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• Thermodynamics is founded on the notion of quantum.
• Entropy is derived from statistical mechanics of open systems.
• The principle of increasing entropy equals the imperative of decreasing free energy.
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a b s t r a c t

The principle of increasing entropy is derived from statistical physics of open systems
assuming that quanta of actions, as undividable basic build blocks, embody everything.
According to this tenet, all systems evolve from one state to another either by acquiring
quanta from their surroundings or by discarding quanta to the surroundings in order to
attain energetic balance in least time. These natural processes result in ubiquitous scale-
free patterns: skewed distributions that accumulate in a sigmoid manner and hence span
log–log scales mostly as straight lines. Moreover, the equation for least-time motions
reveals that evolution is by nature a non-deterministic process. Although the obtained
insight in thermodynamics from the notion of quanta in motion yields nothing new,
it accentuates that contemporary comprehension is impaired when modeling evolution
as a computable process by imposing conservation of energy and thereby ignoring that
quantum of actions are the carriers of energy from the system to its surroundings.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Thermodynamics speaks about nature in energetic terms. Since energy can be assigned to anything, thermodynamics
addresses everything. However, energy as such does not exist. It is an attribute of its carrier. Energy is carried, for instance,
by a photon. Thus, when quantifying the state of a system, its carrier composition – not its energy – ought to be examined
in the first place. Likewise, when describing the system in transformations from one state to another, motions of carriers –
not changes in energy – ought to be explained in the first place. This assertion that the carrier is a more fundamental notion
than energy may though seem superfluous, because the equation for the carriers in motion, as will be shown below, turns
out to be equivalent to the equation for energy in motion [1–6]. Yet, we will argue that thermodynamics, as a concise and
consistent theory, follows naturally from the concept of the quantum.

Fermat’s principle says the photon will propagate along the path of least time. Whenmoving along that path, the photon
will, by carrying energy, diminish an energy difference, known as free energy, between the state of departure and the state of
arrival. In other words the photon’s least-time trajectory trails along the energy gradient where the change in momentum
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points along the force, i.e., F = dtp. This means that Fermat’s and Newton’s accounts on motions are equivalent, as they
should be.

Moreover, it is not only the photon but any other embodiment of energy that moves alike along a geodesic, i.e., the
trajectory where free energy will be consumed in least time. For instance, water runs down along the steepest descents on
a hill slope thereby consuming free energy in the form of a gravitational energy gradient in the least time. If this were not to
the case, then therewould be a change inmomentum, i.e., an effect without a force, i.e., waterwould lingerwithout a reason.
Likewise, a stock of animals grows by consuming surrounding chemical potentials in the form of food in the least time. Of
course, it may though appear to an observer as if this were not the case, when a force, i.e., a reason goes unrecognized. For
instance, browsers’ fear for predators may redirect them on a detour. When that force is taken into account, the observed
behavior is indeed found motivated, i.e., to obey the least-time principle.

The universal least-time imperative, known as the principle of least action, is the generalization of Fermat’s principle.
So it turns out that transformations from one state to another of any kind whether given in terms of action or in terms of
energy are equivalent, as they should be. Nevertheless it is worthwhile to ask, what exactly is the action that carries energy?

The quantumof action, specifically the quantumof light, is themost elementary action. Its unit, joule seconds (Js), informs
us that energy E and a period of time t are attributes of the quantum of action so that their product is an invariant measure
known as Planck’s constant

h = Et. (1)

This equation is, of course, mathematically equivalent to the familiar textbook form

E = hf (2)

where f = 1/t is the photon’s frequency. Yet the former (Eq. (1)) stresses that the photon is the basic building block of
nature with energy and time as its compound attributes whereas the latter (Eq. (2)) places emphasis on the photon’s energy
attribute. The units imply that Planck’s constant is not only an invariant number but it measures a physical entity, namely
the quantum of action.

Here we adopt the old atomistic tenet by regarding the quantum of action as the invariant and elementary unit of
nature [7]. This tenet differs from that in modern physics where the quantum of light, i.e., the photon, as a gauge boson,
is deemed also as a non-conserved virtual particle [8]. Put differently, according to the atomistic idea the photon is the
indivisible quantum of action whereas the modern doctrine declares that energy is quantized. This tension between the old
and new ways of thinking about the physical basis requires for a resolution.

2. The notion of quantum

Let us begin by postulating that indeed everything is ultimately composed of the quanta of actions, and explore its
consequences. However, first we had better make sure that the postulate is not in an obvious conflict with observations.
Since even one exception to the rule would jeopardize the tenet’s consistency and logic, we must analyze also phenomena
and substances that are traditionally remote from thermodynamics.

2.1. Correspondence with observations

Every chemical reactionwill either emit or absorb at least one photon, as light or heat depending on energy of dissipation
(Eq. (2)). Nuclear reactions dissipate likewise, albeit then the quanta carry higher energy. Also annihilation of a particle with
its antiparticle yields photons. Conversely, pair production proceeds from photons to particles. All this implies to us, just as
Newton conceived, that matter is ultimately made of photons [9]. This tenet can be falsified, for instance, by presenting a
material entity whose annihilation would yield something that, in turn, would not annihilate to mere photons.

This resolution of everything being composed of the same basic building blocks is motivated further by models that
present elementary particles in terms quantized actions [5,10]. These models reproduce particles’ measured properties
and comply with their oscillations and decay schemes. Still some changes of state, such as a body falling from a height
on the ground, are not outwardly dissipative. Yet, we continue arguing by considering the reverse reaction that also the
transformation from one place to another entails either absorption or emission of quanta of actions. When the body is
lifted up from the ground back up on the height, some form of free energy will be consumed. Here on Earth the required
fuel for the reverse transformation is ultimately produced by absorbing photons from insolation. Thus, the reversibility in
transformation points to the irrefutable conclusion: photons are emitted when the body is falling down because photons
are absorbedwhen the body is lifted up. This resolution raises another question.Why are the emitted photons not detected?

To answer, let us examine a well-known phenomenon involving photons where no light is observed. Namely, the double
slit experiment yields bright and dark bands for constructive and destructive interference. At a dark band where two
photons have combined with opposite polarizations, we see nothing. The cancellation of electromagnetic fields, i.e., forces,
however, does not mean that the photons themselves would have vanished into nothing. The net force vanishes when all
forces balance each other. When there is no net electromagnetic force, nothing will drive detection, i.e., a charge-coupled
transformation in the detector. Nevertheless, the lack of electromagnetic energy gradient does not imply a nil potential.
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Namely, Aharonov–Bohm variant of the double slit experiment demonstrates that an added vector potential alters the
diffraction pattern. Since the diffraction pattern exists already without the additional potential, the coherent conclusion
is that the space, known as the vacuum houses already some energy density. So, the obvious thought is that the photons
in pairs of opposite polarization, for example emitted when the body fell down, embody the vacuum [11]. Is this inference
about the character of vacuum correct?

The question about the substance of vacuum is of particular importance for thermodynamics because dissipation of any
kind ultimately ends up to the all-embracing vacuum. The vacuum energy density ρE is on the order of nJ/m3 [12]. Curiously,
the valuematches the average energy density ofmatter in theUniverse. In otherwords the gravitational potential of the total
massM within the radius R of the Universe equals, via GM2/R = Mc2, energy in mass, where G is the gravitational constant
and c is the speed of light. We reason that this universal balance is by principle no different from thermodynamic balance in
a reaction chamber, where reactant concentrations and surrounding conditions, most notably temperature, depend on each
other. TheUniverse is apparently not quite in a perfect balance, because it is changing, i.e., evolving fromone state to another.
The energy density is diluting by expansion as matter is being combusted by stars, black holes and other mechanisms to the
freely propagating photons. Thus the space is emerging from these transformations that emit photons, surely as light, but
apparently mostly as the photon pairs without net polarization, thus imperceptible yet carrying energy. Therefore the space
is as dark as a destructive interference band. This resolution about the vacuum is important for thermodynamics, because
the vacuum is the ultimate sink for transformations of any energy source. Moreover, it allows us to describe gravity in
thermodynamic terms.

When a local gravitational potential is understood, alike the universal potential, embodying the photon pairs, gravity
can be comprehended as a force, just as any other force [5,11]. Namely, free energy, as a general capacity to do work, is a
force of any kind, i.e., an energy difference per distance. Bodies will by moving from one state to another consume energy
density gradients that exist between the system of bodies and its surroundings. Although it is not so easy to detect the
escaping energy embodied in the oppositely pairedphotons, the notion of photon-embodied space does explain observations
[13–15]. Moreover, the photon-embodied vacuum appears as a natural way to explain why the electromagnetic
characteristic of the free space, namely permittivity and permeability relate to the speed of light via c2 = 1/εoµo, as well
as why Coulomb and gravitational potential have a similar function form.

Thus we conclude that the postulated unity of everything given in terms of the quantized actions complies with obser-
vations that range from microscopic interference of quanta to cosmic expansion. Next we will show how thermodynamics
follows naturally from the universal notion of the quantum action.

2.2. Entropy as a measure

Statistical mechanics pictures thermodynamics of macroscopic systems to result from behavior of microscopic
constituents. We employ this renowned probabilistic theory of many-body systems to describe evolution from one state to
another. It depicts the state of a system in terms of an energy level diagram. Even when without of exact knowledge of how
a given system comprises of its elementary entities, i.e. from the quanta of actions, the level diagram is exact by including
everything. Therefore it allows us to deduce unambiguously the probability for each entity to exist in its contemporary
surroundings. Subsequently, as advised by statistical mechanics, we will take the logarithm of the probability P to obtain
entropy S = kB ln P , where kB is Boltzmann’s constant. Entropy obtained in this manner is themeasure of a state [4,6].When
equippedwith the entropy formula,we are in position to derive its changes, i.e., to derive the second lawof thermodynamics,
i.e., the principle of increasing entropy.

In the diagram (Fig. 1) each entity, with a distinct energy attribute, populates a distinct level. Conversely, energetically
identical, in other words, indistinguishable entities occupy the same level. Synthesis and degradation of entities via
dissipative transformations of any kind, such as chemical reactions, are depicted by horizontal arrows that draw from one
scalar potential level to another and by verticalwavy arrows that draw flows of energy from the surrounding vector potential
to the system or vice versa. Conversely, energetically inconsequential non-dissipative exchanges of identical entities, i.e.,
permutations, are indicated by vertical bow arrows.

The level diagram can be exemplified for a chemical reaction as follows. Each population of identical molecules occupies
one particular level, whose chemical potential µk = kBT lnNk + Gk where Nk is the number of molecules, Gk is energy of
one molecule and kBT is the average energy of the system at temperature T . The synthesis of a population comprising Nj
molecules from its substrates in numbers Nk couples either with emission or absorption of photons whose energy matches
the energy difference1Gjk permolecule between the substrates and products. This influx or efflux of energy, i.e., dissipation
is denoted by i1Qjk. The imaginary partmerely indicates that the vector potential from the surroundings to the systemor vice
versa is orthogonal to the scalar [chemical] potential. This convention about the orthogonal potentials manifests itself, for
instance, so that when an electron falls down along the electric potential gradient, light will emit in an orthogonal direction.
This explicit distinction between the scalar and vector potentials is also contained in Poynting’s theorem.

The probability P1
j for one entity to exist at the level indexed with j depends on its ingredients, each of which is

available on a level indexed with k, as well as on the flux of energy from the surroundings to the system that couples to
the transformation from k to j

P1
j =


k=1

Nke−1Gjk/kBTe+i1Qjk/kBT (3)
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Fig. 1. The system is depicted in terms of an energy level diagram. At each level, indexed by k, there is a population of Nk individuals each with energy Gk .
The size of Nk is proportional to probability Pk . When an entity in the population Nk transforms to an entity in the population Nj , horizontal arrows indicate
paths of transformations which are available for changes in the potential energy bound in matter and vertical wavy arrows denote concurrent changes
driven by energy in light. The vertical bow arrows mean exchange of indistinguishable entities without changes in energy. The system evolves, step-by-
step, via absorptive or emissive jk-transformations that are mediated or catalyzed by entities themselves, toward a more probably partition of entities
eventually arriving at a stationary-state balance where the levels are populated so that the average energy kBT equals that in the system’s surroundings.
A sufficiently statistical system will evolve gradually because a single step of absorption or emission is a small perturbation of the average energy. Hence
at each step of evolution the outlined skewed quasi-stationary partition does not change much. This maximum-entropy distribution accumulates along a
sigmoid curve (dotted) which is on a log–log scale (insert) a straight line of entropy S vs. (chemical) potential energy µ.

where the product form Πk ensures that if any one vital k-ingredient is missing altogether, the j-entity cannot exist, i.e.,
P1
j = 0, as well as, that if no flux of energy can couple from the surroundings to the system, the transformation from the

k-entities to the j-entity cannot take place. Stoichiometry of transformations from k to j is included in the degenerate
indexing that runs from k = 1 to an unknown upper limit at the energetic balance.

The probability Pj for the population Nj of j-entities is obtained simply from the product of P1
j :s, i.e.,

Pj =


k=1

Nke−1Gjk/kBTe+i1Qjk/kBT

Nj 
Nj! (4)

where the division by factorial Nj! enumerates the inconsequential exchange of identical entities (Fig. 1). Then the total
probability for the system of populations is obtained from the product of Pj:s, i.e.,

P =


j=1

Pj =


j=1


k=1

Nke−1Gjk/kBTe+i1Qjk/kBT

Nj 
Nj! (5)

where the product formΠj guarantees that if any one population j ismissing altogether, then that particular kind of a system
cannot exist.

Finally, it remains to take the logarithm of P to obtain the formula for entropy

S = kB ln P = kB ln


j=1


k=1

Nke−1Gjk/kBTe+i1Qjk/kBT

Nj 
Nj!


=

1
T


j=1

NjkBT + Nj


k=1

µk − µj + 1Qjk


(6)

where Stirling’s approximation lnNj! ≈ Nj lnNj − Nj has been used. The result (Eq. (6)) defines entropy S when multiplied
with temperature T , as a measure both of energy ΣjNjkBT that is bound in all populations each having entities Nj and of
free energy A = ΣjΣkµk − µj + i1Qjk that resides between the system and its surroundings to be consumed by available
mechanisms of transformations between the j- and k-entities. This is to say that the term Sb = ΣjNjkB in Eq. (6) sums the
fraction of entropy that is bound to the populations. It is, of course, the familiar entropy obtained from statistical mechanics
for a closed system. Namely, the stationary system cannot gain or lose energy by acquiring or dispatching quanta to its
surroundings, and hence its energy is altogether bound in the populations. Conversely, when the carriers of energy move
from the open system to its surroundings to consume the energy difference, i.e., free energy A, also known as affinity, both
the system and its surroundingswill undergo transformations fromone state to another. This flux of energy carriers from the
system to its surroundings or vice versa leads to the irreversible increase in entropy. The term Sf = (ΣjΣkµk−µj+ i1Qjk)/T
in Eq. (6) denotes the fraction of entropy that is still free for transforms to become bound.

Considering importance of definitions in communication, it is worth relating common terminology with the terms used
here. The textbook thermodynamics defines a system as isolated when it cannot acquire or lose energy in any form. Here,
isolation means that the system cannot acquire or lose any quantum as the carrier of energy. However according to the
holistic tenet, the isolated system is an illusion because all systems in the Universe are coupled to all other systems at
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least via gravity. In other words, all systems are embedded in interaction with the common vacuum. The textbook defines
a system as closed when it cannot acquire or lose matter in any form but is only open to radiation. Here, no difference is
made whether the system acquires or loses quanta in a form of matter or radiation because both comprise ultimately of
photons. This claim is falsifiable by showing that annihilation of matter and antimatter would yield something else besides
the photons, or conversely demonstrating that pair production of matter and antimatter would be require something else
besides the photons. Moreover, the common distinction between matter and radiation used in the definition of a closed
system is reasoned to be inaccurate because in any reaction, such as in a chemical reaction, mass as an attribute of matter
does change. So, the change in mass implies that matter is in fact not an invariant which is inconsistent with the definition
of the closed system. Finally the textbook defines a system as open when it can acquire or lose energy in any form. Here, the
meaning is the same, when understanding the quanta are the carriers of energy.

2.3. The least-time evolution

The entropy formula (Eq. (6)), as the equation of a state, can be differentiated to obtain the equation of motion for
transformations from one state to another, i.e.,

dS
dt

=


j=1

dS
dNj

dNj

dt
=

1
T


j=1

dNj

dt


k=1

µk − µj + 1Qjk


≥ 0 (7)

where the chain rule has been employed. The result about the irreversible entropy increase is common sense. Explicitly, a
population Nj will increase, i.e., dtNj > 0 when there are resources, i.e., free energy Aj = Σkµk − µj + i1Qjk > 0 to be
consumed for the growth. Conversely, the population will decrease, i.e., dtNj < 0 when the resources are over-depleted,
i.e., free energy Aj = Σkµk − µj + i1Qjk < 0 whose consumption drives downsizing. Be it either way, when the two terms
of the product have the same sign, then the product is positive, i.e., dS > 0. When evolution has attained thermodynamic
balance, then dS = 0. The state of free energyminimum is stable. Any perturbation δNj away from a steady-state population
N ss

j would lead to decrease in S(δNj) < 0 and concurrent increase in dtS(δNj) > 0. This Lyapunov stability criterion for
homeostasis says that the further away Nj would be from N ss

j the larger will be the restoring force Aj [16]. In this manner the
evolutionary equation (Eq. (7)) states the second law of thermodynamics.

In short, entropy will increase until the maximum has been attained. Specifically, it would be unnatural to claim that
entropy of a system could possibly decrease at the expense of an entropy increase elsewhere, because it would entail that
quanta of actionswould emerge fromnothing or that theywould vanish to nothing.We emphasize that the entropy increase
follows from the consumption of free energy. Therefore, the equation of evolution (Eq. (7)) reveals that the notions of entropy
and its increase do not communicate anythingmore thanwhat can be expressed in energetic terms. Specifically, entropy (Eq.
(6)) does not relate to disorder. This unnatural and ill-founded connotation follows from Boltzmann’s derivation of entropy
for a system of constant energy and invariant particle number. This definitionmeans that the system cannot change its state,
i.e., to evolve by acquiring or losing quanta.Moreover, coherence or incoherence is not an end itself butmerely a consequence
of evolution toward the free energy minimum state. Put differently, a system, such as an organism, will organize itself to
consume free energy, i.e., the energy difference between it and its surroundings. Likewise, another system, such as a grain
salt, will disorder itself by dissolving in water to consume free energy, i.e., the energy difference that resides between the
crystal structure and the surrounding water.

The evolutionary equation (Eq. (7)) says that entropy will increase. Yet, it is only implicitly that entropy will increase
in least time. We make this least-time entropy increase explicit by taking a convenient, but approximate, continuum limit
of the evolutionary equation. Using the continuum definition of chemical potential µj = (∂U/∂Nj) in terms of the scalar
potential U , and likewise for dissipation Qj = (∂Q/∂Nj) in terms of the vector potential Q , we obtain

T
dS
dt

= −
dU
dt

+ i
dQ
dt

= −
dV
dt

⇔
d2K
dt

= −v · ∇U + i
dQ
dt

(8)

where we have used the definitions of velocity v = dtx, and spatial gradient ∇ = d/dx as well as a shorthand notation V
for the total potential that combines both the scalar U and vector Q potentials. Moreover, to equate the change in entropy
with changes in kinetic energy, i.e., TdS = d2K , can be motivated, for instance, so that the force F will cause a change in
momentum p, i.e., a change of state quantified by entropy according to dt(2K) = dt(mv2) = v · dtp = v · F = TdtS.

When dividing Eq. (8) with velocity, the resulting equation reveals that the force that directs down along the potential
energy gradient F = −∇V is equivalent to the path’s direction up along the entropy gradient, F = dtp = T∇S. So, we
conclude that the second law of thermodynamics (Eqs. (7) and (8)) and Newton’s second law of motion are equivalent
expressions for transformations from one state to another in the continuum limit, as they should be. It is worth emphasizing
via

F =
dp
dt

= ma + v
dm
dt

= −∇U +
v
c2

dE
dt

= −∇U + i∇Q = −∇V (9)
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that dissipation dQ = (v2/c2)dE, eventually to a medium that differs from the vacuum’s energy density by index n = c/v,
stems from the change in mass dtm according to the mass–energy equivalence dm = dE/c2. If this dissipative term of
Newton’s second law of motion, present in its original complete form [17], is omitted from the description of an evolving
system, as it often is when writing F = ma in textbooks, conceptual conundrums will follow. Then the bookkeeping of
quanta is imperfect. Of course, the change in mass is minute in many transformations, for instance, formation of a covalent
bond amounts up to about one per mill of the electron massme. Yet, the concurrent dissipation is readily sensed.

This tenet that any change of state is invariably coupled with emission of at least one quantum to the surroundings or
absorption of at least one quantum from the surroundings, can be falsified by presenting a counterexample, namely a change
of state without any dissipation. Of course, a single quantum emitted from the change of state may easily escape detection
and hence compromise the falsification. On the other hand the emission of quantum can be inferred by running the reverse
reaction where the absorption of quanta is necessary to restore the initial state. In other words, the proposed tenet can be
falsified by running a reaction without any input or output of energy.

It is also worth clarifying that here the mass–energy equivalence E = mc2 is not obtained from special relativity, but it is
the special case for vacuum of the general vis viva 2K = mv2 applicable to any surrounding medium [18]. Today’s definition
K = 1/2mv2 limits the description to the motion of a body and thereby neglecting concomitant changes in surroundings.
It is obvious that a herd of cows will by grazing consume chemical potential of a pasture. Likewise, a rock rolling from a hill
top to a valley will diminish gravitational potential of a height.

Finally, the differential equation of evolution (Eq. (8)) has an integral counterpart, i.e., the action

L =


2Kdt =


(−x · ∇U + iQ ) dt = nh (10)

which enumerates by n the quanta of actions, each ofmeasure h. The action (Eq. (10)) re-expresses Noether’s theorem: Every
differentiable symmetry of the action of a physical systemhas a corresponding conservation law [19]. Conversely, symmetry
will be broken when the system evolves from one state to another by acquiring or discarding quanta, i.e., dtn ≠ 0. Evolution
proceeds along the least-time path where the change in integrand, d(2K) > 0, takes place as soon as possible. In other
words, there is no mechanism available for the transformations to happen any faster. Finally, when the system has arrived
at the stationary state, d(2K) = 0,where all transformations have completed to a thermodynamic balance. At the balance net
dissipation vanishes and the virial theorem 2K +U = 0 holds. So, we conclude that the principle of least action in its original
form á la Maupertuis (Eq. (10)) is equivalent to the principle of increasing entropy, i.e., the second law of thermodynamics,
and the Newton’s second law of motion. There is one law of nature.

3. Consequences

The equation of evolution (Eqs. (7)–(9)), when derived from the postulate that everything is composed of the quanta of
actions, is nothing new. During the course history the basic law of nature appeared in three equivalent forms, namely as the
old principle of least action á la Maupertuis, the 2nd law of thermodynamics due to Carnot and Newton’s 2nd law of motion
in its original form. Yet, it seems to us that today the basic law of nature goes by somewhat unappreciated, and hence, for
instance, the notion of entropy production is obscure. It seems to us that the quest of determinism has led to imprecise
theoretical description of nature.

The contemporary form of least action devised by Lagrange as well as Newton’s 2nd law, when reduced to F = ma,
are incomplete descriptions of transformations by neglecting dissipation. Of course, this shortcoming has been somehow
sensed but not rationalized since ad hoc terms have been added to the steady-state formula to model dissipation but not to
explain dissipation [20]. These tinkered models do not comply with conservation of quanta, and hence they serve only as
approximations of natural processes. In contrast when the correct equation of evolution (Eqs. (7) and (8)) is used, it is clear
that entropy increases hand-in-hand with decreasing free energy. From this perspective the notion of entropy generation,
both maximal and minimal, is out of the picture.

Above all the natural law in the form of evolutionary equation (Eqs. (7) and (8)) is motivated by observations. It yields the
ubiquitous characteristics of nature concisely and consistently. Conversely the proposed tenet can be falsified by presenting
data that does not display the universal patterns.

3.1. Scale-free patterns

Data from numerous phenomena, when plotted on a log–log scale, follow approximately straight lines, i.e., power
laws [21,22]. Moreover, distributions of animate or inanimate populations, when plotted on a semi-log scale, are nearly
normal [23–26]. These log-normal distributions accumulate along sigmoid curves, which in turn when plotted on log–log
scales, are mostly straight lines (Fig. 1). Even a sharp phase transition when zoomed in is a sigmoid curve. So the scale-free
patterns of power laws, skewed distributions and sigmoid curves are not only ubiquitous but actually they all present only
one and the same pattern with varying values of parameters. Here the objective is not to model this universal pattern by
various mathematical functions, but to clarify the cause of universality.

The origin of ubiquitous patterns can be identifiedwith the least-time free energy consumption by analyzing the equation
of evolution (Eq. (7)) [6]. In practice, it is not changes in entropy S but changes in populations Nj that are monitored. The
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rate dtNj of a population change is consistent with the conservation of quanta, when proportional to the free energy terms
Ajk, i.e.,

dNj

dt
=

1
kBT


k=1

σjk

µk − µj + i1Qjk


=

1
kBT


k=1

σjkAjk (11)

where the parameter σjk > 0 for the conductance of energy carriers summarizes characteristics of a particular mechanism
that transforms the k-entities to j-entities or vice versa. Substitution of Eq. (11) to Eq. (7) reproduces dS ≥ 0, i.e., the
2nd law. So kinetics given by Eq. (11) is consistent with thermodynamics. It means that all transformations run downhill,
i.e., by consuming free energy. In other words, we refute the common description ofmotion over an energy barrier, whereby
kinetics appears as independent from thermodynamics. Instead we claim that all rates of changes are proportional to free
energy Ajk according to Eq. (11) and that all reaction mechanisms, including catalytic mechanisms, are characterized by
conductance σjk. This stance can be proven wrong, for example, by showing that kinetics is not proportional to free energy.
The conductance for flows of energy in the catalyzed reaction is simply larger than the conductance via those mechanisms
that facilitate a non-catalyzed reaction. The catalyst affects only the rate (Eq. (11)), not the energy landscape. It is the flows
of energy that cause changes in the energy landscape. In other words, when the reaction takes place nothing moves on
the energy landscape but the landscape changes as substrates transform to products. Narrow passages for flows of energy
embodied in reactant are bottlenecks, not barriers, since energy flows always downhill.

The ubiquitous sigmoid course of a transformation can be understood from Eq. (11) as follows. Initially a nascent
population will grow nearly exponentially when the free energy resources seem unlimited. Likewise, a mature population
will decline nearly exponentiallywhen the surroundings potential is almost zero, and hence free energy is large but negative.
In other words, when the change in the free energy
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can be taken almost as a constant σj, the population growth or decline, depending on the sign of free energy, will be nearly
exponential. Likewise, when the population has almost attained thermodynamic balance with its surroundings, all free
energy is nearly consumed and hence its change can be taken approximately as a constant σj. Thus, the remaining residual
growth or decline, depending on the sign of free energy, will be a decaying exponential function.

At any time between the exponential initial increase and final decay the population change consumes free energy as soon
as it becomes available, and hence the product and substrate potentials can be taken almost as equal, i.e.,

µj ≈ µk + i1Qjk ⇔ Nj ≈
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where the j-entity of the quasi-stationary system has been denoted in a recursive manner because it results from
multiplicative operations, indexed by m and n, from the basic building blocks, i.e., from the quanta in numbers N1. In other
words, the change

dNj

dt
=

dNj

dN1

dN1

dt
= jαjN

j−1
1

dN1

dt
=

jNj

N1

dN1

dt
⇒ d lnNj = jd lnN1 (14)

in the central region, where −1Gnm + i1Qnm ≪ kBT , follows a power law.
The above analysis discloses that the evolutionary equation of motion accounts for the ubiquitous patterns without

postulating any boundary conditions tomodel data. In fact, no boundary conditions ought to be imposed because the carriers
are moving from the system to its surroundings or vice versa, and thereby the surrounding boundaries co-evolve with the
system.Admittedly, formany systems the changes in the surroundings,most notably in the vacuum, are in practice negligible
but if neglected from the equation of motion, conceptual conundrums will rise.

Many systems evolve along a series of sigmoid curves, each punctuating [27] when a new mechanism appears in the
system. Yet, the overall course follows to a good approximation a sigmoid curve too. This recurrent feature emphasizes
further the scale-free character of natural processes. A newmechanistic species of transformationwill advent and propagate
when it will yield faster increase in entropy than could be attained by increasing the populations of existing species. In the
context of speciation, known also as bifurcation, it is worth mentioning that the appearance of a new species will change
the conditions of all other species in the system. Therefore the stem species, in particular, will face substantial evolutionary
forces too when the new species branches out. Often the stem species is operating in the same environment and consuming
largely the same resources as its new rival. Therefore, to escape extinction, the stem species is forced to specialize further
in energy transduction to distinguish it from its branching rival. Fossil records reveal that the struggle for existence ended
in extinction. By the same token, the systemwith any two species with similar phenotypes is unstable. As a result of mutual
competition one of them will eventually be excluded from the ecosystem [28,29].

The interdependence between the change and evolutionary force, i.e., free energy can be modeled to the first-order by
the approximation that gives a recurrence relation [30]
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for the populationNj at the consequent steps, indexed by n and n+1.When the parameters σj andβj of the quadratic relation
(Eq. (15)) are assigned with values that relate to a sufficiently statistical system, evolution will converge to a stationary
point where the j-entities have either survived and settled to stasis or all gone extinct. However, when the free energy
consumption via a mechanism with σjk exceeds the average energy so that (1Gjk + i1Qjk)/kBT > 1, oscillatory or even
chaoticmotionswill follow [6]. It is a common observation both in ecosystems and economic systems that when free energy
will be consumed by amechanism, say by a species or by a stock broker, at a rate that exceeds the rate at which its resources,
i.e., free energy is replenished, the populations will invariably fluctuate.

When the slope of a sigmoid curve for transformation from the initial state to the final state is plotted, a skewed
distribution curve will be obtained. Many natural distributions have this nearly log-normal shape. It can be understood
as follows. The distribution at thermodynamic stationary-state condition d ln P = 0 of Eq. (13) is found linear on a semi-log
scale

lnNj = ln

k

Nke−(1Gjk−i1Qjk)/kBT = j lnN1


1≤m,n≤j

−Amn/kBT ∝ j lnN1, when Amn ≪ kBT (16)

where each j-entity in the hierarchy (Fig. 1) emerges via evolutionary processes from the basic constituentsN1. The condition
Amn ≪ kBT , as above, excludes oscillatory and chaotic motions. Each population Nj in a distribution embodies an energy
density

φj = NjeGj/kBT = N j
1e

j(G1+i1Q1)/kBT = ej(lnφ1+i1Q1/kBT )
⇔ lnφj = j lnφ′

1, (17)

where the number of quanta j1Q1 that have been incorporated in the assembly of φj are denoted by φ′

1. Likewise, the
population of an adjacent (j + n)-class houses the density
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This form yields a distribution of energy densities φj−n...j+n over adjacent classes j − n . . . j + n about φj according to
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The functional form is normal according to the central limit theorem when n ≪ j. This condition of small variation is
effectively the criterion of classification. For example, related species represent relatively small variation in n compared
with j, and hence the distribution of species within a genus is almost lognormal. Conversely, any two species will differ
considerably from each other when the number of multiplicative steps differs considerably, and hence the two species are
not classified in the same distribution. The natural distribution departs from the log-normality both at low and high ends
where the characteristic mechanism of energy transduction becomes increasingly ineffective (Fig. 1). Therefore the sigmoid
cumulative curve departs from the power law at both the low and high ends.

When the stationary-state condition holds approximately, i.e., Ajk ≪ kBT , the system evolves gradually, and hence the
natural distribution retains its nearly log-normal characteristic. When the system grows by absorbing quanta with energy
from its surroundings, the skewed distribution will shift toward higher classes. Conversely when the system declines, its
distribution will shift to lower classes. This characteristic dependence of a distribution on its average energy kBT is familiar,
for instance, fromMaxwell–Boltzmann and Planck’s distributions but equallywell it accounts for distributions of ecosystems
and economic systems.

The presented connection between the ubiquitous patterns and the least-time consumption of free energy can be proven
false by presenting a system whose evolution form one state to another does not yield the common characteristics. Such a
system would be regarded here by the adopted holistic tenet as unnatural.

3.2. Non-determinism

The equation of evolution (Eq. (7)) clarifies why natural processes cannot be predicted precisely. The non-determinism
follows because the flows of energy consume energy differences that in turn affect the flows [31,32]. Mathematically
speaking interdependency means that when the variables cannot be separated, the differential equation cannot be solved.
Conversely, the equation of evolution cannot be integrated to a closed form because the integration limit is changing during
integration, i.e., during evolution. The boundary condition is not invariant because the surroundings is changing as the
evolving system acquires quanta from its surroundings.

We emphasize that the non-deterministic character of natural processes does not ultimately stem from complexity of the
system. Simple systems are non-deterministic too. This is apparent from the three-body problem. Moreover, our inability to
makeprecise predictiondoes not ultimately follow fromour limited knowledge of the system, but from the interdependency.
In fact we cannot measure the state of any systemmore precisely than by one quantum of action, i.e., h, simply because the
detector has to receive at least one quantum from the system to sense it, or conversely the detector has to grant at least one
quantum to the system to infer it. In other words, the system and the observer are coupled to each other so that one cannot
change without a corresponding change in the other.

Mathematical models of natural processes, such as Markov’s chain implemented with Monte Carlo sampling from a
probability distribution mimic non-determinism by indeterminism but do not reproduce it accurately [33]. Surely many
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forces are small and tend to fluctuate, to give an impression of randomness, but in nature, according to Eq. (7), there
is nothing truly random; all changes of state consume free energy. In other words indeterminism, that is a change in
momentumwithout force, is ruled out. So, there is this sense of teleology in the least-time principle, but trajectories cannot
be determined because everything depends on everything else. In other words, the final state does depend on the taken
path, not only on the initial state.

Previously non-deterministic factors in biological evolution have been ascribed to lack of knowledge about initial
conditions in models of chaos and to emergent factors in models of complexity. Here non-determinism is found to follow
fromholism, i.e., everything depends on everything else.When everything is accounted forwith the ultimate precision of the
basic building block, there is no room for non-determinism to rise from lack of knowledge or from unaccounted emergent
factors. The least-time imperative for the flows quanta between the system and its surroundings, in turn, ensures that no
quantum is lost for nothing or created from nothing during evolutionary courses.

3.3. Emergence

Natural processes produce from small and simple ingredients complex products whose properties cannot be reduced to
mere combinations of the ingredients’ properties. This irreducibility, namely that the whole is greater than the sum of its
parts, has been regarded somewhat mysterious. However, when everything is composed of actions, then also interactions
that combine the ingredients will change at the dissipative changes of state toward the products. In other words, also fluxes
of quanta from the surroundings to the system, or vice versa, are ingredients of a reaction. Even a single photon can make
a great difference in dictating properties of ingredients and products. For example, at a chemical reaction electron orbitals
of an atomic substrate will open up either to acquire quanta from the surroundings or to expel quanta, and close anew as
molecular orbitals of a product. Thus, the system of atoms will invariably emerge with new characteristics of the molecule,
when quanta from the surroundings integrate into the system’s existing ingredients [34]. Due to the energy input the new
qualities associated with new eigenvalues and eigenmodes cannot be reduced to the former free constituents. Conversely,
no new property can materialize from constant-energy permutations of pieces. Moreover, division into strong and weak
emergence is unnatural.

Often animates are associated with absorptive processes which are described as self-organization whereby novel
properties are gained. Conversely inanimate are often associated with emissive processes which are seen as disintegration
whereby old qualities are lost. However, all processes eitherway obey the same principle that directs any systemalong least-
time trajectory of free energy consumption toward balance in the respective surroundings. In other words, thermodynamics
makes no distinction between animate and inanimate, thereby dissolving the question about life and its origin [35–37] as
misapprehension.

4. Conclusions

Thermodynamics speaks in energetic terms about a system and its surroundings. General enough, yet the theory, as we
know it today, does not state that energy is only an attribute, not an embodiment of its own. It is the quanta of actions
that embody the system and its surroundings as well as inter-actions. From this standpoint nature is in evolution, when the
quantamove from the system to its surroundings or vice versa to diminish energy differences in least time.When this natural
law is formulated mathematically it turns out to be the 2nd law of thermodynamics which in turn is found equivalent to
Newton’s second law ofmotion and to the principle of least action in their original complete forms. So, actually nothing new
was gained by emphasizing the notion of quantum, as the basic building block of everything. However, if the conservation
of quanta is not appreciated, the photons are perceived to appear from nothing or disappear for nothing, and hence the old
general law of nature will be violated. This is the case with computable models that aim at mimicking specific evolutionary
data because the computability, i.e., the ability to solve an equation of evolution from one state to another, means that
energy of the system is invariant [31]. This stationary condition, however, is in contradiction with the objective to describe
an evolving system.

It is perhaps worth emphasizing that imprecise predictions of evolutionary courses do neither ultimately stem from our
incomplete knowledge nor from complexity of a system. Non-determinism is a character of nature. It follows from the fact
that everything depends on everything else, and hence a change of the system imposed by its surrounding will, in turn,
change the surrounding affecting the system and so on. For example, chaotic motions can be in many cases modeled quite
well by deterministic equations of motion that are sensitive tominute differences in initial conditions. Yet, in reality it is not
variation in initial conditions that yield the dispersion of outcomes, but every step along the paths will affect the outcomes.
In other words, diversity in nature does not originate from subtle differences in an initial state but follows from the path-
dependent natural processes.

Certainly shortcomings both inmathematicalmodels aswell as in biological narratives of evolution have been recognized
early on and analyzed [38–41]. It has been understood that evolution entails changes both in energy and time, but since
much of modern physics is formulated to conserve energy, and hence to retain also time as invariant (Eq. (1)), it calls for
revision in the fundamentals. We acknowledge that this need for a change in paradigm has been spoken earlier by many.
Yet, it appears to us that the change from one state to another as the elementary step of evolution described by Newton’s
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2nd law of motion in its original complete form (Eq. (9)) and equivalently by Maupertuis’ principle of least action (Eq. (8)),
has not been reconsidered. When without the firm physical foundation of evolution embodied in mathematical exactness,
abstract and erroneous notions about entropy flourish as well as unfounded ideas about animates differing from inanimate
in some fundamental way thrive [41,42]. Perhaps by now many deem the holistic account as an illusory objective, instead
substitute understanding with modeling. In fact, when accustomed with the diversity of mathematical models, it may seem
today unbelievable that only one law could possibly account for all phenomena. True enough doubts will prevail because
it is inherent in the universal law that its universality is impossible to test everywhere. On the other hand one exception is
enough to falsify the tenet. We continue to search for it.
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