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Modeling of data

• The problem is roughly the following:

We have a model that should describe the behavior or our experimental or simulation data 
and it has parameters the values of which we do not know.  Using modeling of data we pursue
to obtain values and error estimates for those parameters.

• If the model is obtained from a theory the parameters may have a physical meaning. 
• In statistical modeling parameters do not necessarily have a clear interpretation. 

• The basic approach is the following: 

We choose a figure-of-merit (FOM) function which tells us the difference between the data and the model
(with a certain set of model parameters).  The smaller the value of this function the better the model
describes the data.

• We also should be able to obtain a statistical measure for the goodness of the fit 
and the uncertainties in the parameters.

• Assume we have  data points , . The model has  parameters. 

.

• The problem is thus: 

If we have the parameter set  what is the probability that it produces this particular data set

(within some interval )?
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Modeling of data

- If we assume that the data points are drawn from a Gaussian distribution  with standard deviation 
then we may estimate this probability as 

.

- Maximizing this is equivalent to minimizing 

.

- Because  and  are constant (for this particular problem) we have to minimize the quantity

.

by varying the parameter set .

-  has the distribution  where  is the number of degrees of freedom.

- In this case . 
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Modeling of data

-  tells us the probability with which the value  can be exceeded 
by chance. 

1. If the probability if very small, differences between the data and the
              model are not random fluctuations or the uncertainties of the data
     are too optimistic. Or the measurement errors may not be normally
     (Gaussian) distributed.

2. If the probability is near unity the uncertainties of the data may be 
    too large.

3. Rule of thumb:  a good fit gives .

- If we don’t know the ‘s we can get an estimate by 

1. Doing the fit by using a constant  for all data points.
2. Computing an estimate for ‘s by 

.
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Modeling of data

• By setting the derivative of  with respect to parameters  we get the equation that we must solve

.

- This is in general a set of  nonlinear equations for . 
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Modeling of data: line fitting

• Line fitting: Let’s start with the most simple model (also called linear regression):

.

- One usually assumes that the values  have an uncertainty  but  are accurate.

- The FOM function is now 

.

- In the minimum its derivatives with respect to  and  are zero:

.
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Modeling of data: line fitting

- Let’s define the following sums

,     ,    ,   ,   .

- Now the equations can be written as 

- Now we get the solution into form

.
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Modeling of data: line fitting

- An estimate for the uncertainties of the parameters can be obtained 

from the rule of the propagation of errors :

- Note that these estimates assume that the coefficients  and  are uncorrelated.

- When there is error also in the values  the minimization gets more complicated.
- FOM function is now computed as 

Note: .

- Minimization is no more a linear problem but one has to use nonlinear minimization methods.

f
2

i
2

yi

f 2

i 1=

M
=

a
2

i
2

yi

a
2

i 1=

M

i
2 Sxx Sxxi–

i
2

------------------------
2

i 1=

M Sxx--------= = =

b
2

i
2

yi

b
2

i 1=

M

i
2 Sxi Sx–

i
2

-------------------
2

i 1=

M
S---= = =

a b

xi

2 a b
yi a– bxi– 2

yi
2 b2

xi
2+

----------------------------------
i 1=

M
=

Var yi a– bxi– Var yi b2Var xi+ yi
2 b2

xi
2+= =

Scientific computing III 2013:   11. Modeling of data                                                                                                                                                                                                   8

Modeling of data: line fitting

- Line fitting (or polynomial fitting in general) can be done in Matlab using the function polyfit:

>> load line_100_5_1.dat
>> x=line_100_5_1(:,1);
>> y=line_100_5_1(:,2);
>> plot(x,y,’o’);
>> xf=0:0.1:100;
>> [p,s]=polyfit(x,y,1);
>> p
p = 1.0420   -1.9453
>> yf=polyval(p,xf);
>> hold
Current plot held
>> plot(xf,yf,’-r’);

- GSL has also line fitting routines:
int gsl_fit_wlinear (const double *X, const size_t
  XSTRIDE, const double *W, const size_t WSTRIDE, const double
  *Y, const size_t YSTRIDE, size_t N, double *C0, double *
  C1, double *COV00, double *COV01, double *COV11, double *
  CHISQ)

This function computes the best-fit linear regression coefficients
(C0,C1) of the model Y = c_0 + c_1 X for the weighted datasets (X, Y),
two vectors of length N with strides XSTRIDE and YSTRIDE.  The vector
W, of length N and stride WSTRIDE, specifies the weight of each
datapoint. The weight is the reciprocal of the variance for each
datapoint in Y.

The covariance matrix for the parameters (C0, C1) is estimated from
weighted data and returned via the parameters (COV00, COV01, COV11).
The weighted sum of squares of the residuals from the best-fit line,
\chi^2, is returned in CHISQ.
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Modeling of data: general linear fitting

• Now the linearity means linearity of the model with respect to parameters . 

- In general this can be expressed as 

,

where  are arbitrary functions or basis functions. Note that they need not be linear in .

- Our objective is to determine parameters  in such a way that the basis functions reproduce the data as accurately as 
possible:

- Defining an  matrix  as , denoting with vector  the  parameters , and with vector  the  data 

values  we can express the least squares problem in matrix for as 

.
- Because this is an overdetermined system (more equations than unknowns, ) the equality should be understood in 

the least squares sense; or 
,

meaning that the norm of the residual is minimized:

- The most convenient norm in this case is the Euclidean norm i.e. .
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Modeling of data: general linear fitting

- Actually the overdetermined problem may be more general than the one mentioned above.
- An example1: 

A surveyor measures heights of mountains.
Measurement results are , , , , , .

We must compute the best estimates of the heights , , .
- We can write down the equations

; 

in matrix form: 

h1

h2 h3

d21 d31

d23

Solution by Matlab

>> A=[1 0 0; 0 1 0; 0 0 1; -1 1 0; -1 0 1; 0 1 -1];
>> b=[310 520 405 205 120 100]’;
x=A\b
x =
                       305
                       515
                       415

>> A*x-b
ans =
                        -5
                        -5
          9.99999999999994
                         5
         -10.0000000000001
       5.6843418860808e-14
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Modeling of data: general linear fitting

- A simple example of a linear least squares problem is a polynomial of degree  as basis functions:

.

- The FOM function is now 

.

- This is more easily handled by the matrix notation:

 is an  matrix with elements 

1. From M.T.Heath, Scientific Computing: An Introductory Survey, McGraw-Hill, 2002.
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Modeling of data: general linear fitting

- Normally  has more rows than columns ( ):

- Vector  with  elements is defined as 

.

- Parameters  are denoted by vector  with  elements.

- By setting the partial derivatives with respect to parameters to zero we get the equations

,      .
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Modeling of data: general linear fitting

- This can be written in the form

,

where 

      (or ),   is an  matrix and 

      (or ),   is a vector with  elements.

- Or in matrix form these normal equations are 

or 

.

- This group of equations can be solved using the normal linear algebra methods (LU and back substitution).
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Modeling of data: general linear fitting

- Let’s denote the inverse matrix as .

- To estimate the uncertainties of the parameters  we can write the parameter as 

.

- The estimated variance of  can be found as in the case of line fitting 

.

- Because  is independent of  

.
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Modeling of data: general linear fitting

- Finally we get 

..

- The term in the brackets is  and we obtain

.

- One can also show that the off-diagonal elements of the matrix  are the covariances of the parameters1.

- Sometimes the matrix  is (nearly) singular. 
- In these cases we can not use the normal methods for solving the equation equations2.

- Moreover, the normal equations have  as the multiplying matrix. One can show that the condition number  of 
behaves as

.

(Remember that the condition number gives the error sensitivity of the linear problem  

 and .)

1. See e.g. Numerical Recipes, paragraph 15.6

2. In this case—when the matrix is symmetric positive definite—the Cholesky factorization , where  is a lower triangular matrix. 
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Modeling of data: general linear fitting

- A simple example:

,  .

- For  (with  the machine epsilon ) we obtain for matrix

, 

which is singular.
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Modeling of data: general linear fitting

- Moreover, the condition number of matrices  and  are as below:

 , when .

 , when .
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Modeling of data: general linear fitting

- Here we have used  (an  matrix) which is so called pseudo-inverse of .
- It is a generalization of matrix inverse for nonsquare matrices.
- It has the following properties:

(i) 
(ii)

(iii)

(iv) .

- It is also the unique minimal norm solution to the problem

.

- Pseudo-inverse can be calculated using the singular value decomposition of matrix :

,

,

,  ,

where  are the singular values of  (see below).
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Modeling of data: general linear fitting

- We can transform the least squares problem to a more stable form by QR decomposition:

, where  is an  orthogonal matrix (i.e. ) and  is an  triangular matrix.

- As a figure:

- The least squares problem is now 

.

- Now matrix  is orthogonal, i.e. multiplying by it preserves the norm: .
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Modeling of data: general linear fitting

- Because of the triangular form of matrix  we can decompose the right hand side as , where  is an -

vector and  an -vector. The main point is that  does not depend on . 

- The equation is now  .

- The residual norm becomes now:

.

- Because  does not depend on  we obtain the minimum by putting the first term to zero:

.

- The minimum norm is .

- In practice the QR decomposition is done by orthogonal transformations like Housholder reflections to columns of :
.
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Modeling of data: general linear fitting

- Geometrical interpretation of the linear least squares problem in 3D/2D:

original equation  or 

- The vector produced from transform  spans a subspace of  (a plane; easily demonstrated with Matlab).
- The range of matrix  is defined as the space spanned by the column vectors of  or 

.
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Modeling of data: general linear fitting

- A Matlab example1: water pumped through a container where dye is added. Concentration of dye as a function of time 
is measured. (blue curve). A second order polynomial is fitted to the data (red curve).

1. Data from example 6.4 in Kahaner, Moler, Nash: Numerical Methods and Software.
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Modeling of data: general linear fitting

Original data:
    1.0000    4.0225
    2.0000    6.3095
    3.0000    5.3522
    4.0000    4.3553
    5.0000    3.7861
    6.0000    2.2947
    7.0000    2.9492
    8.0000    2.1732
    9.0000    1.4921
   10.0000    3.3424
   11.0000    1.2596
   12.0000    2.4732

Create the matrix A:
A=[t.^0 t.^1 t.^2]
A =
     1     1     1
     1     2     4
     1     3     9
     1     4    16
     1     5    25
     1     6    36
     1     7    49
     1     8    64
     1     9    81
     1    10   100
     1    11   121
     1    12   144

QR decomposition of A:
[R,c]=qrsteps(A,b)
R =
   -3.4641  -22.5167 -187.6388
         0   11.9583  155.4574
         0         0   36.5331
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
         0         0         0
c =
  -11.4922
   -3.9747
    0.9072
    0.3239
    0.2059
   -0.8364
    0.2649
   -0.0664
   -0.3049
    1.9857
    0.3411
    1.9906

Solve the equation:
y=R\c
y =
    6.2312
   -0.6552
    0.0248

Residual (original):
A*y-b
ans =
    1.5783
   -1.2894
   -0.8631
   -0.3476
   -0.2101
    0.8993
   -0.0876
    0.4057
    0.8537
   -1.1799
    0.7691
   -0.5285

Residual (transformed):
R*y - c
ans =
    0.0000
    0.0000
    0.0000
   -0.3239
   -0.2059
    0.8364
   -0.2649
    0.0664
    0.3049
   -1.9857
   -0.3411
   -1.9906

Matlab function qrsteps obtained from Cleve Moler: Numerical Comput-
ing with Matlab, http://www.mathworks.com/moler/chapters.html
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Modeling of data: general linear fitting

- When the problem is ill-conditioned singular value decomposition of the matrix  may be of help.
- SVD of an  matrix  ( 1) has the form

 (or sometimes expressed in equivalent form )

where  and  are orthogonal ( is ,  is ): 
,   ,

, 

and 

   ( ).

- Moreover, .   are the singular values of .

- The smallest singular value  is the distance (in the 2-norm) from  to the nearest degenerate (singular) matrix.

- The number of non-zero ‘s is equal to the rank of the matrix. 
(Rank of an  matrix  is the dimension of its range. Range of a  is the set of 
  all -vectors  where  is an -vector.)

1. This is not required for a SVD to exist. In least squares, however, we always have more equations than variables.
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Modeling of data: general linear fitting

- If  is singular then at least .

- SVD can tell many things about the matrix; assume we have, for matrix ,  ; 

i.e. all singular values from  are zero.
- Then one can show that 

- Various norm properties are related to SVD:

.

- Matrix  can be expressed as a SVD expansion:

- In many cases  is not exactly singular but almost. 
- In this case some of the singular values are small. 
- The ratio  is a similar measure of the singularity of the matrix as the condition number.
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Scientific computing III 2013:   11. Modeling of data                                                                                                                                                                                                   26

Modeling of data: general linear fitting

- To express this near rank-deficiency exactly the concept of -rank can be used

- If we define 

, where ,

then one can prove that
.

- Also, one can show that if  then

,  .

- With SVD one can define so called pseudo-inverse :
,

, . 

- Now the LS solution of the equation  can be expressed as .

-  is the solution for the minimization problem  .
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Modeling of data: general linear fitting

- SVD can be written in vector form as below

  , 
or

  .

- Compare these with the eigenvalue problem 

.

- SVD is the “eigenvalue problem of nonsquared matrices”.
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Modeling of data: general linear fitting

- How is all this related to linear fitting?

- Well, first change the notation sligthly (Bear with me!):

Our data is , 

Basis functions are ,  

Parameters are , 

So, the approximation we seek is .

In matrix form , where .

- In other words we have a minimization problem: we have to find 

or we have to minimize the residual.

ti bi i 1 M=

j ti j 1 N=

xj j 1 N=

bi x1 1 ti x2 2 ti xN N ti+ + +

b Ax Aij j ti=

minx b Ax– 2
2 minx b Ax– i

2

i 1=
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Modeling of data: general linear fitting

- This norm can be written in terms of SVD of  as (remember  is orthogonal)

- If we denote 

,      we get 

.

- If none of the singular values is zero we can get the minimum of the above norm by setting 

.

A U
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2
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Modeling of data: general linear fitting

- This gives the norm its minimum value 

.

- If   then any choice of  gives the same minimum residual

.

- This means that the least squares problem doesn’t have a unique solution.

- Usual convention is to set  whenever . 

- Singular values  are nonzero only if the basis functions are linearly independent. 
- Near linear dependence between basis functions implies a singular value close to zero.

- Thresholds for the singular values can be used as the tolerance of the fit.
- Any   greater than the threshold is acceptable and the corresponding parameter value 

is computed from .

- Any  smaller than the threshold value is deemed as negligible and it set to zero.

- The only drawback of the SVD method is that it is slower than solving the normal equations.
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Modeling of data: general linear fitting

• SVD has many other applications. See any textbook on numerical methods.

• SVD can be calculated by 

Matlab: [U,S,V]=svd(A);

LAPACK: SUBROUTINE DGESVD(JOBU,JOBVT,M,N,A,LDA,S,U,LDU,VT,LDVT,WORK,LWORK,INFO)

GSL: int gsl_linalg_SV_decomp(gsl_matrix *A, gsl_matrix *V, gsl_vector *S, 
gsl_vector *WORK)
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Modeling of data: nonlinear fitting

• Now we generalize the fitting problem to models where the dependence on the parameters  is nonlinear.

• Due to nonlinearity in minimizing the  we have to resort to iterative methods.

- As in function minimization in general, we start with a initial guess for the parameter vector  and by using 

our algorithm proceed in the parameter space until the minimum of  has been reached. 

- Following the principles developed in Chapter 8 the function can be approximated as quadratic near the minimum 

,

where  is a vector with  elements and  is an  matrix.

- Minimum of this function is found with one single step

.

- If the  function is not well approximated by a quadratic function we can use e.g. the steepest descent direction

,

where the constant  is small enough not to start going uphill.
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Modeling of data: nonlinear fitting

- The difference between minimization in fitting and function minimization in general is that now we are able to compute 
both the gradient and the Hessian matrix. (We built the model, didn’t we!)

- Our model is 
, 

where the dependence of  on  is no more linear.

- FOM function is now 

- Components of the gradient  are 

,   .

- Elements of the Hessian matrix are 

.
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Modeling of data: nonlinear fitting

- Let’s drop those 2’s by defining 

,         .

so that 

.

- Now the iteration equation  can be written in the form

. (1)

where  is the movement in one iteration step.

- From equation (1) we solve  and add it to the current position, thus giving us the new point.

- The steepest decent step takes the form

. (2)
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Modeling of data: nonlinear fitting

- Hessian matrix contains the second derivatives of  with respect to the parameters . 
- In most algorithms these terms are dropped.

- This can be justified by observing that the coefficient of the term  is  which is essentially (for a 
successful model) the randomly distributed error of the data. 

- Because of this we can assume that these terms more or less cancel out each other. 
- In case of outliers keeping the second derivatives can make the algorithm unstable.

- So, we redefine matrix :

.

- Changing  this way does not change the end results; only the route in the  space that takes us to the minimum is 
changed.

- Note that dropping those second derivatives from the Hessian results in also by assuming that the model  is 
linear in .
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Modeling of data: nonlinear fitting

- In the Levenberg and Marquardt (LM) method the steepest descent is used when far away from the minimum
- When the minimum of the  is approached the method gradually shifts to the (approximate) inverse Hessian method. 

- The value of the constant  in equation (2)  is estimated by the Hessian matrix:
- Dimension of  is .

- The only element in the Hessian matrix  with this dimension is . 
- Let’s assume that this element tells us the ‘scale’ of the problem. 
- Moreover,  in oder not to do too long jumps we divide it by a number .
- So we get the equation (2) to form 

. (3)

- Combining the inverse Hessian and SD methods goes like this:

- Let’s define the matrix :

.

- Replace equations (1) and (3) by one equation

. (4)
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Modeling of data: nonlinear fitting

- If  is large equation (4) approaches equation (3) while for small  we obtain the Hessian equation (1)

- The LM algorithm is then the following (the initial parameter vector is )

1. Compute 
2. Set a small value to . E.g. .
3. Solve  from equation (4) and compute .

4. If , increase  ( ) and go to step 3.
5. If  decrease : , update vector  and go to step 3.

- We also need a condition for stopping the iteration.
- In practice stopping after  decreases only slightly (say 0.01) is a good measure of convergence. 

- After convergence the error estimates of the parameters can be computed from .

a
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0.001=

a 2 a a+( )
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2

C 1–=
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Modeling of data: nonlinear fitting

- As an example below are the fits of Maxwell-Boltzmann distribution 

to the data obtained from the molecular dynamics simulation of solid Lennard-Jones (in this case Ne) material.

  

y ax2e x2 2b–=

vdfit> ../fitf/fitf vd70.dat boltzmann
-------------------------- fitf ---------------------------
Fitting function boltzmann to experimental file vd70.dat
      y=a*x**2*exp(-x**2/2.0/b)

> fitfunc  vd70.dat 2 1 1

    a              b           CHI^2          Lambda
 ------------   ------------   ------------ ------------
  1.0000000      1.0000000     0.16260163E-02 0.10000000E-02
  10.551674      5.1415530      19498.413      1000.0000
  10.550628      5.1404933      19498.392      100.00000
  10.540944      5.1300143      19498.190      10.000000
  10.509482      5.0350311      19496.523      1.0000000
  12.569750      4.3980820      19487.114     0.10000000
  19.954605      3.8127834      19471.618     0.10000000
  41.200786      3.2570494      19434.872     0.10000000
  111.62496      2.7146669      19334.445     0.10000000
  428.58148      2.1554226      18994.058     0.10000000
  2671.5811      1.5655949      17473.904     0.10000000
  17594.094      1.5383770      9299.2787     0.10000000
  48717.769      0.98988380     4880.1334     0.10000000E-01
  88756.809      1.0996447      193.74644     0.10000000E-02
  89438.680      1.0468608      2.1225936     0.10000000E-03
  89969.741      1.0425107      1.6102341     0.10000000E-04
  89974.933      1.0424922      1.6102060     0.10000000E-05
  89974.941      1.0424922      1.6102060     0.10000000E-06

    sigmaa         sigmab      CHI^2(ABS)
 -----------    -----------    ------------
  41.107902     0.24614145E-03  990.27666
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Modeling of data: nonlinear fitting

- Implementations of the LM algorithm:
 

GSL: Derivative Solver: gsl_multifit_fdfsolver_lmsder
     This is a robust and efficient version of the Levenberg-Marquardt

     algorithm as implemented in the scaled LMDER routine in MINPACK.
     Minpack was written by Jorge J. More’, Burton S. Garbow and
     Kenneth E. Hillstrom

Matlab: X=LSQCURVEFIT(FUN,X0,XDATA,YDATA) starts at X0 and finds
    coefficients X to best fit the nonlinear functions in FUN
    to the data YDATA (in the least-squares sense).

SLATEC: DNLS1E: The purpose of the routine is to minimize the
sum of the squares of M nonlinear functions in N variables by a 
modification of the Levenberg-Marquardt algorithm. 

- SLATEC is a collection of Fortran (F77!) routines doing various kinds of numerical tasks.
- It can be downloaded from www.netlib.org or www.csit.fsu.edu/~burkardt/f_src/slatec/slatec.html.
- If you download it from the latter place you need also the F90 f90split program to split the one big file to separate 

subroutines (http://www.csit.fsu.edu/~burkardt/f_src/f90split/f90split.html).
- Using the scripts you can create a library (.a file) that can be linked with your main program.
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Modeling of data: nonlinear fitting

- Matlab Curve Fitting Toolbox is a nice tool for nonlinear fitting. 

- Example: In order to obtain a measure of a width of a 
stretched cylindrical SiO2 beam fit a modified Fermi 
function to the atomic density as a function of distance 
from the center line if the beam:

.

(This width is in turn used to calculate the Poisson’s 
ratio of the beam: .)
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Modeling of data: nonlinear fitting

- Below is listed the Matlab script doing the fit and the results.
%
% Script fits a modified Fermi function
%
%                 a-b*r
%     d(r) = ----------------
%            exp((r-c)/d)+1
%
% to the radial distributions of atoms in a cylindrical beam.
%
% Antti Kuronen, 2009, antti.kuronen@helsinki.fi
%

n0=10;
g=fittype('(a-b*x)/(exp((x-c)/d)+1)','coeff',{'a','b','c','d'});
d=load('dist.dat');
[fp,gof,output]=...
fit(d(n0:end,1),d(n0:end,2),g,'Startpoint',[5 0.1 60 1]);
fprintf('a %g  b %g  c %g  d %g\n',fp.a,fp.b,fp.c,fp.d);

h=figure;
hold on;

h1=plot(d(:,1),d(:,2),'b.'); 
set(h1,'Marker','o');
set(h1,'MarkerSize',4);
set(h1,'MarkerFaceColor','blue');

h2=plot(fp);
set(h2,'LineWidth',2.0)
legend off;

ha=gca;
set(ha,'FontSize',14);
set(get(ha,'XLabel'),'String','{\it r} (Å)','FontSize',14);
set(get(ha,'YLabel'),'String','{\it n} ({\it r})','FontSize',14)

>> fitml
a 4.44564  b 9.88383e-05  c 61.2408  d 0.398287
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Modeling of data: parameter errors

• According to the figure below we can think that there exists a set of true parameter values . 

- Based on these parameters  we can generate many data sets that fit the model but have random errors. 

- This means that also the parameters  obtained by fitting individual data sets are different.

- You can also do many measurements to get error estimates of the parameters but this is in most cases not feasible.
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Modeling of data: parameter errors

- What you can do is generate artificial data sets by using Monte Carlo: this is called the bootstrap method:

- Note that we must know the distribution of the errors in the data points in order to generate the data.
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Modeling of data: parameter errors

• We can also use the function  as a basis for the 
error estimation.

- Confidence limits for the parameters can be com-
puted as constant- boundaries.

- Assume that the  has the  distribution with 

 degrees of freedom. With a reasonable fit one 
can show that the parameters are normally distrib-
uted:

.

- Moreover, the quantity  is 

distributed as a  distribution with  degrees of freedom. Here  

is the true parameter vector and  one realization of it.

- Confidence region of one parameter  can be expressed in terms of 

the matrix  as 

,

where  is now the change in  that defines the confidence level.
- In the case of fitting by using SVD the elements of the matrix  are simply obtained as

, where  is now the th singular value.

- For determining joint confidence regions for more than one parameter see e.g. Numerical Recipes.
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Modeling of data: data smoothing

• Data smoothing can be done by various means.

- By fitting a polynomial to the data set. Of course, the degree of the polynomial must be lower than the number of data 
points.

- By constructing a spline that has a restricted ‘bending energy’ (average curvature) but nonetheless goes near the data 
points. This can be accomplished by minimizing the following quantity

,

where  is the good old chi-squared and the last term gives the approximate average curvature.
- Parameter  controls the relative weight of the two terms:

with  we get a straight  line
with  we get a normal spline interpolant.
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Modeling of data: robust estimation

• In robust estimation we aim to diminish the effect of outlier points to the 
result of the fit. 
- It might be that we know that the distribution of our data comprises of a 

narrow peak and a broad tail of outliers.
- The idea in robust estimation is to write the probability distribution not 

as 

but 

.

- In fitting we then want to minimize 

.

- Often the argument of  is of the form . 

- Defining  we get the minimization equations as 

,    .

Numerical Recipes, Fig. 15.7.1
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Modeling of data: robust estimation

- For normal distribution we get

,  .

- If we have errors distributed as double exponential

we get 
,  .

- Sometimes a Lorentzian distribution is appropriate:

,

which gives

,  .
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