the principle of least action in its original dissipative form. In general,
the spacecraft’s momentum will change when it travels through an energy density gra-
dient of space that is enfolding a gravitating, orbiting and rotating body. When space is
understood as a physical substance that embodies quanta of actions, rather than being
modeled by a mere metric, it becomes apparent that the changes in momentum couple
with flux of quanta from the local system of bodies to the universal surroundings or vice
versa. In this way the original least-action principle accounts also for the ‘anomalous’
change in velocity by an equation of motion which complies with the empirical relation
that has been deduced from Earth-flybys.

1 Introduction

Even a slight deviation from a common rule may entail an
error in the very rule. Here, in the context of flyby anomaly,
the rule – perhaps at stake – is conservation of momentum.
It is a corner stone of physics, whence the flyby anomaly is
worth attention.

The law of conservation of momentum asserts, for ex-
ample, that when a spacecraft is passing by a planet, it will
gain momentum as much as the planet will lose momentum.
The momentum transfer is a minute drop for the massive
planet but a giant boost for the tiny spacecraft. The space-
craft’s velocity v will change relative to the Sun as much as
its flight direction will change relative to orbital velocity u of
the planet [1–3]. The gain can be at most 2u when the planet
is moving straight at the spacecraft which will subsequently
swing a full U-turn around the planet. Curiously though, it
seems as if spacecraft had acquired more speed during cer-
tain flybys than the planet’s orbital momentum could possibly
grant them [4, 5]. The origin of this anomaly is unknown.

However, it has been inferred from meticulously moni-
tored flybys of Earth [6–10] that the anomalous change in
velocity ∆v complies closely with relation [5]

∆v

v
=

2ω⊕R⊕
c

(cos δi − cos δo), (1)

where c is the speed of light, R⊕ is Earth’s radius and ω⊕ an-
gular velocity of rotation, δi is the spacecraft’s inbound and
δo outbound declination, so that 2ω⊕R⊕/c = 0.49× 10−6. The
relationship (Eq. 1) implies that the anomalous gain ∆v in
the spacecraft’s velocity stems from Earth’s angular velocity
ω⊕ depending on how the spacecraft’s inbound and outbound
asymptotes align relative to the axis of rotation. Yet, the ef-
fect of Earth’s gravito-magnetic field on the spacecraft’s ve-
locity has been calculated to be many orders of magnitude
smaller than the measured anomaly [11, 12]. Other expla-
nations have also been considered [13–17] and found feasi-
ble [18], but there is currently no consensus what exactly un-

derlies the phenomenon. Also the general validity of Eq. 1
has been questioned [19–22]. Moreover, it should be noted
that anomalies, when without radar monitoring, are difficult
to detect along flybys of other planetary bodies.

As long as the case is open there ought to be room for
attempts to explain the measurements. Thus, we would like
to contribute to the puzzle of flyby anomaly by maintaining
that the spacecraft does move along a geodesic, i.e., a path of
least action, also when it is subject to the unknown force that
causes the unaccounted change in momentum. So, it should
be possible to infer the cause of anomaly from the principle
of least action. However, the familiar Lagrangian form when
without dissipation applies only to closed stationary orbits
such as ellipses or to ideal paths with symmetrical inbound
and outbound trajectories. In contrast, the general form of the
least action principle by Maupertuis [23–25] accounts also
for open paths, most notably for hyperbolic flyby trajectories
that are asymmetric relative to the planet’s rotation. Further-
more, we are motivated to apply this general principle that
distinguishes itself from particular models of celestial me-
chanics, because it has already accounted for anomalous peri-
helion precession [26], rotation of galaxies [27], geodetic and
frame dragging drift rates [28] as well as for frequency shifts
and bending of light [29], as well as for propagation of cos-
mic rays [30] and the thrust of electromagnetic drive [31].
Thus, our examination of the flyby anomaly using the uni-
versal principle is not a standalone study. It can be seen as a
further test of our approach yet in another physical situation.

2 The least-action principle

The spacecraft is customarily pictured to move along a hy-
perbolic path as if it was coming from a distant asymptotic
state of free space and returning via periapsis back to the
asymptotic state. Per definition this ideal, i.e., fully reversible
passage cannot accommodate any net change in momentum
in the planet’s frame of reference, because the initial and
final asymptotic states are taken as indistinguishable from
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each other in energetic terms. In other words, the Lagrangian
having only kinetic and potential energy terms does not al-
low for any change in the total energy, i.e., dissipation. But
in reality the unaccounted increase (or decrease) in kinetic
energy reveals that during the flyby the spacecraft does de-
scend down (or move up) along a potential energy gradient,
so that the initial and final states are not equal in energetic
terms. Therefore, to account for the flyby anomaly as a non-
conserved phenomenon we will use Mauperutuis’s rather than
Lagrange’s principle of least action. Then it remains for us to
identify among conceivable gradients in energy, the one that
lies asymmetrically with respect to the spacecraft’s inbound
and outbound trajectories, and hence is responsible for the net
change in energy.

In all cases, the spacecraft treks at least through the grav-
itational potential of free space. The all-embracing vacuum
potential energy GM2/R = Mc2 totals from the mass M of
all bodies in the Universe within Hubble’s radius R = cT at
its current age T = 13.8 billion years where G is the grav-
itational constant [32]. In terms of geometry the free space
energy density is characterized by the universal L2-norm [33]
that manifest itself in the quadratic form c2. Physically speak-
ing, the norm means that in the free space there is no shorter
path than that taken by light. Thus, the energy density of free
space, on the order of one nJ/m3, is the ultimate reference for
any other energy density.

A local potential energy, known as the local gravitational
potential energy is in balance with the bound energy density
of a body, for example, a planet, just as the universal grav-
itational potential is energy is in balance with all bodies in
the Universe [34]. Thus, the spacecraft when moving past by
the planet, will be subject to energy density gradients, i.e.,
forces that will show as changes in its momentum. We ac-
knowledge that general relativity accounts for the space with-
out energy density due to the gravitational field itself. Gen-
eral relativity expresses gravity in terms of the geometrical
properties of spacetime through the Einstein field equations.
This mathematical model is excellent for many data, but when
without dissipation, it does not account accurately for irre-
versible changes in momentum, for instance, for the space-
craft anomalous gain in momentum during the flyby.

To work out the energy density gradient responsible for
the dissipative change in momentum we will express the lo-
cal energy density at a distance r from the body relative to
the universal energy density by the ratio of light’s univer-
sal velocity to its local velocity n = c/v. The index n has
been used earlier to describe the gravitational potential in
terms of an optical medium [35] consistently with the fact
that gravity and electromagnetism share the same functional
forms [34, 36]. The local excess in energy density is minis-
cule in the vicinity of an ordinary celestial body. This is to
say that when light is grazing the planet Earth, its speed v ≤ c
will hardly deviate from c. Therefore, light will experience
only a minute change in momentum that will manifest itself

as a tiny blue shift and next-to-negligible bending.
However, the spacecraft with velocity v ≪ c will be sub-

ject to a marked change in its momentum during its passage
through the local potential of space imposed by the gravitat-
ing, orbiting and rotating Earth. This is to say that the space-
craft will gain momentum when inbound and conversely it
will lose momentum when outbound. The inbound gain and
outbound loss will sum up to zero in the case the open hy-
perbolic trajectory through a spherically symmetric field. A
net change in momentum will accrue only if the flight path is
open asymmetric relative to energy density gradients of space
due to the planet’s orbital and rotational motion.

In general the index n for a locus of space can be obtained
from the least action principle in its original form by Mauper-
tuis. The principle [23,25–27,29] equates a change in kinetic
energy dt2K with changes in scalar potential energy ∂tU and
vector potential energy ∂tQ,

dt2K = −∂tU + i∂tQ, (2)

where we emphasize, although self-evidently, the orthogo-
nal relationship between the gradients of scalar and vector
potential energy by the imaginary quotient i. The equation
of motion (Eq. 2) containing both real and imaginary parts
ensures that any (formal) solution is non-conserved. More-
over, orthogonality is familiar from electrodynamics, for in-
stance, as defined by Poynting theorem. Accordingly, when
the spacecraft accelerates in the gravitational field of a planet,
the quanta will dissipate to the surrounding free space from
the local gravitational potential orthogonally to the accelera-
tion.

The equation for the dissipative changes in energy [25,31]
(Eq. 2) corresponds to Newton’s second law of motion for a
change in momentum p = mv when multiplied with velocity
v, i.e.,

F = dtv | · v

F · v = dt(mv) · v = v · ma + v2∂tm

dt2K = −v · ∇U + i∂tQ,

(3)

where kinetic energy, i.e., vis viva is 2K = mv2, and where
the spatial gradient of U relates to the familiar term ma of
acceleration and the change in mass dm = dE/c2 equals dis-
sipation n2dtQ = dtE to the free space. As usual, the mass-
energy equivalence converts mass-bound energy to energy E
of freely propagating photons in the vacuum. In short, Eqs.
2 and 3 simply state that at any position along the space-
craft’s least-time path the momentum will follow the force
F = –∇U + i∇Q, where the energy density gradient subsumes
both the scalar and vector components. In this way our ac-
count on gravity is physical rather than merely mathematical
and consistent with electromagnetism. However, in what fol-
lows, the orthogonality of the two components remains only
implicit when we work out only the magnitude of the total
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potential energy in any given position along the spacecraft’s
path.

3 Passages through gradients

The general principle of least action in its original form al-
lows us to examine the flyby trajectories by specifying the
energy density of space by the index n at a particular position
r of space from the center of a gravitating body with mass
M⊕. Also earlier the gravitational field has been described in
terms of an optical medium [35], but we do not model space
by an explicit metric, instead present it in energetic terms.
When approximating the total potential energy U only with
the local gravitational potential energy GmM⊕/r, Eq. 3 can
be solved for the index of space

dt(mv2) = −∂t
GmM⊕

r
+ i∂tmc2

n2 =
c2

v2
=

(
1 − GM⊕

c2r

)−1

≈ 1 +
GM⊕
c2r

= 1 + φ⊕

(4)

at a locus r. The squared index sums the universal density
(unity) and the local excess φ⊕ as experienced by a test body
of vanishing mass, i.e., a photon. The first order approxima-
tion means that n2 does not differ much from the asymptotic
(r → r∞) unity of free space. Explicitly, a ray of light will
bend hardly at all even when grazing the Earth of radius R⊕,
since φ⊕ = GM⊕/c2R⊕ ≈ 0.7 × 10−9.

However, the spacecraft with its minute velocity v relative
to the speed of light, i.e., v2/c2 ≪ 1, will accelerate consider-
ably when traversing through the gradient d(n2)/dr = ∇φ⊕ =
–GM⊕ro/c2r2 where the unit vector ro = r/r points to the
center of mass. According to Eqs. 2 and 3 the spacecraft will
fly past by the planet when v · dtp/c2 > –v · ∇φ⊕. Conversely,
when v · dtp/c2 < –v · ∇φ⊕, the spacecraft will spiral down to
a crash on the planet. Eventually, when v · dtp/c2 = –v · ∇φ⊕,
Eq. 2 can be integrated to a closed form. Then the net flux
from to the system to its surroundings vanishes dtQ = 0 , and
hence the integration yields the familiar stationary condition
2K +U = 0, i.e., the virial theorem. This is to say, the space-
craft has settled on a stable Keplerian orbit about the planet.

When the planet is not only gravitating but both orbiting
and rotating, then the excess in energy density of space at r is
in balance also with energy that is bound in both the orbital
and rotational motion as much as ro aligns along the planet’s
orbital u and rotational w⊕ = ω⊕R⊕ velocities, denoted by
ur = u · ro and wr = ∥w⊕ × ro ∥, i.e.,

n2 =
c2

v2
=

(
1 − GM⊕

c2r
− u2

r R⊕
c2r
− w

2
r R⊕
c2r

)−1

≈ 1 + φ⊕ + φu + φw.

(5)

Again the first order approximation means that n2 does not
differ much from the free space unity. Explicitly when set-
ting for the Earth with r ≈ R⊕ and ur = u⊕, the orbital

φu = u2
⊕/c

2 ≈ 10-8 and rotational φw = w2
⊕/c

2 ≈ 0.6 × 10−13

contributions are tiny. This means that the Earth hardly drags
the vacuum along with its orbital and rotational motion.

However, the spacecraft with velocity v2/c2 ≪ 1 will ac-
quire momentum markedly during its way through the gradi-
ent ∇φ. The gain in momentum from the orbital motion is the
well-known gravity assist. Obviously this gravitational sling-
shot cannot be used when the spacecraft moves too slowly to
catch the planet, i.e., v · dtp/c2 < –v · ∇φu. Eventually, when
v · dtp/c2 = –v · ∇φu, dissipation vanishes, and hence Eq. 2
can be integrated to the stationary state condition 2K+U = 0.
It means that the spacecraft has settled on a stable Lagrangian
point where it is coorbiting Sun along with Earth.

In addition to the gain in momentum from the planet’s
orbital motion, the spacecraft may gain a detectable amount
of momentum when traversing through the gradient ∇φw due
to the planet’s rotation about its axis. Obviously this ve-
locity excess will be deemed as anomalous when left unac-
counted. Conversely, when the gradients along the inbound
and outbound trajectories are opposite and equal, i.e., sym-
metric about the planet’s rotation, there is no net dissipation
and no net change in momentum. Eventually, when dissi-
pation vanishes, v · dtp/c2 = –v · ∇φw, and hence Eq. 2 re-
duces to the steady-state condition 2K + U = 0. It means
that the spacecraft has settled on a geostationary orbit. When
the spacecraft is in synchrony with the planet’s rotation, ob-
viously it will not be exposed to any energy density gradients
due to the rotation.

4 Anomalous change in velocity

The above classification of spatial energy density in the grav-
itational, orbital and rotational terms (Eq. 5) serves us to
specify the equation for the “anomalous” gain in velocity ∆v.
It accrues during the flyby through the energy density gra-
dient of space ∇φw imposed by the rotating planet. In gen-
eral the change in the spacecraft’s momentum at any point
along the trajectory is, according to Eq. 3, equal to the force
F = dtp = dt(mv) = mc2∇φw. When the minute change
in mass dm is neglected, the anomalous gain in velocity ∆v
due to the gradient ∂w of rotational contribution φw can be
obtained by summing up the changes in velocity dv

∆v =

∫ vo

vi

∂wφwdv =
∫ θo

θi

v
∂(ω⊕R⊕ cos δ/c)2

∂(ω⊕R⊕ sin δ/c)
R⊕
r

dδ

=

∫ δo

δi

v
2ω⊕R⊕ sin δ

c
R⊕
r

dδ

≈ v2ω⊕R⊕
c

(cos δi − cos δo)

(6)

along the flight path from the inbound asymptotic velocity
vi to the outbound asymptotic velocity vo. The equation 6
integrates the gradient ∂w of the rotational contribution φw
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given by Eq. 5 from the inbound asymptote with declina-
tion δi to the outbound asymptote with declination δo along
the spacecraft’s path. The gain in velocity will accrue only
when the inbound and outbound trajectories through the en-
ergy gradients due to the planet’s rotation are asymmetric.
The trigonometric form of the energy density gradient ∂w =
∂/∂(ω⊕R⊕ sin δ/c), where δ denotes declination (Figure 1),
for the integration of declination from the inbound to out-
bound asymptote has been derived earlier [16]. It is easy to
check by inspecting the following two points. At the Equato-
rial plane δ = 0, where the quadratic factor (ω⊕R⊕ cos δ/c)2 of
φw peaks, the energy density gradient vanishes. Conversely,
at poles δ = ±π/2, where φw in turn vanishes, the gradient
in space due to the planet’s rotation peaks. In addition to the
declination by sin δ, the gradient depends on the angular ve-
locity ω⊕ and radius R⊕ relative to c. The product form of
the three factors ensures the obvious fact that if any one of
them vanishes, the gradient does not exist. The transforma-
tion from one variable of integration to another dv = vdδ fol-
lows from vdt = rdδ, e.g., defining dv = adt via acceleration
a = v2/r.

We motivate the approximation R⊕/r ≈ 1 in Eq. 6 to
recognize the empirical equation (Eq. 1) because the radial
gradient of φ falls as 1/r2, and hence most of ∆v accumu-
lates when the spacecraft is near the periapsis whereas con-

Fig. 1: Equatorial view of a grazing flyby trajectory. The hyperbolic
flight path is defined by the planet’s radius R extending nearly to
the periapsis (solid dot) at declination δa and the distance C from
the center of mass at the origin O to the intersection of inbound
and outbound asymptotes (dashed lines) with declinations δi and δo.
The path’s radial coordinate is given by r and polar angle by θ as
measured from δa. The planet’s axis of rotation with angular velocity
ωR stands upright.

tribution from the long opposite inbound and outbound legs
is negligible. The polar coordinate representation R⊕/r =
1/2(1 – R⊕/C+cos θ)/(1 – R⊕/2C) reveals the decreasing con-
tribution of a path position r in the sum (Eq. 6) as a function
of increasing polar angle θ. The distance from the center of
mass to the intersection of the inbound and outbound asymp-
totes of the hyperbola is denoted with C. Specifically, Eq. 6
yields the maximum change ∆v/v = 2ω⊕R⊕/c for the flight
along the rectangular hyperbola from the inbound arm δi = π
to the outbound arm δo = –π/2 via the periapsis at δa = π/4
for a low altitude r → R⊕ passage. Conversely, for a high
altitude path, such as that of Rosetta’s last flyby, the approxi-
mation r → R⊕ underlying the empirical equation is less mo-
tivated, and hence the anomaly is negligible.

Obviously the derived formula (Eq. 6) is not only an ex-
plicit approximation by R⊕/r ≈ 1, but also implicit in mod-
eling the planet as a rigid homogenous sphere. Moreover,
the derivation also neglects apparent forces that are imposed
on the spacecraft, such as a drag due to atmospheric friction.
However, our study does not aim at producing a formula to
calculate ∆v due to the atmospheric drag or planet’s geoid,
instead it targets by the derivation of ∆v/v to explain the phe-
nomenological formula (Eq. 1) and to identify the anomalous
gain in momentum to result from the spacecraft traversing
through the energy density gradient of space imposed by the
rotation of the planet. Undoubtedly, when more flyby data
accumulates, the empirical formula (Eq. 1) will be verified or
falsified, thereby giving also a verdict on this study.

5 Discussion

The mathematical correspondence between the empirical re-
lationship (Eq. 1) and the derived formula (Eq. 6) is reassur-
ing, but not alone an explanation for the anomalous gain in
velocity. Namely, the obtained consistency in energetic terms
is by itself not a tangible explanation, because energy as such
does not exist but it is an attribute of its carrier. Thus, the
profound question is: What is the carrier substance that em-
bodies the universal density of space and local gravitational
potentials that the spacecraft is subject to during its flyby? Of
course, this query is not relevant when general relativity is
used as a mathematical model for measurements. But when
one is after the cause, i.e., the force responsible for the flyby
anomaly, the physical form of space must be considered.

The carrier of gravitational force has been sought for long.
Nonetheless the graviton of quantum field theory remains a
hypothetical elementary particle. In the past the photon was
considered as the carrier, because gravity and electromag-
netism share similar functional forms [34, 36, 38] as well as
because the squared speed of light in the vacuum relates to
the absolute electromagnetic characteristics of free space via
c2 = 1/εoµo. Also the free space gauge ∂tϕ + c2∇ ·A = 0 im-
plies physical existence of scalar ϕ and vector A potentials,
so that ϕ will decrease with time when quanta move down
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Fig. 2: The photon γ (blue) is the undividable quantum of ac-
tion whose momentum resides on its wavelength, and equivalently,
whose energy is within its period of time. The photon with opposite
polarization (red) is the antiphoton γ∗. When γ and γ∗ copropa-
gate, the net electromagnetic force will vanish, but the compound
boson continues to carry momentum and energy. These compound
actions embody space universally and locally. Thus, the associated
energy density appears as the universal gravitational potential en-
ergy, known as the vacuum density, which is in balance with all
bodies. Likewise, a local potential energy is in balance with a lo-
cal gravitating, orbiting and rotating body.

along the gradient of A or vice versa. Recently the old tenet
of photon-embodied space has been revived so that the pho-
tons are considered to propagate in pairs of opposite polariza-
tion, and hence the pairs are without electromagnetic forces
[28, 31, 39]. This destructive interference is, of course, fa-
miliar from diffraction. By the same token, Aharonov-Bohm
experiment demonstrates how an applied vector potential will
increase the energy density without introducing fields along
the path [40]. According to this percept the two quanta of
light do not vanish for nothing when interfering destructively,
instead they continue in copropagation with opposite phases,
and hence continue in carrying energy and momentum (Fig-
ure 2).

Our portrayal of the physical vacuum reminds of de Brog-
lie’s theory [41] about a spatially extended, particle centered
pilot wave [42]. This view of the physical vacuum, as ours,
makes sense of quantum mechanical phenomena without con-
ceptual challenges [43]. In view of that, it has been under-
stood also earlier that c, εo and µo are not constants, but prop-
erties when the vacuum has been considered to embody con-
tinuously appearing and disappearing fermion pairs [44, 45].
Instead of accounting for the vacuum’s electromagnetic prop-
erties by transiently appearing paired charges we reason that
when a charge appears in the vacuum, a corresponding force
will appear. The force will move the paired photons away
from the out-of-phase relation, and hence an electromagnetic
field will appear around the charge. Thus, when an atom
ionizes, the photons of the electromagnetic field will not ap-
pear out of the blue, but they have been around all the time,
however in the out-of-phase configuration that manifests it-
self only as energy density.

The photon-embodied vacuum is understood to emerge
from various processes, such as annihilation, where constitu-

ents of matter with opposite charge transform to mere radia-
tion. For example, the annihilation of electron with positron
will yield, in addition to the two readily observable photons of
opposite polarization and directions of propagation, also pairs
of co-propagating photons. Conversely, the photon-embodied
vacuum is the source of quanta for pair production [37,39,46].
Likewise, electron capture where a proton turns to a neu-
tron, pairs of co-propagating photons will emerge from an-
nihilation of the constituents with opposite charges. When
the space is understood to embody the oppositely paired pho-
tons, it is easy to envision that space around a body of high
energy density houses a radially decreasing energy density,
known as the local gravitational potential energy. In this way
gravity can be understood as force, like any other force, to
result from the energy density difference over a distance, i.e.,
from a gradient. Ensuing motions consume the free energy
in least time. This evolution is expressed by the principle of
least action in its original form (Eq. 2). Namely, all bodies
move from one state to another along geodesics to diminish
density gradients in the least time.

The least-time imperative means that the two bodies will
move toward each other when the surrounding universal space
is sparse enough to accept the paired quanta that are released
from the dense gravitational potential of the bodies to the sur-
rounding free space along the paths of least time. For exam-
ple, an object falls straight down on the ground, i.e., along
the least-time path, to consume the energy density difference
between the local gravitational potential and the sparse sur-
rounding vacuum. When the body is falling down, the oppo-
sitely paired photons are released from the local gravitational
potential to the surrounding universal vacuum also along their
paths of least time. Conversely, the two bodies will move
away from each other when the surrounding potential is rich
enough to grant paired quanta with energy to the local poten-
tial about the bodies.

In the same manner it is inescapable that it takes some
form of free energy, ultimately carried by the photons that
have been acquired from insolation, to lift up the fallen object
from the ground back up on its initial height. So, the logic of
reversibility says that the photons that were absorbed when
the object was lifted up must have been emitted when the
object was falling down. Thus, gravity is a dissipative phe-
nomenon. When the bodies move toward each other, there is
an efflux of quanta with energy to the surroundings, and con-
versely when the bodies move away from each other, there is
an influx of quanta with energy from the surroundings. Man-
ifestly, there is no net flux, i.e., no net dissipation from the
system of bodies at a stationary state corresponding to an en-
ergetic balance with its surroundings.

This insight to gravity allows us to describe the space-
craft’s flyby as an energy transfer process where quanta move
from the local system of bodies to the surrounding space or
vice versa. Flyby mission data show temporary maxima and
minima in energy transfer that moderate toward the space-
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craft’s asymptotic courses [4]. We remind that oscillations
are characteristics of least-time transitions from one state to
another [47]. The oscillations are pronounced when the rate
of energy transfer is rapid compared with the bound energy.

With this insight to gravity as a dissipative phenomenon,
let us first consider the flight past a gravitating spherical body.
The spacecraft treks along its inbound trajectory through an
increasing energy density of space, i.e., the 1/r2-force field
when the distance r closes toward the body. The increase in
the spatial potential energy is balanced, according to Eqs. 2
and 3, by an increase in kinetic energy as well as by efflux
of the oppositely paired quanta from the local gravitational
potential comprising the body and the spacecraft to the uni-
versal gravitational potential due to all bodies in the Universe.
The flux of quanta is often overlooked because the oppositely
paired quanta without net electromagnetic field cannot be de-
tected readily. However, the dissipation can be inferred re-
calling that the total gravitational potential energy of the body
and the spacecraft at the periapsis is not exactly equal to the
total potential energy when the spacecraft is at a point on the
arm of hyperbola. The emission of quanta will cease, i.e.,
dissipation will vanish dtQ = 0 momentarily, when the space-
craft arrives at the periapsis, where kinetic energy 2K matches
the scalar potential energy U. Thereafter, along the outbound
asymptote 2K will exceed U, and hence the paired quanta will
be acquired from the surrounding vacuum to the local grav-
itational potential so that the balance with the surrounding
density will be eventually regained far away from the planet.
Since the passage from the inbound asymptotic state via the
periapsis to the outbound asymptotic state is symmetric, the
emission of quanta from the local system and the absorption
to the local system match perfectly, and hence the net dissipa-
tion vanishes. Thus, the momentum of the two-body system
is conserved.

Next, let us consider the flight past by an orbiting body.
Along the inbound trajectory the spacecraft travels through
the energy density of space that increases more rapidly than
in the case of the merely gravitating body, namely at the rate
that the planet orbits straight at the spacecraft. This more
rapid increase in the potential energy is balanced, just as rea-
soned above, by a more rapid increase in kinetic energy con-
currently with dissipation of the oppositely paired quanta to
the surrounding space. First when at the periapsis, where the
spacecraft moves orthogonal to the planetary orbit, dissipa-
tion vanishes momentarily. Thereafter, along the outbound
asymptote 2K will exceed U, and hence quanta will be ac-
quired from the surrounding vacuum to the local gravitational
potential energy comprising the body and the spacecraft to re-
gain the balance eventually when far away. Clearly the flyby
about the approaching planet and the flyby about the depart-
ing planet differ from each by the rates of momentum and
energy transfer from the system to the surrounding space.
Thus, the spacecraft will pick up momentum in the former
case and it will lose momentum in the latter case. The for-

mula for the spacecraft’s change in velocity can be derived in
the same manner as Eq. 6 was derived. Consistently, also the
(very slightly) perturbed planet will regain a stable orbit by
processes where the paired quanta carry energy from the sur-
roundings to the local potential and vice versa until the free
energy minimum state has been attained.

Finally, let us consider the flight past a rotating planet that
imposes an axially symmetric energy density gradient on the
surrounding space. When the gradient along the inbound tra-
jectory is equal in magnitude to the gradient along the out-
bound trajectory but of opposite sign, the emission and ab-
sorption of quanta from the system comprising the body and
the spacecraft to the surrounding vacuum are equal. Thus, in
that case the momentum is conserved, and hence no anoma-
lous gain or loss in velocity will detected. Conversely, when
the emission of quanta along the inbound trajectory and the
absorption of quanta along the outbound trajectory do not
cancel each other exactly, the spacecraft will either pick up
or lose momentum depending on the sign of net dissipation.
Likewise the concurrent (minute) perturbation of the planet’s
rotational momentum will damp down toward a stable state of
spinning by energy transfer processes from the systemic po-
tential to the surroundings and vice versa until the net dissi-
pation finally vanishes at the free energy minimum state. Per-
haps our account on gravity summons up the old abandoned
idea of luminiferous ether [48]. Therefore, it is worth em-
phasizing that the proposed physical vacuum is not a medium
that supports propagation of light, instead the photons consti-
tute space. The paired photons without net polarization do not
couple in electromagnetic terms, and hence the space is dark,
but not illusive or only a mathematical metric. It reacts to
every act. Any change in momentum is met with resistance,
known as inertia, since the spatial energy density redistributes
to regain balance among perturbed bodies [31].

6 Conclusions

We conclude that the flyby anomaly only appears as an odd
phenomenon when not all components of force are included
in its explanation. Specifically, we maintain that the law of
conservation of momentum holds when the system of bodies
associated with local potentials of space will in total neither
lose nor gain quanta from the surrounding systems. The ul-
timate surroundings for any local system is the universal free
space. It must be taken into account in the explanation of
flyby anomaly.

We resort to the old idea that the vacuum is embodied by
the quanta of light which pair in opposite polarization. Hence
space is dark but it holds an energy density [32] on the order
of one nJ/m3. The non-zero energy density displays itself also
in the Aharanov-Bohm experiment [40] and as the Casimir
effect [49]. So in any closed system the conservation of mo-
mentum is a solid law. In fact, the law may seem universal,
since the Universe as a whole may by definition seem like
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a closed system. However, the quanta of light, that embody
the space both in pairs of opposite polarization and solo, are
open actions (Figure 2), whose momentum p may decrease
concomitantly with increasing wavelength λ or vice versa so
that the measure, known as Planck’s constant, h = p · λ re-
mains invariant. Equivalently stated, a decrease in energy E
is counterbalanced by an increase in time t, so that h = Et is
constant. Indeed, astronomical observations imply that the to-
tal energy density of the Universe is decreasing with increas-
ing time. The photon that emerged from the nascent energy-
dense Universe has shifted down in frequency f = 1/t when
adapting to ever more sparse surrounding densities on its way
to us and eventually terminating at absorption to our detec-
tor. Conversely, when insisting on that energy is conserved,
i.e., by applying a theory that conserves a symmetry, the en-
suing interpretation of supernovae data will require an ad hoc
patching, for instance, by dark energy [26].

Rules and regularities that are so apparent across scales of
nature, are rightfully related to conservation laws. However,
to avoid assigning phenomena as anomalous, it is necessary to
include everything in an explanation. To this end among the
laws of nature the truly superior and solid one is the conser-
vation of the total number of quantized actions in the whole
Universe.
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