
Scientific computing III 2013: 9. Generation of random numbers 1

Generation of random numbers

• In many problems in scientific computing large numbers of random numbers (RNs) are needed.
- Different simulation methods; particularly Monte Carlo1.

• Different kinds of RNs:

1. Real RNs obtained from some physical processes (radioactive decay, electrical noise, ...)
 Impractical. (However, see www.random.org!)

2. Pseudo RNs are generated by computer by a deterministic algorithm but have the properties that are
 needed in applications.

3. Quasi RNs progressively cover a dimensional space with evenly distributed points.
 These may sometimes give faster convergence for e.g. MC integration.

• In this chapter we talk about pseudo RNs (and drop the word ‘pseudo’).

• For a more thorough discussion on RNs attend the course ‘Basics of Monte Carlo Simulations’
(http://beam.acclab.helsinki.fi/~eholmstr/mc/)

• The starting point is a random number generator (RNG) that produces evenly distributed RNs in the interval .

1. In fact, the MC method in general could be defined as a method that uses large numbers of random numbers.

d

0 1

Scientific computing III 2013: 9. Generation of random numbers 2

Generation of random numbers

• What properties do we expect from a decent RNG?

- Statistical properties. Even distribution. No correlations, not even for -tuples of RNs.

- Long period. RNGs are created by computer subroutines only finite number of them.

- RN sequences should repeatable. Needed when testing the application program:
runs with different parameter values but with the exactly same RN sequence.
Also, it should be possible to save the state of the RNG so that the run can be later continued.

- Portability. RNG should give exactly the same sequence on different platforms,
independent on the word length and such.

- Speed. Maybe not so important nowadays; depends of course on the application.

- Parallel computations. RNG should parallellizable i.e. able to generate many
non-overlapping sequences.

• Practically all RNGs are implemented by using integer arithmetics.

- By scaling the RN is converted to a floating point number within the interval .

n

0 1

Scientific computing III 2013: 9. Generation of random numbers 3

Generation of random numbers: uniform RNs

• The oldest type of RNGs is the linear congruential generator (LCG).

- The RN sequence is computed as

- This generates RNs between and or between and ().

- Parameters of the RNG are , and , and it is often denoted as .

- Parameter is normally a large integer and it determines the period of the RNG:

- The result is scaled to obtain a RN in the interval :

- Constant is sometimes dropped; then the RNG is called (=multiplicative).

- To start the sequence we need the initial seed .

- It can be given as an input from the user or it can be generated from the system state.
- Both are needed:

You change something in your program and want to see its effect
run with the exactly same RN sequence i.e. use the same seed.

A huge number of runs to get statistics they all need a unique seed.

xi

xi 1+ axi c+ mod m=

0 m 1– c 0 1 m 1– c 0=

a c m LCG a c m

m P P m

0 1 r
xi
m
----=

c MLCG a m() M

x0

Scientific computing III 2013: 9. Generation of random numbers 4

Generation of random numbers: uniform RNs

- One way to get the seed is to compute it from the time of day.

 C Fortran

NAME
 gettimeofday, settimeofday - get / set time

SYNOPSIS
 #include <sys/time.h>
 int gettimeofday(struct timeval *tv,

struct timezone *tz);

DESCRIPTION
The gettimeofday can get the time as well as a
timezone. The tv argument is a timeval struct,
as specified in
 <sys/time.h>:
 struct timeval {
 time_t tv_sec; /* seconds */
 suseconds_t tv_usec; /* microseconds */
 };

and gives the number of seconds and microseconds
since the Epoch (see time(2)).

Syntax: CALL DATE_AND_TIME ([date]
 [, time] [, zone] [, values])

VALUES(1) is the 4-digit year.
VALUES(2) is the month of the year.
VALUES(3) is the day of the month.
VALUES(4) is the time difference with respect
 to Coordinated Universal Time
 (UTC) in minutes.
VALUES(5) is the hour of the day
 (range 0 to 23).
VALUES(6) is the minutes of the hour
 (range 0 to 59)
VALUES(7) is the seconds of the minute
 (range 0 to 59).
VALUES(8) is the milliseconds of the
 second (range 0 to 999)

Scientific computing III 2013: 9. Generation of random numbers 5

Generation of random numbers: uniform RNs

- Below are examples of how to do it in C and Fortran

#include <stdlib.h>
#include <sys/time.h>
int getseed()
{
 int i;
 struct timeval tp;
 if (gettimeofday(&tp,(struct timezone *)NULL)

==0) {
 i=tp.tv_sec+tp.tv_usec;
 i=(i%1000000)|1;
 return i;
 } else {
 return -1;
 }
}

function getseed()
 implicit none
 integer :: getseed
 integer :: t(8),i

 call date_and_time(values=t)
 getseed=t(7)+60*(t(6)+60*(t(5)+24*(t(3)-
 1+31*(t(2)-1+12*t(1)))))+t(8)
 seed=ior(iseed,1)

end function getseed

Scientific computing III 2013: 9. Generation of random numbers 6

Generation of random numbers: uniform RNs

- In Linux (and in many other Unix systems) there is a device called /dev/urandom. It provides the user with a stream
of random bytes.

- Below are routines that use the device to obtain the seed.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>
#include <fcntl.h>

#define MASK 2147483647

int getseed()
{
 int i,rdev,rnum,nb=sizeof(int),rs;
 struct timeval tp;

 rdev=open("/dev/urandom",O_RDONLY);

 if (rdev==-1) {
 if (gettimeofday(&tp,(struct timezone *)NULL)==0) {
 i=tp.tv_sec+tp.tv_usec;
 i=(i%1000000)|1;
 return i;
 } else {
 return -1;
 }
 } else {
 rs=read(rdev,&rnum,nb);
 if (rs>0) {
 return MASK&rnum;
 } else {
 return -1;
 }
 }

}

function getseed()
 implicit none
 integer :: getseed
 integer :: t(8),rn,is
 integer,parameter :: LMASK=2147483647
 integer,parameter :: LUN=676767
 character (len=80) :: rdev='/dev/urandom'
 logical :: openok,readok

 openok=.true.
 readok=.true.

 open(LUN,file=rdev,form='unformatted', &
 & access='stream',action='read',iostat=is)
 if (is/=0) then
 openok=.false.
 else
 read(LUN,iostat=is) rn
 if (is/=0) then
 readok=.false.
 end if
 end if
 if (openok) close(LUN)

 if (openok.and.readok) then
 rn=iand(rn,LMASK)
 else
 call date_and_time(values=t)
 rn=t(7)+60*(t(6)+60*(t(5)+24*(t(3)-1+ &
 & 31*(t(2)-1+12*t(1)))))+t(8)
 end if
 getseed=rn
 return

Scientific computing III 2013: 9. Generation of random numbers 7

Generation of random numbers: uniform RNs

- Note that

- There is also a device called /dev/random. It is guaranteed to give good quality (high-entropy) RNs. However, the
read may block for a long time when system collects enough entropy from e.g. mouse movement, network traffic,
etc.

- The stream access of Fortran file io is a feature of Fortran 2003.
Gnu Fortran (gfortran) supports it, as of version 4.2.
Intel Fortran at least version 11.1 supports it.

Scientific computing III 2013: 9. Generation of random numbers 8

Generation of random numbers: uniform RNs

- An below is the implementation of in C:

- Note the use of C long long int data type.

LCG 69069 1 232()

double lcg(long long int *seed)
{
 static long long int a=69069,c=1,
 m=4294967296; /* 2^32 */
 static double rm=4294967296.0;

 *seed=(*seed * a+c)%m;
 return (double)*seed/rm;
}

#include <stdio.h>
#include <stdlib.h>

int getseed();
double lcg(long long int *iseed);

int main (int argc, char **argv)
{
 long long int seed;
 int i,imax;
 double x,y;

 imax=atoi(*++argv);
 seed=atoi(*++argv);
 if (seed<=0) seed=getseed();
 fprintf(stderr,"Seed %lld\n",seed);

 for (i=0;i<imax;i++) {
 x=lcg(&seed);
 y=lcg(&seed);
 fprintf(stdout,"%10f %10f\n",x,y);
 }

Scientific computing III 2013: 9. Generation of random numbers 9

Generation of random numbers: uniform RNs

- An below is the implementation of in Fortran:

- Note the use of long integer data type.

LCG 69069 1 232()

function lcg(seed)
 implicit none
 integer,parameter :: ik=selected_int_kind(15),&
 & rk=selected_real_kind(10,40)
 real(rk) :: lcg
 integer(ik),intent(inout) :: seed
 integer(ik),save :: a=69069,c=1,m=4294967296
 real(rk),save :: rm=4294967296.0

 seed=mod(seed*a+c,m)
 lcg=seed/rm

end function lcg

program lcgmain
 implicit none
 integer,parameter :: ik=selected_int_kind(15),&
 & rk=selected_real_kind(10,40)
 integer :: i,imax,iargc
 real(rk) :: x,y
 integer(ik) :: seed
 character(len=80) :: argu
 real(rk) :: lcg
 integer :: getseed

 call getarg(1,argu); read(argu,*) imax
 call getarg(2,argu); read(argu,*) seed
 if (seed<=0) seed=getseed()
 write(0,’(a,i10)’) ’Seed ’,seed

 do i=1,imax
 x=lcg(seed)
 y=lcg(seed)
 write(6,*) x,y
 end do

end program lcgmain

Scientific computing III 2013: 9. Generation of random numbers 10

Generation of random numbers: uniform RNs

- When compiling the C version with gcc in 32 bit Linux environment you have to tell the compiler to conform to the C99
standard:

lcg> gcc lcgmain.c lcg.c getseed.c
lcg.c: In function ‘lcg’:
lcg.c:4: warning: integer constant is too large for "long" type
lcg> gcc -std=c99 lcgmain.c lcg.c getseed.c
lcg> a.out 10 4566
Seed 4566
 0.073428 0.569527
 0.691574 0.319013
 0.941832 0.372612
 0.971644 0.448007
 0.414919 0.060601
 0.674573 0.103366
 0.398162 0.648902
 0.034683 0.495077
 0.445557 0.142590
 0.526216 0.239509
lcg>

- Both versions were tested on 32 bit Linux Intel (gcc, icc, ifort), 64 bit Linux AMD Opteron (gcc, pgcc, pgf90), and
on 64 bit HP Tru 64 Unix (gcc, cc, f90) environments.

 All runs gave the same sequences.

- Making a RNG portable is not always this easy.

Scientific computing III 2013: 9. Generation of random numbers 11

Generation of random numbers: uniform RNs

- In most cases in the LCGs found in the literature the values of the constants , , and have been chosen carefully.
- Don’t go changing them if you don’t know what you are doing.

- The state of a LCG RNG is described by only one number period is limited to the range of that number.

- Probably the worst feature of the LCG RNGs is the correlations.

- -tuples of RNs generated by a LCG form parallel hyperplanes in dimensional space.

- Hyperplanes are equidistant and the theoretical maximum number of them in a unit hypercube is .
- The smaller the number of planes the worse is the distribution of the RNs in the cube.
- A good LCG is one with parameters and that maximize the number of planes.
- Below are examples of poor LCGs in 2D

a c m

d xi 1+ xi 2+ xi d+ d

0 1 d d!m 1 d/

a m

Scientific computing III 2013: 9. Generation of random numbers 12

Generation of random numbers: uniform RNs

- These planes can be found also in the better LCGs when you know where to look for. The LCG from the examples above
(note the axis scale in the right hand side figure):

 ,

- Command lines:

lcg> ./lcgmain 100000 987345 | xgraph -p -tk -nl
lcg> ./lcgmain 100000000 987345 | xgraph -p -tk -nl

x

x y 0 1 x 0 10 4– y 0 1

if (x<1e-4) printf("%20.15g %20.15g\n",x,y);

Scientific computing III 2013: 9. Generation of random numbers 13

Generation of random numbers: uniform RNs

- Because we have to multiply two 32-bit integers the intermediate result may not fit to 32 bits.

- Another workaround (instead of using 64 bit integers) is Schrage’s algorithm for multiplying two
32-bit integers modulo a 32-bit constant, without using any intermediates larger than 32 bits (including a sign bit).

- It is based on the approximate factorization of integer :

, , (means: integer part of)

- For example the RNGs provided for exercise 9 are LCGs using , and Schrage’s
algorithm with and 1:

double myrand(int *seed) {
 static int a=16807, m=2147483647, q=127773, r=2836;
 double minv = (double) 1.0/m;

 seed = a(*seed % q)-r*(*seed / q);
 if (*seed < 0) *seed = *seed + m;
 return (double) *seed * minv;
}

1. Minimal RNG of Park and Miller. This the ran0 RNG of Numerical Recipes.

m

m aq r+= q m
a
----= r m mod a= x

ax mod m a x mod q r x
q
---–=

a 16807= m 231 1– 2147483647= =
q 127773= r 2836=

Scientific computing III 2013: 9. Generation of random numbers 14

Generation of random numbers: uniform RNs

• Lagged Fibonacci generators (LFG) are based on the generalization of the LCG.

- The period of the LCG can be increased by the form

,

where and .

- A LFG requires an initial set of elements and then uses integer recursion

,

where and are integer lags satisfying and is one of the following binary operations:

+ addition
subtraction
multiplication
exclusive-or

- The corresponding generators are termed .

- Initialization requires random numbers which can be generated by e.g. a LCG.

xi a1xi 1– a2xi 2– apxi p–+ + + modm=

p 1 ap 0

Generalization of the
Fibonacci sequence
xi xi 1– xi 2–+=

x1 x2 xr

xi xi q– xi r– modm=

q r q r

LFG r s

q

Scientific computing III 2013: 9. Generation of random numbers 15

Generation of random numbers: uniform RNs

- An example of LFG is the (e.g. the ran3 routine of Numerical Recipes):

LFG 55 24 -

#define MBIG 1000000000
#define MSEED 161803398
#define MZ 0
#define FAC (1.0/MBIG)

double lfg(long int *seed)
{
 static int inext,inextp;
 static long int ma[56];
 static int first=1;
 long mj,mk;
 int i,ii,k;

 /* Initialization */
 if (*seed < 0 || first) {
 first=0;
 mj=MSEED-(*seed < 0 ? -*seed : *seed);
 mj %= MBIG;
 ma[55]=mj;
 mk=1;

 for (i=1;i<=54;i++) {
 ii=(21*i) % 55;
 ma[ii]=mk;
 mk=mj-mk;
 if (mk < MZ) mk += MBIG;
 mj=ma[ii];
 }
 for (k=1;k<=4;k++)
 for (i=1;i<=55;i++) {
ma[i] -= ma[1+(i+30) % 55];
if (ma[i] < MZ) ma[i] += MBIG;

 }
 inext=0;
 inextp=31;
 *seed=1;
 }

 /* Generation */
 if (++inext == 56) inext=1;
 if (++inextp == 56) inextp=1;
 mj=ma[inext]-ma[inextp];
 if (mj < MZ) mj += MBIG;
 ma[inext]=mj;
 return mj*FAC;
}

Scientific computing III 2013: 9. Generation of random numbers 16

Generation of random numbers: uniform RNs

- Similar runs as for the LCG:

 ,

- No -tuple correlations in this LFG.

- However, in some MC simulations correlations have been observed.
- Remedy: take only every second or third number in the sequence (decimation strategy).

x y 0 1 x 0 10 4– y 0 1

d

Scientific computing III 2013: 9. Generation of random numbers 17

Generation of random numbers: uniform RNs

• Shift-register generators (SRGs) can be viewed as the special case of LFGs.

- They are based on bit sequences with recursive definition

- Coefficients are either one or zero and , which guarantees that the -tuples of the bit

sequence has the maximum period of .

- In practice coefficients are chosen according to equation so that and others are
zero.

- By choosing the operation to be exclusive or and setting we get the following recursion

- Problem with this RNG is the short period.

m 2=

b bi=

bi c1bi 1– c2bi 2– cwbi w–+ + + mod 2=

cj j 1 w 1–= cw 1= w

bi 1– bi 2– bi w– 2w 1–

cj xi xi q– xi r– modm= cq cr 0

m 2=

i j 1– i r– j w– i q– 1+i q– 2+ i q–

w bit random number

Scientific computing III 2013: 9. Generation of random numbers 18

Generation of random numbers: uniform RNs

- In the generalized feedback shift-register generators (GFSRGs) bit-sequences corre-
sponding to integers are handled.

- The binary operation is applied to two bit sequences instead of single bits:

- Coefficients are usually chosen according the equation .

- Schematically the recursion looks like

- The good point in the GFSRGs is the long period.

- However, correlations have been observed in some test.
- They can be avoided by the decimation strategy: use only every second or third RN.

Bi bj 1+ bj 2+ bj w+=

Bi c1Bi 1– c2Bi 2– cqBq 1–+ + + mod 2=

cj xi xi q– xi r– modm=

21 w

21 w

21 w

Bi q–

Bi r–

Bi

Scientific computing III 2013: 9. Generation of random numbers 19

Generation of random numbers: uniform RNs

- The best choices for and are Mersenne primes (if is a prime is also a prime) and for which

- Examples of pairs satisfying this are

- GFSRGs are denoted by

r q r 2r 1–

r2 q2 1+ + prime=

r 98= q 27=
r 250= q 103=
r 1279= q 216 418=
r 9689= q 84 471 1836 2444 4187=

GFSR r q

Scientific computing III 2013: 9. Generation of random numbers 20

Generation of random numbers: uniform RNs

- One implementation of GFSRGs is the R250 RNG where , .r 250= q 103=

#define NR 1000
#define NR250 1250
#define NRp1 1001
#define NR250p1 1251

double lcgy(int *seed) {
 static int a=16807, m=2147483647,
 q=127773, r=2836;
 double minv = (double) 1.0/m;
 seed = a(*seed % q)-r*(*seed / q);
 if (*seed < 0) *seed = *seed + m;
 return (double) *seed * minv;
}

void r250(int *x,double *r,int n)
{
 static int q=103,p=250;
 static double rmaxin=2147483648.0; /* 2**31 */
 int i,k;
 for (k=1;k<=n;k++) {
 x[k+p]=x[k+p-q]^x[k];
 r[k]=(double)x[k+p]/rmaxin;
 }
 for (i=1;i<=p;i++) x[i]=x[n+i];
}

double ran_number(int *seed)
{
 double ret;
 static int firsttime=1;
 static int i,j=NR;
 static int x[NR250p1];
 static double r[NRp1];
 if (j>=NR) {
 if (firsttime==1) {
 for (i=1;i<=250;i++)
 x[i]=2147483647.0*lcgy(seed);
 firsttime=0;
 }
 r250(x,r,NR);
 j=0;
 }
 j++;
 return r[j];
}

Scientific computing III 2013: 9. Generation of random numbers 21

Generation of random numbers: uniform RNs

- And the main program using the RNG:

- R250 does not have the -tuple correlations but fails in some physical tests like random walk and MC simulation of the
Ising model.

- As already said by taking only every th RN () reduces correlations.

#include <stdio.h>

int getseed();
double ran_number(int *seed);

int main(int argc, char **argv)
{
 int seed;
 int i,imax;
 double x,y;

 imax=atoi(*++argv);
 seed=atoi(*++argv);
 if (seed<=0) seed=getseed();
 fprintf(stderr,"Seed %d\n",seed);

 for(i=0; i<imax; i++) {
 x=ran_number(&seed); y=ran_number(&seed);
 fprintf(stdout,"%g %g\n",x,y);
 }
 return(0);
}

d

k k 3 5 7=

Scientific computing III 2013: 9. Generation of random numbers 22

Generation of random numbers: uniform RNs

• RNGs can be tested by various ways.

- Theoretical tests based on number theoretical arguments
- Empirical test: compute some statistics of the RN sequence

- Distribution: should be even !

- test

- Spectral test: distribution of - tuples of RNs in

-dimensional space (remember hyperplanes in LCG RNGs)
- Testing in real application (MC simulations)
- Visual inspection: human eye good in extracting patterns:

2 2 yi y xi–

i

2

i 1=

N
=

n xi xi 1+ xi n+
n

Mertens & Bauke, Phys. Rev. E, 69 (2004) 055702.

Scientific computing III 2013: 9. Generation of random numbers 23

Generation of random numbers: uniform RNs

- Below are plotted the autocorrelation functions of various RNGs .n
r1rn r 2–

r
---------------------------------=

Scientific computing III 2013: 9. Generation of random numbers 24

Generation of random numbers: uniform RNs

- Below is shown (just for curiosity) the standard deviation
of a distribution of uniform random numbers in the
interval (generated by the Mersenne twister).

.

- It is easy to see that

.

d r r
0 Nd 1–

d d2 d 2–=

d 1
Nd
------ di

i 0=

Nd

=

d2 1
Nd
------ di

2

i 0=

Nd

=

d d=

Scientific computing III 2013: 9. Generation of random numbers 25

Generation of random numbers: uniform RNs

• As we have seen all the RNGs presented have some sort of correlations.

- One way to reduce these correlations is to combine two RNGs:

,

where , are RN from some (good) RNGs and is a binary operator (+,-,).

- One example of combination RNGs is RANMAR which combines LFG with simple arithmetic sequence.

- RANMAR is rather well tested and has the period about .

- Implementation: http://www.physics.helsinki.fi/courses/s/tl3/progs/rng/ranmar/

• Gnu Scientific Library (GSL) has many high-quality RNGs implemented. Check out the info-pages.

• One of the state-of-the-art RNGs is the Mersenne Twister.
- It belongs to the generalized feedback shift register class.
- A Fortran implementation can be found in course web page at

http://www.physics.helsinki.fi/courses/s/tl3/progs/rng/mersennetwister/
- For other implementations check out the RNG home page at

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

zi xi yi=

xi yi

2144

Scientific computing III 2013: 9. Generation of random numbers 26

Generation of random numbers: non-uniform RNs

• From the uniform RNs we need to get RNs that have various distribution.

- Let the desired distribution be in the interval :

.

- Let be the cumulative distribution

.

- According to definition we can map to a random variable .

- Let’s investigate the two equal subintervals and at positions

and , respectively.

- We can easily see that

.

xa b

f xf x a b

f x() 0 x a b

f x xd

a

b

1=

F x

F x() f x'() x'd

a

x

r=

xa b

F x

dx1 dx2

dr1

dr2

F x r 0 1

dx1 dx2 x1
x2

r1d
r2d

F xd dx x x1=
F xd dx x x2=

--
f x1
f x2
------------= =

Scientific computing III 2013: 9. Generation of random numbers 27

Generation of random numbers: non-uniform RNs

- I.e. by generating uniformly distributed RNs the ratio of hits in region to that in is the ratio of the probability den-
sities at these points.

- Thus, we can get RNs with the desired distribution by doing the transformation

.

- Note that all functions that are cumulative probability distributions have an inverse function.

- As an example we’ll take the free path of a photon in matter.

- The probability density distribution (in units of mean free path) is
.

- Cumulative distribution is

- Inverting this we get

- Because and have similar distributions we get the final answer
.

dr1 dr2

f x

x F 1– r=

F r

f z e z–=

F z e z'– z'd

0

z

1 e z––= =

z 1 r–ln–=

1 r– r
z rln–=

Scientific computing III 2013: 9. Generation of random numbers 28

Generation of random numbers: non-uniform RNs

• It is not always possible to form the inverse function of (although it does exist).

- In these cases we can use the rejection method.

1. Form a new function from the probability distribution

2. Generate a uniform RN and normalize this to interval : .

 If is not finite one has to transform it into one.
 E.g. can be transformed as to interval .

3. Generate a random number . If , accept otherwise go to step 2.

- The drawback of the method is that if is peaked we waste many RNs in rejections.

F

f' x f x
fmax
----------=

r1 0 1 a b x a b a– r1+=

a b
x a x a 1 1 y–ln–= y 0 1

r2 0 1 r2 f' x x

xa b

f' x

1

0
x

f x

Scientific computing III 2013: 9. Generation of random numbers 29

Generation of random numbers: non-uniform RNs

• We can also use a combination of the two methods presented above.

- First separate the probability distribution into two parts

.

where is easily inverted and contains most of the peakedness
and is rather smooth but mathematically complicated so that it can not be inverted.

- Now RNs can be generated as below:

1. Scale so that .

2. Scale so that .

3. Using the inversion method generate RNs with distribution .

4. Using RN apply the rejection method with distribution :

 Generate a RN . If accept otherwise
 go to step 3.

f x g x h x=

g x
h x

g̃ x()

x

h̃ x()

1

f x()

g x g̃ x g̃ x xd

a

b

1=

h x h̃ x h̃ x 1 x a b

g̃ x

x h̃ x

r 0 1 h̃ x r x

