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Abstract: The principle of least action provides a holistic worldview in which Nature in its 

entirety and every detail is described in terms of actions. Each and every action is 

ultimately composed of one or multiple of the most elementary actions which relates to 

Planck’s constant. Elements of space are closed actions, known as fermions, whereas 

elements of time are open actions, known as bosons. The actions span an energy landscape, 

the Universe, which evolves irreversibly according to the 2nd law of thermodynamics by 

diminishing energy density differences in least time. During evolution densely-curled 

actions unfold step-by-step when opening up and expelling one or multiple elementary 

actions to their surrounding sparser space. The energy landscape will process from one 

symmetry group to another until the equivalence to its dual, i.e., the surrounding density 

has been attained. The scale-free physical portrayal of nature in terms of actions does not 

recognize any fundamental difference between fundamental particles and fundamental 

forces. Instead a plethora of particles and a diaspora of forces are perceived merely as 

diverse manifestations of a natural selection for various mechanisms and ways to decrease 

free energy in the least time. 

Keywords: entropy; free energy; hierarchy; evolution; natural process; natural selection; 
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1. Introduction 

Actions integrate momenta along paths of an energy landscape [1–3]. According to the principle of 

least action flows of energy delineate on least-time trajectories. These geodesics can be determined 

when the energy landscape remains invariant under the influence of action whereas this task turns out 

to be intractable when the flows themselves drive the landscape in evolution. Physics, however, is able 

to tackle even such problematic processes with its most general concepts. 

Nature can be pictured in its entirety and every detail as an energy landscape that consists of diverse 

densities of energy. When energy flows from a spatial density to another, the landscape will change so 

that continuity and conservation of energy are satisfied. Specifically, when the flows of energy 

circulate on closed, bound orbits, the local landscape will retain its symmetry over the conserved 

motional period [4]. In general, when flows spiral along open, unbound paths, the landscape will 

evolve irreversibly by breaking its steady-state symmetry to another in non-conserved transformations. 

The laws of motion can be expressed concisely as actions in classical electromagnetism [5], general 

relativity [6] and quantum electrodynamics [7] but it is perhaps less appreciated that also the 2nd law 

of thermodynamics [8] can be formulated accordingly to describe evolutionary processes. 

Customarily the 2nd law is written as a differential equation, but the universal law can also be 

written in integral form. Then the natural law is known as the principle of least action where the 

integrand is kinetic energy 2K [1] that equals temperature T multiplied by entropy S. This identity 

allows us to recognize that when the system evolves along the least-action path from one state to 

another by consuming free energy at the maximal rate, entropy will be increasing in least time. In other 

words, the principle of increasing entropy given as a differential equation of motion and the principle 

of least action given as an integral equation of motion are equivalent imperatives [9]. The natural law 

for the maximal energy dispersal accounts for diverse irreversible processes that consume differences 

in energy density, i.e., free energy [10–12]. Eventually, when all forms of free energy have been used, 

the system’s open evolutionary path closes to the optimum orbit of a conserved stationary state. Then 

the energy landscape is even and can be characterized by a group of symmetry. Thus, the evolutionary 

equation derived from the statistical physics of open systems [13,14] offers insights as well to the 

motions of Hamiltonian systems where energy is conserved over the period of integration. The 

objective of this study is to show how some familiar forms of physics unite when nature is described in 

a comprehensive and self-similar manner as actions within surrounding actions.  

2. The Natural Law of Maximal Energy Dispersal 

The classical notion of the 2nd law of thermodynamics [8] simply says that differences in energy 

will level off so that the free energy minimum state will be attained. Consumption of free energy 

powers evolution from one state to another. Motions as flows of energy channel preferentially along 

the steepest descent in time (t = /t) which is equivalent to the steepest directional (i.e., velocity v) 

gradient (D = v). Along these paths the flows of energy are most voluminous and the free-energy 

minimum state will be attained in least time. In other words, the natural process directs itself along the 

resultant of forces. The statistical measure for the natural process is entropy S = kBlnP which is the 

logarithmic probability and hence an additive measure [15]. Since the most voluminous flows of 

energy will direct along the steepest directional descents, entropy will not only be increasing but it will 
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be increasing in least time. This universal imperative is recognized in the maximum entropy 

production principle [16,17]. The maximal consumption of free energy implies also the maximum 

power principle [18]. Since the natural process follows the least-time path, it can be also formulated by 

the principle of least action. 

The principle of increasing entropy as the evolutionary equation of motion is obtained from the 

statistical physics of open systems [13,14]: 

0 ,t B t Bd S k d P P k L    (1) 

where the rate of entropy change is proportional by Boltzmann’s factor kB to the process generator  

L = TđtQ in accordance with classical thermodynamics [8]. The probability in motion dtP = LP 

(Equation 1) is expressed using energy densities [19] so that each energy density j, present in 

indistinguishable numbers Nj of j-entities, is assigned with j = Njexp(Gj/kBT) where Gj is relative to 

the average energy kBT of the system per entity. According to the scale-free formalism [20,21] each  

j-entity itself is regarded as a system of diverse k-entities. Thus each population Nk is associated with 

k = Nkexp(Gk/kBT). These are bound forms of energy. When energy flows from one bound form to 

another, energy is in a free form.  

The entire system is composed of diverse systems within systems [22] (Figure 1). It is summarized 

by the total probability [13,14]: 
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defined in a recursive manner so that each j-entity, in indistinguishable numbers Nj, is a product Nk 

of embedded k-entities, each distinct type available in numbers Nk. The energy difference between 

entities j and k is Gjk = Gj − Gk or gjkGjk = Gj − gjkGk when the j-entity is formed from 

indistinguishable (symmetrical) k-entities in degenerate numbers gjk. The change in vector potential, 

i.e., radiation Qjk couples to the jk-transformation orthogonal, as indicated by i, to the scalar potential 

difference. The notation emphasizes, for example, that when an electron falls along the electric 

potential gradient, it will radiate light orthogonally to its path. Likewise, electromagnetic radiation as a 

transverse wave will induce a varying voltage in an antenna perpendicular to the direction of 

propagation. The notation that explicitly distinguishes scalar and vector potentials, is of no apparent 

value in equilibrium thermodynamics since in the thermodynamic steady state there is no net flux of 

energy between the system and its surroundings. Moreover, since the statistical mechanics of closed 

systems aims only to reveal the stationary-state partition, there is no need to include explicitly the 

vector potential because at the equilibrium the net flux vanishes. However, here when describing 

evolutionary processes as evolving landscapes, it is useful to make the explicit distinction between 

bound and free forms of energy.  

The probability in Equation 2 is a physical quantity, as usual in statistical mechanics. When it is 

multiplied by kB: 

 ln ln 1j j jk jk B
j j k

P P N i Q k T 
      

 
    (3) 

the aforementioned additive statistical measure, entropy S for the entire system is obtained [23].  

The free energy Ajk=jk − iQjk, also known as affinity [24], is the motive force that  
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directs the transforming flow dtNj from Nk to Nj by its scalar (chemical) potential 

jk=j−k=kBT(lnj−lnk) and vector Qjk potential differences. The adopted approximation 

lnNj!≈NjlnNj−Nj implies that lnPj is a sufficient statistic [25] for kBT when the j-system is allowed 

absorb or emit quanta without a marked change in its average energy content, i.e., Ajk/kBT << 1. In its 

diverse populations Nj and in the free energy terms Ajk the system holds capacity C = TdS/dT to resist 

the changes in its average energy imposed by its surroundings at a different temperature. 

Figure 1. A self-similar energy level diagram describes the nested hierarchy of nature 

where each j-system (a composite solid in blue color) is regarded as a system within 

systems that are all being ultimately composed of multiple elementary constituents (blue 

solids). All systems evolve via step-by-step jk-transformations toward more probable states 

by consuming mutual energy density differences contained in chemical potentials jk 

(horizontal arrows) and those in vector potentials Qjk (vertical wavy arrows) relative to 

the surroundings. During this natural process, the entities will distribute on the energy 

levels so that the free energy is consumed in least time. Therefore at any given time the 

probability distribution Pj closely outlines the maximum entropy partition of a statistical 

system. Exchange of entities at the same level (bow arrows) does not introduce a change in 

energy. Thus these reversible processes do not affect the average energy kBT.  

 

 

When a system is small, it does not have much capacity to resist changes that are imposed by the 

energy difference relative to its surroundings. Therefore such a system will undergo a dramatic change 

of state, i.e., it will evolve abruptly. During these critical events [26], e.g., when a new j-species 

emerges or an old one goes extinct, Pj will change at once, e.g., from fifty-fifty indeterminism to full 

certainty. Moreover, when interactions are insufficient to establish common kBT over a given period  
of time, the entities fail to form a system but remain as constituents that surround statistical systems at 

a lower level of hierarchy where interactions are more frequent and intense [27–29]. 

According to the natural law, given as an equation of evolution (Equation 1), a system which is 

higher in energy density than its surroundings, will evolve from its current state to a more probable one 

by displacing quanta to the sparse surroundings. Conversely, a system having lower energy density than 

its respective surroundings will evolve by acquiring quanta from the dense surroundings. Any two states 

are distinguishable from each other only when the jk-transforming flow is dissipative Qjk ≠ 0 [14,30]. 
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In view of that a net non-dissipative system is stationary. The maximum entropy state is stable so that 

an internal perturbation Nj away from the steady-state population Nj
ss will induce returning forces and 

opposing flows, i.e., dS(Nj) < 0 and dtS(Nj) > 0 [31]. In contrast any change in surroundings will 

compel the system to move toward a new steady state. In other words the equilibrium will shift to 

counteract the imposed change so that a new equilibrium will be established [32]. 

The evolutionary equation of motion (Equation 1) is obtained from Equation 3 by differentiating 

(Pj/Nj)(dNj/dt) [13,14]: 

,

ln 0jk
t t j

j k B

A
d P L d N

k T
     (4) 

when the time step t is denoted as continuous dt. The notion of continuous motion is in accordance 

with entropy being a sufficient statistic for kBT. It means that the steps of evolution are small in energy 

compared to the total energy of the system. However, the actual jk-transformations do advance in 

quantized steps of Qjk during t since each state associates with a group of symmetry [4] and a 

breaking one symmetry to another is a discontinuous event.  

3. The Evolving Energy Landscape 

The equation of motion for the evolving energy landscape is attained by multiplying Equation 4 

with kBT to give continuity for the flows of energy [14,30]: 

, ,

lnB t t t j jk t j jk
j k j k

k Td P Td S d N i d N Q        (5) 

which result from changes in the scalar and vector potentials. Using the definitions j = ∂NjUjk and  

dtNj = vj∂xNj and vj = dtxj the three-term formula is transcribed to a convenient continuum 

approximation: 

, , ,

2
jt jk j x jk t jk

j k j k j k

d K v U i Q        (6) 

where the changes in kinetic energy 2K and scalar U and vector Q potentials are given in the Cartesian 

base of space j,k = {x,y,z} and time t. The flow equation simply says that when the irrotational 

potential energy Ujk = −xjmjkak is consumed during dt, the power ∂tQjk = vj∂tmjkvk = vj∂tEjkvk/c
2 is 

dissipated and the balance is maintained by the change in the kinetic energy 2Kjk = vjmjkvk (Figure 2). 

This conversion of energy from one form to another has been conjectured already a long time  

ago [33,34]. Of course the change in mass (dm) is often very small, but conceptually important 

because it accompanies a change of state. For example, in a chemical reaction the change of mass per 

molecule is only a very small fraction of the mass of electron, nevertheless to recognize dm is essential 

because it signifies the transition from one state to another. 

When the system is in a steady state, the divergence-free part of the force, i.e., the net dissipation 

vanishes. Then the energy content of the stationary landscape spanned by the j- and k-entities is 

denoted by the invariant inertia xjmjkxk and by the invariant mass mjk. According to m = E/c2 the mass 

defines the jk-system’s energy content in terms of a radiation equivalent which can be dissipated,  

i.e., absorbed into the surrounding energy density, the free space known as the vacuum. It makes sense 

to give the energy content in terms of photon equivalents because heat, i.e., electromagnetic radiation 
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is the lowest form of energy. The systemic energy is related to its surrounding radiation by the index  

njk = c2/vjvk (isotropic vj = vk). For example, energy in radiation, when it is spatially confined to a 

standing wave, can be given in terms of a mass equivalent. Thus the conservation of energy is 

respected in the transformation between the bound and free forms of energy.  

Figure 2. A step of evolution is a transformation from a closed action coordinated at xk to 

another bound state at xj so that the change in kinetic energy dt2K balances the changes in 

the scalar vx∂xU and vector potentials ∂tQ. The dissipation to the surroundings results from 

the concomitant change in mass m = E/c2. In the stationary state, net fluxes vanish so 

that the closed least-action trajectory dt2K = 0 can be integrated over the motional period  
to yield the steady-state balance 2K + U = 0.  

 
 

The notion of an energy landscape in motion becomes more vivid when the dissipative flow from 

the density at xk toward the density at xj during t is described to channel along an arc sjk. The affine 

connection along a continuous curve x = x(t) between the two spatial density loci spans a length  

s = (F·v)½dt = (dt2K)½dt [35]. When the landscape is stationary, the curve is integrable. In contrast 

when the landscape is evolving, the flows of energy are non-integrable because their paths keep 

changing as the landscape is changing due to the flows themselves. At branching points where paths 

diverge, differentials đt are inexact. A small flow will not perturb much a statistical system and its 

trajectories can be estimated rather well. However, even a small flow of energy will be sufficient to 

move a microscopic system substantially. Eventually the step of change from an initial state may be so 

dramatic that the system at a final state is beyond recognition.  

The concise notation for the many motions of the differentiable landscape (Equation 6) is developed 

further by denoting the spatial ∂x and temporal ∂t gradients as a 4-vector [36,37]: 

   / , / , , , .t t x y zc c          (7) 

when ∂ acts on the scalar U and vector Q potentials which, in turn, are given as the free  

energy 4-vector potential in the one-form space-time basis:  

   , , , , ,x y zA U U Q Q Q    Q  (8) 
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the curvature in the two-form F = dA is obtained. It is represented by the covariant antisymmetric  

rank 2 tensor:  

0

0

0

0

x y z

x z y

y z x

z y x

F F F

F R R
F A A

F R R

F R R

    

   
        
   

 (9) 

where the translational and rotational changes in momentum are dtp = F = −U + ∂tQ/c and  

R =   Q. When the components of scalar  = U/q and vector A = −Q/qc potentials are divided by 

charge q, F is the electromagnetic force. The change dtp, i.e., F relates to the change in the angular 

momentum dtL, i.e., torque  = r × F normalized by radius of curvature r (Figure 2). The continuity is 

preserved by the invariants FF
 = 2(F2 − R2) and FF

 = 4F  R and FF = 2(F2 + R2).  

Specifically, at the stationary state the exterior derivate of the system’s curvature yields the 

conserved currents by d*F = J so that the conserved energy density, i.e., the invariant mass, orbits with 

phase velocity dt =  exactly once in a period  = −1 on the closed least-action path according to  

p   = −U. In the thermodynamic steady state there is no net emission from the system or net 

absorption to the surroundings over the motional period. Then the exterior algebra of the system’s dual 

dF = 0 says that the surrounding is a flat landscape with respect to the system and thus exerts no 

forces. In other words, the system’s average energy density kBT exactly matches that of the 

surroundings. In the stationary state there is no net force and light propagates straight.  

The surrounding vacuum cannot evolve a step further down because the electromagnetic radiation 

with its symmetry group U(1), the most elementary one, cannot be broken down any further. Since this 

form of action is already an open path, it cannot be opened any more to release photons. This is to say 

that the photons have no mass. Photons are the massless gauge bosons of quantum electrodynamics 

that communicate exchanges of energy in interactions that conserve the stationary state. These 

reversible flows are the familiar conserved currents along tractable trajectories that are straight 

geodesics of even landscapes [4]. Since the closed actions have fixed energies, they comply with the 

ordering relations. Therefore the steady states are countable, and any-one closed ring as a subset of 

affine space is an algebraic variety [38,39]. 
In general, the evolving energy landscape, represented by the curvature 2-form F = dA of some 

principal high-symmetry bundle, is leveling off via symmetry-breaking transformations from one state 

to another more probable one. Bound forms of energy, i.e., fermions open up to output free forms of 

energy, i.e., bosons that dissipate to the surroundings. Since the system and its surroundings share a 

common interface for the flows of energy, the entropy of both the system and its surroundings will 

increase when mutual energy density differences decrease. The conservation of energy including both 

the system and its dual is respected by the differential geometry. The star operator transforms an 

oriented inner product density contained in an element of space, e.g., given in the Cartesian base,  

*(dx  dy  dz) = dt to radiated energy density that is carried away by an element of time.  

It is worth noting that continuous transformations of the Lorentz group SO(3,1) with metric 

signature (+,+,+,−) [40] are conserved, i.e., not evolutionary processes. When no symmetry is broken, 

no quantum is dissipated and no change of state has happened. The sesquilinear inner product defines 

the stationary-state unitary space with the Euclidean norm. The space is invariant under multiplication 
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by the complex numbers of a unit norm. In these special cases, the equation of motion describes 

merely a phase precession at constant energy. Since energy is constant, there is a norm and the 

equation for the phase precession can be solved by a unitary transformation that will remove explicit 

time dependence from all variables. In contrast the equation of evolution cannot be solved when a 

natural process has two or more alternatives paths from one state to alternative states. The difficulty in 

computing a non-computable [41,42] is familiar from the three-body problem [43]. Admittedly the 

non-Abelian gauge theory [44] accounts for directional transitions but when the integrand of action is 

forced to remain invariant, no net evolution will take place. Then the directional transformations 

formalize merely the to-and-fro flows of energy. Therefore no continuous group of transformations 

will account for the natural processes since in these irreversible processes from one state to another, 

symmetry is broken.  

During evolution the landscape’s curvature due to the differences in energy levels will decrease 

when the spatial potentials j = NjUjk and k = NkUjk adjust to accommodate or discard the vector 

potential that couples the system to its surroundings via the jk-transformations. The diminishing 

curvature of a differentiable landscape, i.e., the force can be represented by a vector field gradient. The 

non-vanishing Lie’s derivative [45] means that the change v = dtx in the coordinate and the change  

F = dtp in the momentum, are not collinear due to the net energy flux tQ over dt to the system from 

the surroundings or vice versa. Therefore operators in [ p̂ , x̂ ] = −iħ do not commute by the minimum 

amount of action in a change of state. This uncertainty of at least one quantum in determining the state 

of the system is inherent in any measurement because the detection requires that at least one quantum 

is either emitted from the system to the detector or vice versa but that very quantum will change the 

state of the system. Consequently the systems that are undergoing changes of state contain open 

actions. These evolving systems cannot be ranked with respect to each other because their energy  

is changing.  

The evolving energy landscape is represented by:  

0
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where the 4-vector velocity v = (−c, vx, vy, vz). The flow tensor contracts to the 0-form  

dt2K = dt2K = −v  U + ∂tQ + v  R where the change in the kinetic energy balances the changes 

in the scalar potential due to matter flows as well as the changes in the vector potential due to radiation 

fluxes. When the system communicates with its surroundings exclusively via radiation, Equation 10 is 

familiar from the theory of electromagnetism [46] where the radiation Q at the speed of light c 

dissipates orthogonal to the source moving down along –U at velocity v (Figure 2) [14]. Conversely, 

when the system is stationary ∂tQ + v  R = 0, its stable orbits are governed by ∂t2K + v  U = 0 

which is integrable to the steady-state balance 2K + U = 0 or differentiable to the equation for  

standing waves. 

The energy flow from the density j, which defines its spatial locus xj, to k, which in turn defines 

xk, is identified as the flow of time [14]. Thus the notion of time presupposes the notion of space [47]. 

The motion down along the spatial gradient is irreversible when emitted quanta escape forever and 
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reversible when quanta are reabsorbed. Emission will change the coordinate of the source relative to 

the sink, and absorption will change the coordinate of sink relative to the source (or vice versa). 

Conversely, when the system is stationary, so are its surroundings. It is familiar from unitary 

transformations that the steady phase velocity dt =  does not suffice to distinguish the systemic 

motions from the surrounding motions.  

4. The Preon Action 

Evolution from one stationary-state symmetry to another implies that actions are quantized because 

the stationary states’ conserved currents are on closed orbits, and all bound curves are modular. The 

divisible circular group means a periodic orbit, and a rational winding number is equivalent to a 

mode-locked motion. Physically speaking, the state is stable when the corresponding action is 

modular, i.e., quantized over the closed least-action path. The curve with zeros (nodes) is familiar from 

the Bohr’s model of an atom where angular momentum L = px = 2K = nħ equals the elementary 

action ħ in n multiples. The kinetic energy 2K within the period  is distributed on the closed orbit in 

modules enumerated by the principal quantum number n. Thus a step of evolution from one stationary 

state to another is mathematically speaking a step in the modulus of the cyclic group. When the sum of 

points on the ring changes, also its divisor will change. This is explicit in Equation 5 and implicit in 

Equation 6 where the dissipation-driven evolutionary step of Nj will in fact cause the action to step in 

momentum p and in length x = vt from one closed orbit to another. The constant of action ħ, as the 

absolutely least action, can be considered as a physical entity (Figure 3). The most elementary fermion 

is the energy density of the bound geodesic given by the geometric product L = px [48] which has a 

specific handedness, usually referred to as spin ±½.  

Figure 3. (A) The basic element of space is the most elementary fermion, the neutrino. The 

confined circulation of energy exists in two chiral forms  and * corresponding to the 

opposite senses of circulation. The vertical bars denote the respective scalar potentials  

−U = 2K and U = −2K. (B) The basic element of time is the most elementary boson, the 

photon. The open flow of energy exists in two forms  and * of opposite polarizations that 

correspond to the opposite (color-coded) phases iQ and −iQ (the figures were drawn with 

Mathematica 7 that was appended with CurvesGraphics6 written by G. Gorni.)  
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This oriented element of space is equal to the absolutely least angular momentum L associated with 

the kinetic energy within the orbital period 2K = ħ. Thus ħ can be regarded as the fundamental 

element of space. The most elementary boson carries the energy along the open directed geodesic pvt 

which has a specific handedness, usually referred to as polarization ±1. This oriented element of time 

is equal to the absolutely least action 2Kt = h that contains the energy carried within the wave’s period. 

This open action that equals Planck’s constant can be regarded as the fundamental element of time. It 

takes two of these actions to reverse the polarization from +1 to −1. The first will interfere 

destructively (head-on) with the original handedness and the other will create the mirror hand. In the 

following we will refer to the fundamental oriented element of time as the photon  and its opposite 

sense of polarization as the antiphoton . Thus the photon is considered as its own antiparticle. 

Accordingly, we will refer to the fundamental oriented element of space as the neutrino  and its 

opposite sense of circulation as the antineutrino . According to the physical portrayal of nature, the 

constant of action is the most elementary action which is abbreviated here as the preon [49].  

5. Multiple Actions 

The principle of least action regards all entities of space and time, i.e., diverse fermions and  

bosons [50] as being ultimately composed of the preon actions. Since the action is a directed path, each 

fermion and each boson is distinguishable from its own antiparticle which is the reversed action. An 

electron e− is described as a least action path where preons coil to a closed torus having the electron 

neutrino e chirality (Figure 4). Electron’s steady-state characteristics are obtained from dtL = 0. This 

resolves to a constant 2K = ∫vEdt = ∫Edx = e/4x where the density  distributes on the torus’ 

path length x so that the conserved quantity, known as the elementary charge e =x, sums from the 

current in the field E according to Gauss’s law. The invariant fine structure identifies by integration to 

the normalized constant L/ħ = ∫dt/ħ = e(/)½/2h =  where the squared impedance  

Z2 = / = (c)−2, in turn, characterizes the stationary-state density that satisfies the invariant condition 

∂t + c2A = 0 [51]. Moreover, the circulation gives rise to the magnetic moment  

e = ∫rrvdx = errp/me = eL/me. Its anomaly /2 [52], i.e., the excess of e over B = eħ/me results 

from the helical pitch. The rise of coiling contributes to e = eI/me = ex2/t along the torus path length 

x beyond the plain multiples of ħ (as if the path were without pitch) where inertia I = mex
2 and L = I 

(Figure 4).  

As well, the positron e+ is a torus but with antineutrino e
 handedness. In energy-sparse 

surroundings e+ and e- interfere almost completely destructively. Only the helical-pitch modulation 

does not cancel. Thus, the annihilation bursts out anti-parallel rays of photons  and  so that each is 

equivalent to the comparatively low mass me = 511 keV/c2 that is characteristic of the elementary 

charge (Figure 4). In topological terms, the low mass means that the winding number of the elementary 

charge about the torroid’s center is low. When dissipation is normalized by the quantum of action, the 

characteristic trembling frequency  = 2mec
2/ħ [53], is obtained.   

The W− boson that mediates the weak force is regarded as an open-ended helix of e-chirality. The 

helical line is of high energy and thus in energy-sparse surroundings it is not the least-action path but 

decays as W− → e− + e
*. The pitch-accumulated lag-phase  = 2 is absorbed at the torus closure by 

the antineutrino. Since the torus itself is a loop, the elementary charge is conserved in the decay 

process. Likewise, the W+ boson is an open-ended helix of e
*-chirality that processes as  
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W+ → e+ + e. The neutral Z0 boson is also an open-ended path where a -linker joins two helices one 

having e and the other e
-chirality. Energy-sparse surroundings drive the decay Z0 → e+ + e−. The 

weak bosons display extraordinary high masses in comparison to their closed form 

fermion-antifermion counterparts, because these open paths have comparatively little topological 

self-screening via intrinsic phase cancellation, i.e., their winding numbers are high.  

Figure 4. (A) Electron e− is a closed least-action torus which is composed of multiple 

preon actions having neutrino sense of chirality. The helical pitch is seen from the roll of 

the arrow heads. The lag-phase due to each winding totals = 2 around the torus. (The 

pitch is exaggerated for clarity). (B) Conversely, positron e+ is a closed torus of multiple 

preons having antineutrino sense of chirality. (C) When the surrounding energy density is 

high, e− will convert by breaking its closed chiral symmetry to the open W− boson and 

electron neutrino e. (D) Conversely, e+ will convert to W+ boson and electron antineutrino 

e
*. The actions having opposite sense of circulations will annihilate so that streams of  

and * stem only from the lag-phase modulation which accrued along the opposite  

helical pitches.  

 
 

In an atomic nucleus, proton p+ is portrayed as a least-action path where two 2/3-helices of 

e
-chirality, known as up-quarks u, and one 1/3-helix of e-chiralily, i.e., down-quark d, join via three 

-linkers, known as gluons g. Along each u the helical path accumulates  = 4/3 and likewise d accrues 

 = 2/3 so that a gluon, as an open preon, links any two quarks at the angles that the faces of an 

equilateral tetrahedron make with each other (Figure 5). The front-end  of one u links via g to the 

back-end  of the other u, and then further -u links via g to -d and finally -d links via g to -u 

to close the path. In the tripod constellation each quark as a directional element of the closed path is 

distinguishable from any another which is the essence of quantum chromodynamics.  

Proton p+ transforms to neutron n via electron capture where e− breaks, when attracted to u, to W− 

which makes a snug fit at u so that a partial annihilation will commence and yield d (Figure 5). 

Likewise, when n is free, i.e., in energy-sparse surroundings, the reverse process begins when W+ is 

attracted to make a snug fit at d and the partial W+d-annihilation will yield u. The provided “wire 

frame models” are illustrative but perhaps puzzling since p+ by the perimeter is longer than n, yet the 

mass of the neutron is slightly bigger than that of a proton. However as clarified earlier above, the 

mass is a measure of energy in terms of net dissipation. The topological self-screening of u in p+ and d 

in n are nearly the same. The small difference is accrued from the incomplete cancellation of opposite 
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phases of pitch. The significant difference in proton and neutron magnetic moments, in turn, is 

understood to stem from the substantial differences in the oriented areas that are closed by the 

respective currents. The wire frames (Figure 5) allow an easy imagination of various natural process 

such as a pion decay +: ud*→W+ →e++e
*, where the ud*-ring opens so that d* (oppositely wound d) 

will resettle via the high-mass intermediate W+ integrally to the low-mass e+-torus. 

Figure 5. (A) Proton p+ is a closed circulation where each up-quark u (red) is 2/3 of torus of 

e
*-chirality and the down-quark d (blue) is 1/3 of torus of e-chirality. The lag-phase  

 = 4/3 accrued along each u and  = 2/3 along d due to the helical pitch, define the 

relative angles of quarks, i.e., symmetry of the closure linked by gluons g (black arrows). 

(B) Electron capture p+ + e− + e
* → n is intermediated by W- which as an open action will 

initiate a partial annihilation at an exposed end of u (blow-up) that will yield d. (C) The 

resulting neutron n is a three-gluon-linked closed action udd.  

 
 

On the other hand the proton decay as a putative process p+→e++0 [54] is seen in terms of 

actions so that the X-boson (balanced by e+ + d*) would be attracted to p+ to make a snug fit along  

u- -g- -u. However, such an annihilation process is unlikely to take place in low-density 

surroundings (Equation 1) because it would yield disjoint d and d* which are high-energy by-products. 

The process does not yield the anticipated pion 0 which would indeed have only moderate mass since 

in the meson, the circulations of linked quark and antiquark pair cancel apart from the lag-phase 

accrued along their opposite pitches. Thus, the violation of color confinement would  

require extraordinarily high-energy surroundings to provide the asymptotic freedom [55] for  

quark-gluon plasma, or the violation of baryon number conservation would require a blazing 

transformation [56,57].  

Heavier fermions are viewed as excited strings of the aforementioned ground-state actions. An 

excitation lifts the elementary closed symmetry SU(2) so that an action at a higher harmonic (bending) 

mode has more to dissipate and thus manifests itself as a heavier particle that tends to decay back to 

ground state. Altogether the collective modulations of the preon multiples are known in the Standard 

Model as flavors of leptons, quarks and mesons.  
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6. Fundamental Forces 

According to the principle of least action a difference of energy of any kind is a force that will be 

leveled off in the least time. Consequently no interaction is fundamentally any different from any 

other, when everything is viewed as being ultimately composed of multiple preon actions. Energy 

dispersal only manifests itself differently at different densities of energy. High-density actions are 

highly curved paths. A strong force is required to open these closed actions, i.e., to turn a fermion to a 

boson. In this sense for every fermion there is a corresponding boson which is the notion of 

supersymmetry. At high nuclear densities quarks integrate seamlessly via gluons to a closed path. 

Internal reflections at density boundaries, familiar from optics, presumably confined as well the very 

high density of the nascent Universe. Likewise, a weak force is sufficient to open lepton curvatures to 

weak bosons and photons.  

The Coulomb interaction, in turn, manifests itself between actions whose circulations generate 

charges. In the thermodynamic steady state the bosons form standing waves between the oppositely 

charged fermions. For example, at intermediate densities a bound action known as the hydrogen atom 

results from exchange of  and * between p+ and e− (Figure 6).  

Figure 6. (A) Electromagnetic interaction arises from the density difference between 

charged fermions and their surroundings. (B) Sparse surroundings cause attraction by 

accepting full wavelength modules || of photons from the bound actions that pair opposite 

charges q− and q+. For clarity only the action along the shortest electromagnetic field line 

(dashed) is decorated with density modules. Beyond the bound pair of charges energy 

density propagates at the speed c2 = 1/oo. The energy density remains finite also long the 

dipole axis where the anti-phase waves do not couple to the antenna. (C) Like charges 

generate alike-polarized, open actions that cannot pair to form a bound action. (D) 

Therefore in sparse surroundings repulsion remains the mechanism to dilute the density 

between q+ and q+.  

 
 

When the surrounding density increases, photons from the surroundings will integrate in the 

modular paths along the field lines so that these will extend up to an excited state. Conversely, when 

the surrounding density settles down again, the sparse surroundings will accept the discarded 
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full-wavelength modules of photons as the system returns to the ground state. In contrast, like charges, 

which generate fields of like polarization, cannot support standing waves between them to form a 

stable state. In the sparse surroundings the density between them will dilute by repulsion. 

Moreover, it is important to realize that the density due to the four-potential (Equation 8) exists 

beyond net neutral bodies although the resultant electromagnetic field of anti-phase waves, i.e., the 

force experienced by charges, vanishes. Interference effects of the non-vanishing density manifest 

themselves in double-slit experiments [14]. 

The gravitational interaction, just as other interactions, can be understood to result from density 

differences. Two net neutral bodies are attracted when their sparse surroundings, characterized by  

oo = c−2 and o/o = Z2, accept actions that are released in transitions from one standing-wave orbit 

to another (Figure 7).  

Figure 7. (A) Gravitational interaction arises from the energy density difference between 

net neutral bodies and their surroundings. (B) Sparse surroundings attract by accepting 

doubly paired density modules |||| of gravitons from the bound actions that pair the bodies 

along gravitational lines. (C) Irradiative combustion of high-density actions is a powerful 

mechanism to diminish the density difference between a body and its surroundings. (D) 

The burning star gives away density, hence the conservation of energy (Equation 6) 

requires for a planet to advance its perimeter from one modular orbit to another.  

 
 

The gravitational force is the difference in density between two celestial bodies and their 

surrounding density just as it is the difference between the density in a microscopy cavity and its 

surrounding density. A cavity, tiny or enormous, cannot accommodate all the standing modes 

propagating in the universal surroundings [58]. The fundamental modulus of a standing gravitational 

wave is a pair of bosons with opposite phases. The expression of a standing wave as a sum of 

oppositely propagating waves subject to boundary conditions [59] is familiar from the derivation of 

Planck’s law of radiation [60]. Since a modulus of density wave between net neutral bodies is without 

longitudinal vector character, a traceless symmetric rank-2 tensor (cf. electromagnetic wave) describes 

transverse modes of this particle, known as the graviton. It takes four elementary actions to reverse the 

polarization of graviton from +2 to −2. Two preons will interfere destructively with the pair with 

original handedness and the other two will create the mirror-handed pair.  
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The familiar form of the conserved potential U for two net neutral bodies displaced by r12 is 

obtained, as before, from the steady-state condition, i.e., the least-action which is equivalent to the 

steady-state balance 2K + U = 0 as follows:  

2 3
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where the angular momentum L = I depends on inertia I = miriri = mimjrij
2/mi = mimjrij

2/M and 

period 2 = 1/2 = t2r3/R3. The inertia, when normalized by the total mass M of the Universe, can be 

seen as an expression of the principle 2Gt2 = 1 where the mass density  is within the radius  

R = ct [61], so that any given density is coupled to every other density. The numerous (decay) paths to 

disperse energy span the affine energy landscape, the universal buoyancy where the density flows level 

off any density difference in the least time. Thus the cosmological principle, i.e., homogeneity at the 

largest scale can be seen as a consequence of a natural selection for the maximal dispersal. 

According to the 2nd law of thermodynamics a system may emit quanta when its surroundings are 

lower in energy density. The ultimate sink is the universal surrounding free space. Today, at t = 13.7 

billion years, the very low average mass density  ≈ 9.9  10−27 kg/m3 [62,63] corresponds to a tiny 

curvature over a titanic radius R = ct [64–66] and sets the gravitational constant G = 1/2t2 to its 

current value. The minute but non-negligible acceleration at = GM/R2 = 1/ooR = c2/R = c/t = cH 

drives the on-going expansion at the rate H [67,68] that is changing as dtH = −H2 = −2G. On the 

basis of  or equivalently of H the dilution factor n = L/ħ is on the order of 10120. This factor is the 

well-known discrepancy between reality and the calculated vacuum energy density (as if no expansion 

had taken place). At any given time the total mass of the Universe in its dissipative equivalent  

Mc2 = MatR = R∂rU = −U matches the scalar potential. This innate equivalence is known also as the 

zero-energy principle [6]. The balance is also reflected in the quantization of the electromagnetic 

spectrum. The cosmic microwave background radiation profiles according to the Planck’s law a 

discrete quasi-stationary entropy partition of fermions (Figure 1). The unfolding Universe is stepping 

from one mode to lower and lower harmonics [69] along its least action path toward the perfect,  

i.e., torsion-free flatness dtL =  = 0. The acceleration, which is proportional to the winding number  

  R−2 of those folded actions, will be gradually limiting toward zero. When all densities have 

vanished, no differences, i.e., forces will exist either. 

The Universe has today evolved to span numerous levels of hierarchy but there is no fundamental 

distinction between the diverse forms of energy, e.g., light, quarks, atoms, molecules, beings, planets, 

solar systems and galaxies, since they all are ultimately composed of preons. The vast variation in 

energy densities is reflected in the relative strengths of interactions that extend over some 38 orders of 

magnitude but there is no profound distinction between strong, weak, electromagnetic and 

gravitational interactions. All forces as density differences between the preons in diverse fermionic 

varieties are communicated by the preons in various bosonic forms. At any level of nature’s hierarchy, 

e.g., from neutrino via electron to an atom, a closed least action affords at most three dimensions of 

space which are usually interpreted as the degrees of freedom. One axis is orthogonal to the plane of 

the other two where the least action curve exists and closes to a cycle. Indeed it makes sense to see 

space at higher and higher magnifications as being folded to densely curved actions, but not to imagine 

the degrees of freedom as an abstract concept without physical correspondence. In turn, an open action 
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associates with the degree of freedom that span the dimension interpreted as time. When the system 

evolves from one spatial state to another, open actions carry the flow of energy that is experienced as 

the flow of time. Its direction is due to diminishing density differences. At a thermodynamic steady 

state in- and outgoing bosons are equally abundant. When the two populations of polarizations form a 

standing wave, motions are fully reversible. There is no time-dependence but then time is a 

bidirectional parameter with two degrees of freedom. Indeed it makes sense to see time when broken 

down to finer and finer steps, as a quantized energy transduction process but not to regard 

irreversibility and reversibility as abstract notions without physical correspondence.  

7. The Mass Gap 

Evolution is basically an energy dispersal process that advances from one state to another by 

spontaneous symmetry breaking. Although it is obvious, it is important to note that any transformation 

from a closed orbit to an open curve is discontinuous. In other words, the action is either closed or 

open but not anything in between since no change of symmetry is indivisible. Eventually, when 

evolution arrives at the state of next most elementary symmetry, the closed preon opens up and drains 

altogether as an open preon (Figure 8).  

The winding number of the most elementary non-commutative ring is ±1 whereas for an open wave 

it is zero. Thus the closed preon associated with the SU(2) symmetry has the least mass m > 0, i.e., the 

conserved quantity whereas the open preon associated with U(1) is without mass m = 0. The most 

elementary symmetry cannot be broken any further. For that reason there is no primitive root of unity, 

i.e., a standing-wave solution corresponding to a mass. It follows that there is a mass gap which is a 

finite difference in energy between the lowest bound state and the free, open state. 

It is common to denote by a vacuum vector  the eigenstate of Hamiltonian H with zero energy  

H = 0, but this notion is abstract without physical correspondence. When there is no energy density, 

there is no state either. The surrounding free space of the Universe is not empty but the energy density 

known as the vacuum amplitude, in some theories referred to as the Higgs field, is in balance with its 

fermion systems (Figure 1). This balance between radiation and matter is apparent from the cosmic 

microwave spectrum that matches the black-body spectrum. The conservation of energy requires that 

at any given step during the universal energy dispersal process, the change in kinetic energy density, 

deemed as continuous in dt(v2) = −vu − c2(EB), balances the change in the scalar potential 

density u due to the average density  of matter with the change in the electromagnetic radiation 

density. The vector −1EB [46] embodies energy of free space which is unique up to a phase and 

invariant under the Poincaré group in accordance with Maxwell equation dF = 0 in the absence of 

charges and currents.  

The Lie derivative is conveniently continuous in evaluating the change of one vector field (∂tQ/c) 

along the flow of another vector field (vU). The smooth, differentiable manifold, such as the gauge 

group U(1)×SU(2)×SU(3) of the Standard Model, is admittedly suitable for mathematical 

manipulation, but it would be appropriate only for a stationary system because it fails to describe the 

discontinuous event of breaking symmetry. 
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Figure 8. Level diagram depicts an array of actions (colored) that are classified according 

to unitary groups of symmetry. Each stationary action equals the kinetic energy 2K 

integrated over the period  along a directed path. It associates via Noether’s theorem with 

a conserved quantity m. A mass gap m  0 exists between the closed action of the most 

elementary fermions, the neutrinos defined by the next lowest symmetry group U(2) and 

the open action of the propagating photons defined by the most elementary group U(1). 

The radiated energy  =mc2 in the transformation from U(2) down to U(1) amounts 

from the photons that disperse in the surrounding free space. The energy density of the free 

space is non-zero as is apparent from the finite speed of light. Only one of the two chiral 

forms of U(2) fermions can be detected via emissive transformations to U(1) whereas a 

detection by absorption would transform the U(2) particle to another one of a higher 

symmetry group.  

 
 

The step from one stationary-state symmetry to another takes at least one quantum of action from 

the system to its surroundings. When the quantized action is understood as the basic constituent of 

nature, no renormalization is required to escape from singularities that trouble theories which are based 

on the energy concept [70]. Thus, it is not productive to maintain that the Lagrangian would be 

invariant and that evolution would be a continuous group of transformations. Accordingly, it is 

inconsistent to insist on the existence of a theory which would both comply with a gauge group via 

renormalization, and also display a mass gap [71].  

Theorem: For any-one compact simple gauge group G, there exists no quantum Yang-Mills theory 

on R4 that has a mass gap.  

Proof: The Yang-Mills Lagrangian: 

2

1

4
L Tr

g
   F F  (12) 
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where the two-form F denotes curvature via a gauge-covariant extension of the exterior derivative 

from the one-form A of the G gauge connection and g2 is the determinant of the metric tensor of the 

spacetime. It follows that G governs the symmetry of the action, which is the integral of L. Since the 

quadratic form that is constructed from F and its Hodge dual *F on the Lie algebra of G on R4 is 

invariant, so also L is invariant and so is its integral action invariant. The invariant action relates via 

the Noether’s theorem to a quantity m whose value is conserved. It then follows that a difference 

between any two values mG and mH of a conserved quantity cannot be compared within any-one theory 

based only on a single gauge group. Specifically, in a Yang–Mills theory that is based exclusively on 

one gauge group G describes only a single, invariant state. When the theory is based on U(1), it 

describes the vacuum state (the free space). When the theory is based on another Lie group, it 

describes another state. The difference m = mH − mG  0 in the conserved quantity between U(1) and 

the next lowest symmetry group is referred to as the mass gap. However, the gap is not defined, i.e., it 

does not exist within any given theory based exclusively on a single gauge group.  

Corollary: For any-two distinct gauge groups G and H, there exists a theory on R4 that has a  

mass gap.  

Proof: Each gauge group relates the symmetry of action as the invariant integral of Lagrangian on 

R4 via the Noether’s theorem to a quantity m whose value is conserved. Conversely, the two distinct 

gauge groups relate two distinct symmetries of invariant actions to two different values mG and mH of 

the conserved quantity. Thus there exists a difference m = mH − mG  0 in the conserved quantity,  

i.e., the mass gap, between the vacuum state energy EG governed by the most elementary G = U(1) 

symmetry group and the lowest excited state energy EH governed by the next most elementary 

symmetry group H. 

The resolution of the Yang-Mills existence and the mass gap, while trivial in its proof, is revealing. 

The focus is not on energy but on action which is quantized for each state according to the 

corresponding gauge symmetry (Figure 8). Therefore, no matter how small the energy E of an excited 

state will become over an increasing time t, the product Et = nħ remains invariant holding at least one 

(n = 1) multiple of the quantized action. Likewise, no matter how far the range x of a field will be 

extending with diminishing momentum p, their product px remains invariant so that associated 

observables remain countable. In other words, a theory based on action is self-similar but does not 

require renormalization since it is not troubled by infinities and singularities related to energy and time 

as well as to momentum and length. Yet, it may appear for some to be unconvincing to claim, as 

above, that SU(2) which is by determinant isomorphic to U(1), does have a distinct property,  

i.e., mass. However, a unitary group U(n) is non-Abelian for n > 1 whereas U(1) is Abelian. The sense 

of circulation distinguishes the closed action from a point, and also from its open form because when 

the chiral, closed action is mapped on the polarized open action, the two open termini are distinct from 

the integrally closed and connected path. To bridge a topological inequivalence requires a dissipative 

transformation process. The mass gap is between the photon and the neutrino. Moreover, the Euler-

Lagrange integral of a bound trajectory is well-defined, i.e., countable whereas Maupertuis’ action as 

an open path is ambiguous, i.e., uncountable. The ambiguity is reflected in the assignment of a value to 

the free energy of the vacuum. Instead the surrounding vacuum characteristics c2 = 1/oo are defined 

via the closure according to the Stokes theorem. 
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8. Algebraic and Non-algebraic Varieties 

In the universal energy landscape a system as a variety composed of varieties is in relation to all 

other varieties via flows of energy. The energetic status of a system can be quantified by probability: 
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where actions are quantized L = 2Kt = kBTt = nħ (see Equation 2). The stationary state (dtP = 0) 

measure lnP = Nj is a sum over all closed graphs, as is familiar from index theory [72] and from the 

linked cluster theorem for reversible, i.e., non-propagating processes [73].  

It is in the objective of physics to predict by way of calculation. However, as has been emphasized 

all along, natural processes are in general non-computable. Computation is ultimately ranking, and 

intuitively it is impossible to rank a quantity such as an eigenvalue that is changing during the 

computation. Since an evolutionary step means a change in the modulus of an action, a descending 

sequence eventually attains the preon ring (infima) in some finite surroundings. Conversely, an 

ascending sequence attains some maximum number of modules (suprema) at a congruence which 

corresponds to the thermodynamic steady state in some finite surroundings. The ordering ensures that 

any bounded space is compact. The stationary state’s to-and-fro flows of energy are the affine 

connections that establish the ordering relations between conserved actions. These equivalence 

relations identify the countable subspaces, known as algebraic varieties, from which new spaces can in 

turn be constructed algebraically. The stationary state varieties form an orbit space. Specifically any 

two varieties are equivalent if and only if they are on the same orbit. Conversely, the finiteness 

properties ensure that when the orbit space, an n-dimensional oriented and closed manifold M, is 

divided in two, the system’s group of k varieties and to the surrounding’s group of n-k varieties are 

duals Hk(M)  Hn−k(M). The Poincaré duality theorem states that for M the kth cohomology group of M 

is isomorphic to the (n − k)th homology group of M, for all integers k.  

The correspondence between the system and its surroundings is stated by the Hodge conjecture so 

that de Rham cohomology classes are algebraic, i.e., they are sums of Poincaré duals of the homology 

classes of subvarieties. The conjecture says in terms of physics that the stationary systems can be 

algebraically constructed from subsystems that are duals of the stationary surroundings’ subsystems. 

Since at the conserved stationary state there are no open actions, all Hodge classes are generated by the 

Hodge classes of divisors where a divisor on an algebraic curve is a formal sum of its closed points on 

the basis of the Lefschetz theorem on (1,1)-classes. All closed curves with zeros (nodes) are modular 

in accordance with all rational elliptic curves being modular [74]. Since an algebraic variety is the set 

of solutions of a system of polynomial equations (elliptic curves), an algebraic number field has a 

norm and at least one zero. It can be considered as a geometric object of the affine manifold [75]. 

Since every non-constant single-variable polynomial with complex coefficients has at least one 

complex root, the field of complex numbers is algebraically closed. Moreover, Hilbert’s 

Nullstellensatz relates ideals of polynomial rings to subsets of affine space.  

The stationary energy landscape with its closed, oriented and unitary structure is a Kähler manifold 

M that can be decomposed to its cohomology with complex coefficients, corresponding to the scalar 

and vector potentials, so that Hn(M, ) =  Hp,q(M) where p + q = n and Hp,q(M) is the subgroup of 
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cohomology classes that are represented by harmonic forms of type (p, q). It is instructive to consider 

the (twice) differentiable and connected M, because an n-form , i.e., the Lagrangian, can be paired by 

integration, i.e., via the action ∫ = , [M] with the homology class [M], i.e., the fundamental class 

whose the top relative homology group is infinite cyclic Hn(M, )  . The action ∫ over M depends 

only on the cohomology class of . The physical insight to the mathematical problem of 

non-countability is consistent with the fact that the Hodge conjecture holds for sufficiently general and 

simple Abelian varieties such as for products of elliptic curves. Moreover, the stationary least action is 

consistent with the combination of two theorems of Lefschetz that prove the Hodge conjecture true 

when the manifold has dimension at most three which is required for the stability of the free-energy 

minimum varieties.  

Although the Hodge conjecture complies with conservation and continuity, it is ambiguous in how 

the duality came about. It is in essence asking an evolutionary question, which cohomology classes in 

Hk,k(M) form from the complex subvarieties? Of course, it has been found mathematically that there 

are also non-algebraic varieties. For example, when the variety has complex multiplication by an 

imaginary quadratic field, then the Hodge class is not generated by products of divisor classes. These 

troublesome varieties correspond to the open actions. They are without norm, hence non-modular and 

indivisible. The n-form  of a non-modular curve over a finite field is non-intergrable because it is 

without bounds. Although the natural processes terminate at the irreducible open preon, the path is 

open because one photon after another leaves the system. The manifold keeps contracting, 

mathematically without a bound, but physically the landscape ceases to exist when the last fermion 

opens up and transforms to boson that leaves forever. Also singularities associated with the squared 

operators, e.g., the square of an exterior derivate, are troublesome abstractions. At a singular point the 

algebraic variety is not flat which means it is non-stationary and uncountable. Thus the proof of the 

conjecture that Hodge cycles are rational linear combinations of algebraic cycles, hinges on excluding 

non-integrable classes, i.e., those without divisors. This depends on the definition of manifold. 

Conjecture: Let M be a projective complex manifold. Then every Hodge class on M is a linear 

combination with rational coefficients of the cohomology classes of complex subvarieties of M. 

Proof: A divisor on an algebraic curve is a formal sum of its closed points. It follows that if M holds 

any Hodge class that cannot be generated by the Hodge classes of divisors, then the conjecture must be 

false. The definition of a projective complex manifold as a submanifold of a complex projective space 

determined by the zeros of a set of homogeneous polynomials, excludes any indivisible polynomial 

without roots [76]. Since transition functions between coordinate charts are by definition holomorphic 

functions, also singular points are excluded from M. The coordinate chart is a map U → V from an 

open set in M to an open set in Rn of the dimension of M is one-to-one. The homeomorphism excludes 

any open curve, i.e., any polynomial without at least one root. Thus it follows that Hodge cycles are 

rational linear combinations of algebraic cycles on a projective complex manifold. Since the projective 

complex manifold has no class without a divisor, the conjecture is true.  

9. Discussion 

The value of a natural principle is in comprehending complex as well as simple phenomena in the 

same basic terms. The principle of least action came first into sight by Fermat, when addressing the 

particular least-time propagation of light and later by Maupertuis when rationalizing the general 



Entropy 2010, 12 2353 
 

least-time flows of any form of energy. However, Euler and especially Lagrange found mathematical 

reasons to narrow the general formulation to computable cases, i.e., to bound and stationary  

systems. Ever since physics has mostly trotted along reductionist and deterministic tracks nevertheless,  

there is nothing in the character of physics that would exclude to pursue holistic and  

non-deterministic prospects. 

Physics, just as any other discipline, is beguiled by ambiguity in its central concepts, most notably 

space and time. According to the principle of least action space at any level of natural hierarchy is 

embodied in closed, stationary actions that evolve by the act of time which, in turn, is embodied in 

quanta of open actions. Density differences diminish when dense systems are discarding quanta to 

their sparse surroundings and as well when sparse systems are acquiring quanta from their dense 

surroundings. Curiously though, when there are alternative paths for the flows, the natural processes 

are non-deterministic because the flows by the very fact of flowing affect the driving density 

differences. This non-computable character of nature may not please our desire to predict but we had 

better acknowledge it and get acquainted with its basis. Also we need to recognize that an observation 

is a causal connection via energy transduction process from an object to an observer where 

indeterminism in outcomes arises from the relative phases of transmitter and receiver  

motions [14,30,77].  

The worldview provided by the least-time principle recognizes no fundamental distinction between 

fundamental particles and fundamental forces but regards all structures and processes as having 

emerged, proliferated and eventually been extinguished in leveling off density differences. According 

to the 2nd law of thermodynamics the flows of energy will search and naturally select [78] 

mechanisms inanimate and animate so that flows will level off energy differences in the least  

time [79–82]. In other words, evolution keeps redirecting its course along the resultant of forces. 

Although it is natural to search for symmetry, as it relates to a free-energy minimum state, the 

mathematical beauty as such cannot tell us how it came about and how it will break down. Closed 

currents as manifestations of symmetry and topological invariance give rise to conserved quantities, 

most notably to mass which is ultimately valued in open-action equivalents that are accommodated in 

the thinning of surrounding space—the physical vacuum [83]. 

The principle of least action accounts for everything by counting preons. This holistic picture of 

nature is not new [84–86] nonetheless the tenet may appear to some as naive, but in return it provides 

insight to parameters and processes also beyond those analyzed here. Plethora of particles and diaspora 

of fundamental forces are seen as merely manifestations of energy dispersal not as ultimate causes or 

consequences. The on-going universal unfolding of strings of actions accelerates with the increasing 

radius of curvature, just as earlier, when primordial high densities, presumably similar those in present 

flavors of elementary particles, began to thin out from resonant confinements closed by internal 

reflections. The chirality consensus in actions that settled in at baryogenesis is seen as to have been an 

effective means to disperse energy just as the chirality standard of natural amino acids that established 

itself at prebiotic genesis as an effective means to facilitate energy dispersal [87,88]. Diversity in 

nature is astounding but not arbitrary. We recognize rules and regularities. Scale-independent  

power-laws, log-normal distributions and tree-like structures that branch out in logistic manner as well 

as spirals that wind out in logarithmic manner are found in diverse disciplines. The universal spatial 

patterns as well as ubiquitous time courses of sigmoid growth, bifurcations and chaos are ascribed to 



Entropy 2010, 12 2354 
 

the decrease of free energy in the least time [89]. Moreover, the physical portrayal of nature by  

diverse actions in multiples of ħ is tangible in illustrating mathematical problems related to 

intractability [41,90,91], emergence, change in modularity [92–95], symmetry breaking and division in 

duals which all are troubled by the problem of the uncountable. 

Varied writings of Pierre Louis Moreau de Maupertuis reveal that he was outwardly stimulated in 

applying the principle of least action to decipher puzzles and phenomena in diverse disciplines [96]. 

Although Maupertuis’ formulation failed to meet the integrability condition that was insisted upon by 

his rigorous contemporaries and has been required ever since on diverse occasions, it took time to 

understand the underlying reason that distinguishes reversible from irreversible and tractability from 

intractability and that discerns space from time. Undoubtedly the revision of M[aupertuis’]-theory 

presented here does not cohere with current classiness but calls for revival of intuition in the quest  

of unity. 
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