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Fourier analysis

• In many numerical problems methods based on Fourier transforms of a function of signal are needed:

- Solving differential equations is in many cases easier in  space:
1. Diffusion equation: 

,  FT:      .

Initial condition:    . 

2. Elastic Green’s function of a point force. 

3. Electronic structure calculations. 
.
.

- Signal and data processing:

1. Audio and video signal compression (perceptual coding): masking in the frequency domain.

2. Power spectrum of a signal
.
.

- In this chapter we deal with numerical Fourier transformation of data and its implementation fast Fourier transform. 
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Fourier analysis

• Fourier transform (FT)  of a function  is defined as 

.

- Inverse Fourier transform (IFT) is respectively 

.

- The above notation suggest that the original data is a function of time and that the transformation makes it a function of 
frequency. 

- The original data may also be e.g. a function of position and the transformed data a function of the wave number (or vec-
tor).

- Sometimes instead of  the angular frequency  is used:
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Fourier analysis

- Symmetry and reality properties of the original function are reflected also to its FT:

1.  real   
2. imaginary 
3.  even  even
4.  odd  odd
5.  real and even  real and even
6.  real and odd  imaginary and odd
7.  imaginary and even  imaginary and even
8.  imaginary and odd  real and odd

- These symmetries can be utilized in speeding up FT algorithms.

- FT has also a couple of handy properties:

.
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Fourier analysis

- Convolution  of two functions  and  is defined as 

.

- One can easily show that the FT of a convolution is the product of the FT’s of the individual functions  and :

.

- Correlation function is defined as 

.

- This essentially a convolution so that one can easily show that if  and  are real then

- Correlation of the function with itself is so called autocorrelation function 

,            .
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Fourier analysis

- According to Parseval’s theorem the total power of a signal is the same in the time and frequency domains:

.

- The power at the frequency interval  is defined as (in this case positive and negative frequencies are often 
treated with equal footing)  

,       .

- When the original signal is real this becomes 

.

Ptot h t( ) 2 td

–

H f( ) 2 fd

–

=

f f df+

Ph f( ) H f( ) 2 H f–( ) 2+ 0 f

Ph f( ) 2 H f( ) 2

Scientific computing III 2013:   12. Fourier analysis                                                                                                                                                                                                   6

Fourier analysis: discrete FT

• In practice the data is not continuous but is a set of discrete points  placed on the time axis:

,     .

- The inverse of the time step  is called the sampling rate.  

- The Nyquist critical frequency is defined as 

.

- Assume we take samples from function  with frequency . 

- If the bandwidth of the function is restricted in such a way that for all frequencies    , 

then the samples  determine the signal completely.

- We can now express the function as 

.

- We often do know that our data is bandwidth-limited. 
- In these cases it is enough to sample the data at a frequency which is twice the maximum frequency in the data. 
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Fourier analysis: discrete FT

- If we sample the data with a too low frequency we observe that all frequencies outside the range  is folded to 
this range.  This phenomenon is called aliasing.

- For example signals  and  give the 

same samples at an interval  when the difference in the fre-
quencies  is a multiple of .

- In order to prevent aliasing one should make sure that the sig-
nal does not contain too large frequencies (e.g. by a low-pass 
filter). 

- It is easy check whether there is aliasing: if the FT goes to zero 
when approaching  then the signal does not contain too 
hugh frequencies.

- With the discrete Fourier transformation (DFT1) one can 
approximate FT of a continuous function based on samples 
taken from it. 

- Assume we have  samples:

,   ,   . 

- Moreover, let  be even.

1. Not to be mixed with another DFT, namely the density functional theory ;-)
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Fourier analysis: discrete FT

- We only have  input data we only can obtain  output data. 
- Because of this we compute DFT only for points 

,   .

- The limits  and  correspond to the Nyquist critical frequency . 

- DFT is computed by approximating the integral by a sum:

.

- The last sum in the above expression is called the DFT. Let’s denote it as 

. 

- So the DFT can be depicted as a following transformation 
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Fourier analysis: discrete FT

- Note that  does not depend on any dimensional quantity (like ).

- The connection between the DFT and FT is 

,

where the frequency is computed as .

- According to the definition of  we assumed that the index  is in the interval  

- Now, when we look at the definition of  we see that it is periodic with a period of . 
- This means that 

  for   

- Because of this the index  normally takes the values  in the definition of the frequency: . 

- In this case the positive frequencies are located at  and the negative frequencies at 
.

- Value  is the ‘DC component’.  corresponds to both  and .
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Fourier analysis: discrete FT

- If this sounds complicated the figure below should clarify the issue.

- The same symmetry properties as for the continuous FT apply also to DFT. 
- For example changing the sign of the argument corresponds to a shift by : .

- The discrete inverse FT is defined as 

.
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Fourier analysis: discrete FT

- Discrete version of the Parseval’s theorem is 
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Fourier analysis: FFT

• The computation time of a DFT behaves as . 

- This can justified as follows:

Define a complex number .
Definition of DFT can now be written in the form 

.

In other words a -vector  is multiplied by a  matrix, 

the elements of which are powers of a complex number .

Matrix multiplication scales as .

- In the mid-60’s John Tukey and John Cooley published an article describing an 
algorithm for DFT that scales as . 

- The algorithm is called fast Fourier transform (FFT)1.

O N2

W e2 i N

Hn hke2 ikn N

k 0=

N 1–
hkWnk

k 0=

N 1–
= =

N hk N N

W

O N2

O Nlog2N



Scientific computing III 2013:   12. Fourier analysis                                                                                                                                                                                                   13

Fourier analysis: FFT

• A sidenote: Remember the list of top ten algorithms of the 20th century  
(http://www.siam.org/siamnews/05-00/current.htm)

1. Metropolis Monte Carlo. von Neumann et al., 1946

2. Simplex linear programming method (optimization). Dantzig, 1947

3. Krylov subspace iteration method (solving  for large matrices). Hestenes et al., 1950

4. Decompositional approach to matrix computations. Householder, 1951

5. Fortran optimizing compiler. Backus, 1957

6. QR algorithm for eigenvalue problems. Francis, 1959-61

7. Quicksort. Hoare, 1962

8. Fast Fourier transform. Cooley and Tukey, 1965

9. Integer relation detection algorithm. Ferguson and Forcade, 1977

10.Fast multipole algorithm. Greengard and Rokhlin, 1987

1. For a historical background of FFT see D. Kahaner, C. Moler, S. Nash: Numerical Methods and Software, Prentice-Hall, London, 1989,  sec. 11.14.

Ax b=
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Fourier analysis: FFT

• FFT is based on the fact that the DFT of  samples  can be expressed in terms of 

two DFTs of data sets with  samples. 
- One of the DTFs consists of samples with even indices and the other of samples with odd indices1:

.

- Here the constant  is as above, i.e.  .
-  is the th element of the DFT computed from the even samples of the original data. 

-  is correspondingly computed from the odd samples.

1. Note that now  is not a frequency but the sample  of the data set.
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Fourier analysis: FFT

- The idea of FFT is to apply this kind of division recursively: 

Divide  into two parts  and  each of which is a DFT of data sets of length .

- Assuming that  is a power of two ( ) we can continue the division process 
until we have a DFT of length one, which is nothing more than an identity operation.

- So, for all different combinations of symbols  and  with length  we can find a DFT of length one:

.

- The problem is now to find out the value of  that corresponds to a particular string ‘ ‘.

- The first division is based on the least significant bit of :
If it is 0 then  is even and the element belongs to term , 

otherwise to term .
- In the next division we examine the second least significant bit and so on.
- The index  of the element is obtained by the reversing the string ‘ ‘ 

and interpreting it as a binary number such that 

.
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Fourier analysis: FFT

- As a figure for :N 16=
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Fourier analysis: FFT

- We see that in the last column the data is in the bit reversed order and it consists of one-element DFTs.

- The FT of length  is then obtained by successively combining adjacent elements 
in this bit reversed array by applying the formula

- So, the FFT algorithm consists of two steps:

1. Sort the data table in bit reversed order.

2. Recursively combine adjacent elements in this array to obtain the final FT.

- Combination of the elements takes time as , and this is done  times so that the algorithm behaves as 

. (Assuming that the initial sorting of the array does not take more time than .)

- The algorithm can further speeded up by restricting the calls to trigonometric functions to outer loops.
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Fourier analysis: FFT

• There is no lack of FFT implementations

MATLAB: FFT(x), also 2D FFT: FFT2(x)

GSL: gsl_fft_complex_radix2_forward, 
gsl_fft_complex_radix2_backward,
gsl_fft_real_radix2_transform,
. . .

SLATEC: RFFTF (only single precision)
. . .

FFTW: A C library for FFT (http://www.fftw.org/)

FFTPACK: A Fortran library for FFT (http://www.netlib.org/fftpack/)

- When using a particular implementation of FFT be careful to store your data in the right format.
- Especially in C because there is no complex data type in the language.
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Fourier analysis: FFT

- Example of using GSL FFT routine gsl_fft_complex_radix2_forward:

         

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_fft_complex.h>
    
#define DR(z,i) ((z)[2*(i)])   /* Real part  */
#define DI(z,i) ((z)[2*(i)+1]) /* Imag. part */
double gasdev(int *);
     
int main (int argc, char **argv)
{
  int i,np,np2;
  double per1,per2,std,*data,sr,si;
  int seed;

  np=atoi(*++argv);
  per1=atof(*++argv);
  per2=atof(*++argv);
  std=atof(*++argv);
  seed=atol(*++argv);
  np2=2*np;
  data=(double *)
     malloc((size_t)((2*np)*sizeof(double)));

  for (i=0;i<np;i++) {
    DR(data,i)=cos(2.0*M_PI*(i-1)/per1)+
               cos(2.0*M_PI*(i-1)/per2)+
               std*gasdev(&seed);
    DI(data,i)=0.0;
  }

 
  for (i=0;i<np;i++) {
    printf ("ORIG: %d %e %e\n",
             i,DR(data,i),DI(data,i));
  }
  printf ("\n");
  
  gsl_fft_complex_radix2_forward(data,1,np);
  
  for (i=0;i<np;i++) {
    sr=DR(data,i)*DR(data,i)/np;
    si=DI(data,i)*DI(data,i)/np;
    printf ("FFT: %d %g \n",i,sr+si);
  }
  
  return 0;
}

/* 

Program uses the routine gasdev to generate 
Gaussian random numbers.

Only the absolute value of the FT is printed.
That’s for plotting purposes.

*/ 
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Fourier analysis: FFT

- The program transforms the function 

,

where  and  are the periods of the signal and  is a random number 

with Gaussian distribution ( , ).

- Compilation and run:
       

2 t
P1
--------cos 2 t

P2
--------cos nr+ +

P1 P2 r

r 0= r 1=

gsl> gcc -o gsl_fft gsl_fft.c -lgsl -lgslcblas -lm
gsl> ./gsl_fft 16 3 5 0.3 34535
ORIG: 0 -4.420391e-01 0.000000e+00
ORIG: 1 1.948316e+00 0.000000e+00
ORIG: 2 -1.348478e-01 0.000000e+00
ORIG: 3 -8.243850e-01 0.000000e+00
ORIG: 4 1.379508e-01 0.000000e+00
ORIG: 5 4.960397e-03 0.000000e+00
ORIG: 6 3.360909e-01 0.000000e+00
ORIG: 7 1.367261e+00 0.000000e+00
ORIG: 8 -1.031304e+00 0.000000e+00
ORIG: 9 -9.477208e-01 0.000000e+00
ORIG: 10 1.768183e+00 0.000000e+00
ORIG: 11 9.333204e-02 0.000000e+00
ORIG: 12 -1.755363e-01 0.000000e+00
ORIG: 13 4.970365e-01 0.000000e+00
ORIG: 14 -1.676865e+00 0.000000e+00
ORIG: 15 2.156618e-02 0.000000e+00

FFT: 0 0.0554601
FFT: 1 0.0834737
FFT: 2 0.219583
FFT: 3 2.29423
FFT: 4 0.247893
FFT: 5 1.72874
FFT: 6 1.73657
FFT: 7 0.743871
FFT: 8 0.71349
FFT: 9 0.743871
FFT: 10 1.73657
FFT: 11 1.72874
FFT: 12 0.247893
FFT: 13 2.29423
FFT: 14 0.219583
FFT: 15 0.0834737



Scientific computing III 2013:   12. Fourier analysis                                                                                                                                                                                                   21

Fourier analysis: FFT

- The figures below were computed with 

, , , .P1 20= P2 50= n 0.3= N 512=

k
5000
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Fourier analysis: FFT

- Aliasing can be illustrated by using the same function and by varying the period . 

- In the figure on the right the period is varied as .

- Note that in this case, because  the Nyquist critical frequency 
is 

.

- Other parameters are 

.

- We see that when  the peak of the corresponding signal 
appears in a wrong place. 

• FT can easily be generalized to more than one dimension:

.
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Fourier analysis: FFT

• Note that above we assumed that the size of the data set is a power of two. 
- If this not the case we can add zeros to our data to increase the size up to the nearest power (zero padding).
- Figures below demonstrate how this affects the power spectrum of a signal.

- Other that radix-2 FFT algorithms are used when the data size is something else than a power of two. 
- For example the GSL library allow one to ise so called mixed radix algorithms where the data decomposition is based on 

the factorization of the size of the data set in terms of 2, 3, 4, 5, 6 and 7.  The fraction of data that can not be factored is 
computed by the  DFT.

>> x=[0:0.01:40.95];
>> y0=sin(pi*x);
>> y1=y0;
>> y1(2048:4095)=0;
>> y2=y0;
>> y2(1024:4095)=0;

Signal abs(FFT)

O N2
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Fourier analysis: windowed FT

• In Fourier analysis in principle only the frequency information is obtained.

- Time information can be obtained by using windowed Fourier transform (WFT).

,

where  is so called window function.

- For example let’s transform the so called chirp signal 

.

- As a windows function we take

H f t h u g u t– e2 ifu ud

–
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Fourier analysis: windowed FT

- Below the signal and its WFT (at different times )t

H f 3

H f 7

h t g t 3–

h t g t 7–

h t

H f

- In the last exercise you will become acquainted with 
different windows functions and their effect on the 
power spectrum.
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Fourier analysis: spectral applications of FT

• As shown in the beginning of the chapter convolution and correlation functions can be easily computed by using FT. 

- Convolution: .

- When convoluting nonperiodic data one has to keep in mind the wrap-around problem which can be cured by zero-
padding:1

1. Numerical Recipes, Figures 13.1.3 and 13.1.4.

sj k– rk
k N 2– 1+=

N 2
SnRn



Scientific computing III 2013:   12. Fourier analysis                                                                                                                                                                                                   27

Fourier analysis: spectral applications of FT

- Correlation:  and autocorrelation 
- Example: Exercise 10, problem 1:

Corr g h j GkHk
* Corr g g j GkGk

* G 2=

Matlab:

>> ac1=ifft((abs(fft(y1))).^2);
>> ac2=ifft((abs(fft(y2))).^2);

plot(y2,’-b’); hold on; plot(y1,’-r’)

n=100;clf;plot(ac1(1:n),’-ro’);hold on; plot(ac2(1:n),’-b*’)
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Fourier analysis: spectral applications of FT

• Digital filters are often used to smoothing or filtering data. 

- A general linear filter transforms the input signal  to output :

. 

- The coefficients  and  determine the filter behavior.

- If all  are zero then the filter is called nonrecursive or finite impulse response (FIR) filter. Otherwise it is called recursive 
or infinite impulse response (IIR) filter.

- Impulse response is the output of the filter when the input is a delta peak: .

- Impulse response of a FIR is 

and as the name says: finite.
- For IIR the response is so straightforward to calculate. Let’s take an example:

.
- This gives the following filtered data

,    ,  . . .
- Solving this recursively gives

showing an exponential decay.
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Fourier analysis: spectral applications of FT

- The frequency response of the filter is defined as1 

, 

where  and  are the Fourier transforms of the output  and input , respectively, and 

,

.

- This means that if we know the coefficients ,  we can immediately calculate the frequency response of the filter. 
- In practice it is the other way around: we know the desired response and want to build a corresponding filter.

- For nonrecursive filters the frequency response is , from which we can by inverse FT get the coefficients. 
- This is roughly done such that initially you take a rather large number of coefficients (large ) and compute their values 

from the known . Then you zero all except the first and last  coefficients (and cyclically shift the last coefficients 
to the beginning of the array to get rid of negative lags). If the response computed from this set is not satisfactory then 
you can e.g. increase the number of non-zero coefficients. 

- This is only one way to design filters and recursive filters are more complicated to handle. There is a vast literature 
dealing with the subject.

1. R.H.Shumway, Applied Statistical Time Series Analysis, Prentice-Hall, 1988; Section 2.9.
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Fourier analysis: spectral applications of FT

- Note that a simple rolling average is also a linear filter:

.

and its frequency response function can be calculated as 

.

- A simple example: 

.

- Now a demo.
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Wavelet transforms

• In Fourier transform one can not at the same time get an accurate picture of the original signal both on the frequency and 
time axis. 

- Uncertainty principle: In order to determine the frequency accurately one has to take a long (in time) sample.

Signal .

Window

 

h t 5 tsin=

g u
1 a ucos+     1

a
---– u 1

a
---

0   otherwise
=

a 1=

a 1 2=

H f

H f
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Wavelet transforms

• In order to get accurate description of data in the time axis (locality) we need many FT basis functions (because the are not 
localized at all).

- Using the windowed FT we can get some localization but the scale is set to the width of the window :

Features with time scales shorter than  are produced in frequency domain.
Features with time scales longer than  are produced in time domain.

- In Wavelet transformation (WF) the basis functions (wavelets) are derived from so called mother wavelet  

- This function is scaled and translated so that we get basis functions that ‘probe’ the original signal at different times ( ) 
and scales ( ):

- In order to be a wavelet the function  must be more or less localized and satisfy the admissibility condition: 

, 

;    is the FT of the wavelet.

- This implies that  i.e. wavelet acts as a band-pass filter.
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–
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ˆ
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Wavelet transforms

- An example: the Haar wavelet

. 

. 

- FT of the mother wavelet is 

,       

.

u
1   0 t 1 2
1–   1 2 u 1
0   otherwise

=

jk u 2j 2/ 2jx k–=

ˆ ie i 2– 4 sinc 4sin
2

---------------------------------------------------------------------=

sinc x xsin
x

--------------=

c 2 2ln=
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Wavelet transforms

- The wavelet transform of function  is defined as 

.

- The signal can be reconstructed from the WT by the inverse wavelet transform (IWT)

.

- WT and IWT can be computed based on these equations by utilizing Fourier transforms.

- In addition to actual wavelets usually on adds to the function basis so called scaling functions  that take care of the 
fact that the wavelets can not well describe a constant function (DC component).

- The most common and fastest way to compute the WT is the discrete wavelet transformation (DWT).

f u

f̃ s t c 1 2/– s 1 2– f u s t u ud

–

=

f u c 1 2/– s 1 2–

s2
---------------- u t–

s
---------- f̃ s t sd td=
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Wavelet transforms

- In a way there is redundancy in the CWT.

- In DWT we produce  wavelet coefficients from  original data points.

- This is usually accomplished by only considering a certain subset of scales.

- Assume the number of data points is a power of two: 
- We compute the coefficients only for scales , 
- For scale  there are  wavelet coefficients and the ‘times’ (or arguments) associated with these points 

are , 

N N

N 2J=

2j j 0 J 1–=

2j 1– Nj N 2j=

2n 1+ 2j 1– 1 2– n 0 Nj 1–=
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Wavelet transforms

- A simple example:
- Our original data is , .
- CWT by using the Haar wavelet in matrix form:

- A few examples of the colum vectors of 

Scale
1

2

4

8
16

j 0 15
WT

X Xi= i 0 15=

Y WX=
W

W0 j
T 1

2
-------– 1

2
------- 0 0=

W8 j
T 1

2
---– 1

2
---– 1

2
--- 1

2
--- 0 0=

W14 j
T 1

4
---– 1

4
---– 1

4
--- 1

4
---=

W15 j
T 1

4
--- 1

4
---=
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Wavelet transforms

- To put it another way the output of the CWT gives us the following 

- CWT gives information of the variation of the original data in different length scales. 

Y

Y0

Y7
Y8

Y11
Y12
Y13
Y14
Y15

1
2

------- X1 X0–

1
2

------- X15 X14–

1
2
--- X3 X2 X1– X0–+

1
2
--- X15 X14 X13– X12–+

1
8

------- X7 X4 X3– – X0–+ +

1
8

------- X15 X12 X11– – X8–+ +

1
4
--- X15 X8 X7– – X0–+ +

1
4
--- X15 X0+ +

= =
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Wavelet transforms

• Algorithms performing DWT can be viewed as digital filters. 

- Let’s take a simple example of the Haar wavelet.

- Now the basis functions are 

,

- The sequence of expansion functions is 

, , 

- Each of these functions is supported on the interval .

- The scaling function added to this set is 

,    .

u 1     0 u 1=

u
1   0 u 1 2
1–   1 2 u 1
0   otherwise

=

n 2j k+= j 0 0 k 2j

n u 2j 2/ 2ju k–=

In k2 j– k 1+ 2 j–=

u 0 u 1= u 0 1
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Wavelet transforms

- We want to describe our data  in the wavelet basis:

.

- The coefficients  can be obtained from .

- The basis functions for the Haar wavelet can now be written as 

 .

x t

x t i i
i

=

i i i x t=

2k t 1 2  n 2k 2k 1+=
0   otherwise   

=

2k 1+ t
1 2  n 2k=

1– 2  n 2k 1+=
0   otherwise   

=
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Wavelet transforms

- In matrix form this can be written as 

,            .

- The vectors  and  can be seen as the time series of even and odd Haar wavelets.

- So, we generated from one data set of length (say)  two sets of length .

- One contains the smoothed information and the other the ‘detail’ information of the original signal.

- The Haar expansion can now be applied to the smoothed data set and this gives new sets of length . 

- If our original data set length is  we can continue the process until we end up with two data sets of of length 1.
- One contains the average of the whole set and the other the difference 

between the averages of the first and second halves of the set.
- This is called the pyramid algorithm.
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Wavelet transforms

- Graphically:

- The inverse WT is obtained by applying the above procedure in the opposite direction and using the inverse of the coef-
ficient matrix.

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

s0
d0
s1
d1
s2
d2
s3
d3
s4
d4
s5
d5
s6
d6
s7
d7

s0
s1
s2
s3
s4
s5
s6
s7
d0
d1
d2
d3
d4
d5
d6
d7

S0
D0
S1
D1
S2
D2
S3
D3
d0
d1
d2
d3
d4
d5
d6
d7

S0
S1
S2
S3
D0
D1
D2
D3
d0
d1
d2
d3
d4
d5
d6
d7

S0
D0
S1
D1
D0
D1
D2
D3
d0
d1
d2
d3
d4
d5
d6
d7

S0
S1
D0
D1
D0
D1
D2
D3
d0
d1
d2
d3
d4
d5
d6
d7

S0
D1
D0
D1
D0
D1
D2
D3
d0
d1
d2
d3
d4
d5
d6
d7

Filter Permute Filter Permute Filter Permute Filter

Scientific computing III 2013:   12. Fourier analysis                                                                                                                                                                                                   42

Wavelet transforms

• The DWT can be viewed as a digital filter:

- What wavelet one uses is determined by the filter coefficients  in the transformation matrix.
- These coefficients must fulfill various conditions:

1. In order to compute the IWT easily the filter matrix is made orthogonal.
2. The sequence of coefficients must a certain number of vanishing moments.

- For example so called DAUB4 wavelets are ‘generated’ by the matrix

xn ckxn k–
k 1=

M
=

ck

c0 c1 c2 c3        

c3 c2– c1 c0–        

  c0 c1 c2 c3      

  c3 c2– c1 c0–      

    c0 c1 c2 c3    

     c3 c2 – c1 c0–    

       .    
        .   
          -
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Wavelet transforms

- The coefficients are obtained from equations

 , , , .

- Graphically (from NR, Fig. 13.10.1)

c0
2 c1

2 c2
2 c3

3+ + + 1=

c2c0 c3c1+ 0=
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1 3+

4 2
----------------= c1

3 3+
4 2

----------------= c2
3 3–
4 2

----------------= c3
1 3–
4 2

----------------=
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Wavelet transforms

• Wavelet routines can be found in 

GSL: gsl_wavelet_transform_forward(w,data,1,n,work);
gsl_wavelet_transform_inverse(w,data,1,n,work);

Matlab: Wavelet Toolbox (from Mathworks; costs money)
Various free toolboxes (or collections of routines):

http://www-stat.stanford.edu/~wavelab/
http://taco.poly.edu/WaveletSoftware/

• Wavelets have been applied (among other things) in data compression, noise reduction and linear algebra.

- FBI uses wavelets to compress its fingerprint image database.

- The JPEG2000 standard uses wavelets.


