
Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   1

Minimization of functions

• We have a number of atoms at positions , , and they interact via potential energy .

- Find the configuration  that minimizes the potential energy 

 find the equilibrium structure of the material. 
(Well equilibrium in zero Kelvin.)

• Function minimization in general:

Find the argument of the function  that gives the smallest
possible function value. 

-  may have many variables  multidimensional minimization

- Function maximization by minimization of .

- Function values may be continuous of discrete.

- Constrained or unconstrained minimization.

- Minimization = optimization.

ri i 1 2 N= V ri

   Si:  for different structures by different pot. modelsEpot

ri
V ri

f

f

f–

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   2

Minimization of functions

• Usually one is interested in the global minimum (A).

- There may also be local minima (B).

- Local minima are easy to find. 

- Global minimum is harder.
- One way is vary the starting point (see below) and pick the lowest minimum.
- Simulated annealing and genetic algorithms may give you the global mini-

mum. 

• In this section we introduce a couple of algorithms for unconstrained minimization continuous functions. 

• What method to choose depends often on whether you can or want to compute the derivatives of the function. 

• In general, minimization methods are iterative: 

1) First guess a starting point.
2) Use the algorithm to decide where to proceed and how long.

x

f x( )

B

A



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   3

Minimization of functions: golden section search

• Remember bisection rule in root finding: 

1) Isolate the root to interval .
2) Split the interval into two.
3) Take as a new interval the one that contains the root.

• Golden section search (GSS) is application of the very same idea to function minimiza-
tion.

- To isolate a minimum we need three points , ,   so that 

- Choose a new point  either from subinterval  or .

- Assume the new point is in  (see the figure). 

- If   the new triplet is  (case 1)
otherwise it is  (case 2)

- Always choose the triplet whose middle point has the lowest function value.

- This iteration is continued until the required accuracy is reached.
 the interval  is small enough.

a b

a

b

c

x

case 1

a b c

a b c
f b f a
f b f c

x a b b c

a

b

c

x

case 2b c

f b f x a b x
b x c

a c

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   4

Minimization of functions: golden section search

- How small is small enough?

- If the minimum is at  we might think that it can be localized into interval 

1, 
where  is the machine epsilon.

- Near the minimum the function has the form (1st derivative almost zero)

- The 2nd term on the right hand size is negligible compared with the 1st term when 

- This can be massaged into form 

- Assuming that the term under square root is of the order of 
unity we get the result that 

- I.e. the (relative) accuracy we can reach is only .

1. Or  ?

x b=

1 – b 1 + b

b 1 + b

f x( ) f b( ) 1
2
---f'' b( ) x b– 2+

Minimum: f'' b 0
1
2
--- x b– 2f'' b f b

Float: 

Double: 

1.192 7–10= 3.453 4–10=

2.220 16–10= 1.490 8–10=

x b–
b

-------------- 2 f b( )
b2f'' b( )
-----------------

x b–
b

--------------



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   5

Minimization of functions: golden section search

- What is then the optimum way to choose the new point  when , ,  are known?

- Let’s denote with  the relative position of  at the interval :

,   

- Similarly the relative position of the new point  from  is :

.

- Now the length of the next interval is (in relative units) either   ( ) or 
 ( ). 

- Optimal (on the average) choice is to set these two equal:

.  

- One can see that the new point  is symmetrical with the point :

.

- Also we can see that  is in the larger one of the subintervals  and .

x a b c

w b a c

w b a–
c a–
------------= 1 w– c b–

c a–
-----------=

a

b

x

c

0 w z w+ 1

x b z

z x b–
c a–
-----------=

z w+ a x
1 w– b c

z w+ 1 w–= z 1 2w–=

x b

b a– x c–=

x a b b c

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   6

Minimization of functions: golden section search

- The point  can be calculated in the following way:

- Assume that we have already used the GSS algorithm. 
- This means that  the distance of  from  compared to interval 1  =  the distance of  from  compared to inter-

val  :

- Or in relative units 

- Combining this with our optimal choice we get 

 

 

 

1. Assumed to be the larger subinterval.

x

x b b c b a
a c
x b–
c b–
----------- b a–

c a–
------------=

z
1 w–
------------- w

1
----=

z 1 2w–=
z

1 w–
------------- w=

w2 3w– 1+ 0=

w 3 5–
2

---------------- 0.381966=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   7

Minimization of functions: golden section search

- Thus, the optimum triplet of points  is such that  is at the distance  from one end of interval 
 and at the distance  from the other. 

- The algorithm is the following

1. We have points , , and  from the previous iteration.
2.  Choose the new point  such that it is at the relative distance of  from  
      to the direction of the larger subinterval (either  or ).
3. The new triplet is the one that has the lower value at the midpoint.

- At each iteration step the interval decreases by a factor .

- Convergence is linear; i.e.  sufficiently near to the minimum  the errors  in  the position of the minimum 

 at two consecutive iterations are related as 

,

where  is a constant that depends on the function being miminized.

a b c b 0.381966 c a–
a c 0.618034 c a–

a b c
x 0.381966 b

a b b c

0.618034

x*
k xk x*–=

xk

k 1+ C k

C

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   8

Minimization of functions: golden section search

- Below an example of an implementation (modified from NR routine)
          #include <math.h>

#define R 0.6180339887498949 /* (sqrt(5)-1)/2 */
#define C (1.0-R)
#define SHFT2(a,b,c) (a)=(b);(b)=(c)
#define SHFT3(a,b,c,d) (a)=(b);(b)=(c);(c)=(d)

double golden(double ax, double bx, double cx, 
              double (*f)(double), 
               double tol, double *xmin, int *j, int maxiter)

{
  double f1,f2,x0,x1,x2,x3;
  int i;
  double fi;  
  fi=0.0;
  x0=ax;
  x3=cx;
  if (fabs(cx-bx) > fabs(bx-ax)) {
    x1=bx;
    x2=bx+C*(cx-bx);
  } else {
    x2=bx;
    x1=bx-C*(bx-ax);
  }
  f1=(*f)(x1);
  f2=(*f)(x2);
  i=1;
  while (fabs(x3-x0) > tol*(fabs(x1)+fabs(x2))) {    

    fi=0.05*i;
    i++;
    if (f2 < f1) {
      SHFT3(x0,x1,x2,R*x1+C*x3);
      SHFT2(f1,f2,(*f)(x2));
    } else {
      SHFT3(x3,x2,x1,R*x2+C*x0);
      SHFT2(f2,f1,(*f)(x1));
    }
    if (i>=maxiter) {
      if (f1 < f2) {

 *xmin=x1;
 *j=i;
 return f1;

      } else {
 *j=i;

  *xmin=x2;
 return f2;

      }
    }
  }
  if (f1 < f2) {
    *xmin=x1;
    *j=i;
    return f1;
  } else {
    *xmin=x2;
    *j=i;
    return f2;
  }
}



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   9

Minimization of functions: golden section search

- And the main program

- Function j0(x) is the Bessel function ;  it is included (at least) in Linux and HP Tru64 Unix environments.
- In GSL the function it is gsl_sf_bessel_j0 (double x).
- In SLATEC:  besj0(x)

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

double golden(double ax, double bx, double cx, double (*f)(double), 
      double tol, double *xmin, int *iter, int maxiter);

double func(double x) {return j0(x);}

int main(int argc, char **argv)
{
  int i,maxiter,iter;
  double ax,bx,cx,xmin,gold,bren,tol;
  if (argc!=6) {
    fprintf(stderr,"Usage: %s tol a b c maxiter\n",argv[0]);
    return (1);
  }
  tol=atof(*++argv);
  ax=atof(*++argv);
  bx=atof(*++argv);
  cx=atof(*++argv);
  maxiter=atoi(*++argv);
  gold=golden(ax,bx,cx,func,tol,&xmin,&iter, maxiter); 
  printf("Golden: %12.6g %8d %18.12g %18.12g\n",tol,iter,xmin,gold);
  return 0;
}

J0 x

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   10

Minimization of functions: golden section search

- Compilation and run:
golden> gcc -o goldenmain goldenmain.c golden.c -lm
golden> ./goldenmain 1e-6 0 1 6 1000
Golden:        1e-06       30      3.83170618864    -0.402759395703

- Iteration graphically:



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   11

Minimization of functions: golden section search

- Note that the Bessel function  has many minima and where we end up depends on the initial triplet of points:

golden> ./goldenmain 1e-8 0 1 2 1000 1
Golden:        1e-08       39        1.99999998855885019       0.223890785739630616
golden> ./goldenmain 1e-8 10 11 12 1000 1
Golden:        1e-08       35        10.1734681153456474      -0.249704877057843139
golden> ./goldenmain 1e-8 5 6 7 1000 1
Golden:        1e-08       36        5.00000002995331894      -0.177596761502255868

J0 x

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   12

Minimization of functions: parabolic interpolation

• As we have seen near the minimum the function can be approximated as a parabola

- This can directly be used in searching the minimum.

- Assume again that we have three points , , and  ( ).

- Let’s draw a parabola through them and compute its minimum;

- This algorithm does not work if the points are collinear. 

- Moreover, it does not distinguish minima from maxima.

- Dashed line through points , ,  is the parabola. It has mini-
mum at point .  The new triplet is , , .

- Dotted line is the parabola through this new triplet. Its minimum 
is at point .

f x( ) f b( ) 1
2
---f'' b( ) x b– 2+

1

3

4
5

f x

x

2

a b c a b c

x b 1
2
--- b a– 2 f b( ) f c( )– b c– 2 f b( ) f a( )––

b a– f b( ) f c( )– b c– f b( ) f a( )––
-----------------------------------------------------------------------------------------------------–=

1 2 3
4 1 4 2

5



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   13

Minimization of functions: parabolic interpolation

• As in the case of root finding combining different methods is a good way to obtain fast but robust algorithms.

- One used in minimization is Brent’s method.

- Normally use parabolic interpolation.

- If the convergence 
1) is not fast enough or
2) the new trial minimum is outside the bracketing limits 

switch to golden section rule.

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   14

Minimization of functions: parabolic interpolation

- The algorithm is implemented in the GNU Scientific Library (GSL).
- Example code (from the GSL info documentation.)

           

#include <stdio.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_min.h>
     
double fn1 (double x, void * params) {
return cos(x) + 1.0;}

     
int main (void)
{
  int status;
  int iter = 0, max_iter = 100;
  const gsl_min_fminimizer_type *T;
  gsl_min_fminimizer *s;
  double m = 2.0, m_expected = M_PI;
  double a = 0.0, b = 6.0;
  gsl_function F;
     
  F.function = &fn1;
  F.params = 0;
  T = gsl_min_fminimizer_brent;
  s = gsl_min_fminimizer_alloc(T);
  gsl_min_fminimizer_set(s,&F,m,a,b);
     
  printf ("using %s method\n",

gsl_min_fminimizer_name(s));
  

  printf ("%5s [%9s, %9s] %9s %10s %9s\n",
  "iter", "lower", "upper", "min",
  "err", "err(est)");

  printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
  iter,a,b,m,m-m_expected,b-a);

     
  do
    {
      iter++;
      status = gsl_min_fminimizer_iterate(s);
      m = gsl_min_fminimizer_x_minimum(s);
      a = gsl_min_fminimizer_x_lower(s);
      b = gsl_min_fminimizer_x_upper(s);
      status=

  gsl_min_test_interval(a,b,0.001,0.0);
      if (status == GSL_SUCCESS) 

printf ("Converged:\n");
      printf ("%5d [%.7f, %.7f] %.7f %.7f %+.7f %.7f\n",
      iter, a, b,m, m_expected, m - m_expected, b - a);

    }
  while (status == GSL_CONTINUE && iter < max_iter);
  return status;
}



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   15

Minimization of functions: parabolic intepolation

- Compilation and run:

minimization> gcc -o brent_gsl brent_gsl.c -lm -lgsl -lgslcblas
minimization> ./brent_gsl
using brent method
 iter [    lower,     upper]       min        err  err(est)
    0 [0.0000000, 6.0000000] 2.0000000 -1.1415927 6.0000000
    1 [2.0000000, 6.0000000] 3.5278640 3.1415927 +0.3862713 4.0000000
    2 [2.0000000, 3.5278640] 3.1748217 3.1415927 +0.0332290 1.5278640
    3 [2.0000000, 3.1748217] 3.1264576 3.1415927 -0.0151351 1.1748217
    4 [3.1264576, 3.1748217] 3.1414743 3.1415927 -0.0001183 0.0483641
    5 [3.1414743, 3.1748217] 3.1415930 3.1415927 +0.0000004 0.0333474
Converged:
    6 [3.1414743, 3.1415930] 3.1415927 3.1415927 +0.0000000 0.0001187

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   16

Minimization of functions: Brent’s method

• Another GSL example:
int main (int argc, char **argv)
{
  int status;
  int iter, max_iter, ialg;
  const gsl_min_fminimizer_type *T;
  gsl_min_fminimizer *s;
  double a,b,c,tol,f;
  gsl_function F;
  struct func_params p;
     
  if (argc!=8) {
    fprintf(stderr,"Usage: %s tol a b c maxiter ifunc ialg\n",
argv[0]);
    return (1);
  }
  tol=atof(*++argv);
  a=atof(*++argv);
  b=atof(*++argv);
  c=atof(*++argv);
  max_iter=atoi(*++argv);
  p.ifunc=atoi(*++argv);
  ialg=atoi(*++argv);

  switch (ialg) {
  case 1: T=gsl_min_fminimizer_goldensection; break;
  case 2: T=gsl_min_fminimizer_brent; break;
  default: T=gsl_min_fminimizer_goldensection; break;
  }

  F.function = &func;
  F.params = &p;  
  s = gsl_min_fminimizer_alloc(T);
  gsl_min_fminimizer_set(s,&F,b,a,c);

  iter=0;

  printf("# using %s method\n",
     gsl_min_fminimizer_name(s));
  printf("#  iter       lower                upper");
  printf("                min             err(est)\n");
  printf("%5d   %18.10e, %18.10e  %18.10e %18.10e\n",
     iter,a,c,b,c-a);
     
  do
    {
      iter++;
      status = gsl_min_fminimizer_iterate(s);
      b = gsl_min_fminimizer_x_minimum(s);
      a = gsl_min_fminimizer_x_lower(s);
      c = gsl_min_fminimizer_x_upper(s);
      status=gsl_min_test_interval(a,c,tol,0.0);
      if (status == GSL_SUCCESS) 

           printf ("# Converged:\n");
      printf ("%5d   %18.10e, %18.10e  
               %18.10e %18.10e\n",iter,a,c,b,c-a);
    }
  while (status==GSL_CONTINUE && iter<max_iter);
  return status;
}

struct func_params {int ifunc;};
double func(double x, void * p) {
  struct func_params 
       *params=(struct func_params *)p;
  double ff;
  switch (params->ifunc) {
  case 1: ff=j0(x); break;
  case 2: ff=sin(-x)*exp(-x*x); break;
  case 3: ff=sin(x); break;
  case 4: ff=cos(x) + 1.0; break;
  default: ff=0.0; break;
  }
  return ff;}



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   17

Minimization of functions: Newton’s method

• The methods described so far only use the function values for minimization.

• If the derivative of the function is available one can utilize it in minimization.

- The basic idea is to approximate the function by a polynomial (again!) and find its minimum.

- Because a line doesn’t have a minimum we have to use a parabola.

- Let’s write the function as a Taylor series around the result  at the iteration step :

- Now minimize this 

xk k

f xk p+( ) f xk( ) pf' xk( ) 1
2
---p2f'' xk( )+ + +=

f x*( ) minx f x( )

minp f xk p+( )

minp f xk( ) pf' xk( ) 1
2
---p2f'' xk( )+ + +

minp f xk( ) pf' xk( ) 1
2
---p2f'' xk( )+ +

=

=

=

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   18

Minimization of functions: Newton’s method

- The minimum of the parabola is obtained by setting its derivative with respect to  zero

.

- Thus the algorithm is simple: at every iteration step update the position of the minimum by 

.

- Note that this is exactly the Newton’s method for root finding; now for function .

- Graphically the method can be  perceived as follows:

- The interpolating parabola  fulfills the following conditions:

p

p
f' xk( )
f'' xk( )
-------------–=

xk 1+ xk
f' xk( )
f'' xk( )
-------------–=

f' x

f x

q x

x* xk 1+ xk

q x

q xk( ) f xk( )=

q' xk( ) f' xk( )=

q'' xk( ) f'' xk( )=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   19

Minimization of functions: Newton’s method

- As we remember from root finding the degree of convergence of Newton’s method is 2:

- Let’s take an example

start of iteration: 
- Derivatives are 

- Exact result is 

- The first iteration step:

xk 1+ x*– C xk x*– 2

f x( ) xsin xcos–=
x0 0.5–=

f' x( ) xcos xsin+=
f'' x( ) xsin– xcos+=

x*
4
---– 0.78539816–=

f' x0( ) 0.5–cos 0.5–sin+ 0.39815702= =

f'' x0( ) 0.5–sin– 0.5–cos+ 1.35700810= =

p
f' x0( )
f'' x0( )
-------------– 0.39815702

1.35700810
----------------------------– 0.29340799–= = =

x1 x0 p+ 0.5– 0.29340799– 0.79340799–= = =

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   20

Minimization of functions: Newton’s method

- The results of the three first steps show the fast convergence:

- As we have stated before, Newton’s method has its bad sides:

1. If the parabola is not a good approximation for the function 
     it is not guaranteed that the new point nearer to the minimum
     than the old point.
2. Newton’s method can also converge to a maximum.
3. One must be able to calculated the first two derivatives of the 
     function.

- As in the case of root finding the best strategy is to combine New-
ton’s method with golden section search or use the information on 
the derivative in some other way. 

k xk xk x*–

0 0.50000000– 2.8 1–10

1 0.79340799– 8.0 3–10

2 0.78539799– 1.7 7–10

3 0.78539816– 1.3 17–10

f x

q x

xk x* xk 1+



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   21

Minimization of functions: Newton’s method

- Comparison of the GSS, Brent and Newton’s methods: Plotted is the error which in the case of GSS and Brent is 
 and for Newton’s method .

- The function to be minimized is .

a c–= xi xi 1––=

f x x–sin e x– 2=

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   22

Minimization of functions: multidimensional minimization

• Now we have to minimize the function 
 

or to find the vector  that satisfies

- The most algorithms that do this work in the following way:
1. Choose the intial point (or points).
2. Choose the direction  where the minimum is searched.

3. Find the step length  such that  is minimized.  
    This is so the called line minimization. 
    1D methods described above can be used to accomplish this.
4. If the minimum of  has not bee found go to step 2.

- Many methods utilize the Taylor series of the function near the iteration point:

.

- Here 

,   

is so called Hessian matrix (after Ludwig Otto Hesse, a German mathematician from the 19th century.).

f x1 x2 xN( ) f x( )

x*

f x*( ) f x( )

x RN

dk

k 0 f xk kdk+( )

f x( )

f x h+( ) f x( ) f x( )
xi

-----------hi
i 1=

N
1
2
--- hi

2f x( )
xi xj

---------------hj
j 1=

N

i 1=

N
+ + +

f x( ) f x( ) T h 1
2
---hTH x( )h+ + +

=

=

H x H x ij
2f x( )
xi xj

---------------=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   23

Minimization of functions: multidimensional minimization

• Note that in multidimensional minimization bracketing the minimum is not necessarily possible.

• Convergence criterion is not as simple as in 1D case (the bracketing interval  is small enough).

- Commonly one may use two criteria:

1. Change in the iterated vector is sufficiently small, i.e. , where  is the iteration step.

2. Change in the function value is small enough: .

• In the following we present a few algorithms that are used for multidimensional minimization.

- One point distinguishing these methods from each other is the whether they use the Hessian matrix of the function. (I.e. 
use of the second derivative.)

- In large minimization problems constructing the Hessian matrix is prohibitively expensive (in terms of CPU time and 
memory).

- Example: potential energy minimization of atomic systems:  may be as large as    Hessian has  elements. 
(Well, in most cases this matrix is very sparse. However, computing the second derivative consumes a lot of CPU 
time.)

a b

xk xk 1–– 1 k

f xk f xk 1–– 2

N 105 1010

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   24

Minimization of functions: downhill simplex method

• This method is a simple but slowly converging algorithm that only uses the function values, not its derivatives. 

- It is initialized by creating a geometrical figure simplex in  dimensions consisting of  points and their interconnect-
ing line segments and polygonal faces. 

- In 2D the simplex is a triangle and in 3D a tetrahedron.

- The simplex is nondegenerate i.e. it encloses a finite inner volume.

- One way to generate the initial simplex is 
, 

where  are the  unit vectors. 

- The algorithm uses the following moves:

- The method is slowly converging but can also applied to 
not so nice functions.

N N 1+

Pi P0 ei+=

ei N

minmax
reflection

reflection and expansion
shrinking
with respect 
to one point

shrinking
with respect
to many
points



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   25

Minimization of functions: downhill simplex method

- From Numeeriset menetelmät käytännössä, J. Haataja et al., CSC, 1999:

l

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   26

Minimization of functions: steepest descent

• We have a starting point  in a  dimensional space. 

- We proceed from this point to direction .

- Using minimization algorithms for 1D functions we can minimize function  in this direction. 

- Many different multidimensional minimization algorithms can be constructed by choosing different ways determine the 
direction . 

- The steepest descent method is maybe the most obvious one: direction is the in which the function decreases the most 
(locally), i.e. the opposite direction to the gradient .

- Algorithm is the following:

1. Find the step size  that minimizes  , where .

2. Set . Go to step 1 if the required accuracy is not reached.

- This method converges linearly and in some cases may be really inefficient. 

- In narrow valleys the path of the iteration is a zig-zag line.

P N

n

f x

n

n f xk( )–=

k 0 f yk( ) yk xk k f xk( )–+=

xk 1+ yk=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   27

Minimization of functions: Newton’s method

• Assume that our function  is quadratic:

.

- We can readily obtain the gradient of the function

.

and the Hessian matrix

.

- The gradient of the function at point  is 

 .

- From the equation 

we obtain the condition for the step that minimizes the quadratic function

.

f

f x( ) 1
2
---xTAx bTx c+ +=

f x( ) Ax b+=

H x( ) 2f x( ) A= =

x s+

f x s+( ) A x s+ b+
Ax b+ As+
f x( ) H x( )s+

=
=
=

f x s+( ) 0=

H x( )s f x( )–=

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   28

Minimization of functions: Newton’s method

- Newton’s iteration works also for other than quadratic functions if we expand the function as a Taylor series around the 
iteration point:

.

- At every iteration step the following is done:

1. Solve  from equation 

2. Update the iteration point:

- As an example take function

- Hessian matrix is 

and gradient

.

f x d+( ) f x( ) f x( ) Td 1
2
---dTH x( )d+ +

sk
H xk( )sk f xk( )–=

xk 1+ xk sk+=

f x( ) 1
2
---x1

2 9
2
---x2

2+=

H x( ) 1 0
0 9

=

f x( )
x1

9x2
=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   29

Minimization of functions: Newton’s method

- Because this function is quadratic Newton’s method finds its minimum in one iteration.

- Initial point is 

- The equation   takes the form

which has the solution 
.

- This gives the minimum 
.

- Newton’s method converges quadratically. 

x1 9 1=

H x( )s f x( )–=

1 0
0 9

s1
s2

9
9

–=

s 9 1––=

x2 0 0=

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   30

Minimization of functions: quasi-Newton’s methods

• Newton’s method does not necessarily always bring us nearer to the minimum.

- In order to approach the minimum the function value must decrease in the iteration step:

- Or expressed in terms of the Hessian matrix:

(This means that the Hessian matrix must be positive definite.)

- When far from the minimum there are no guarantees that the Hessian is positive definite.
- In the worst case the iteration step might take us farther from the minimum.

- In the quasi-Newton method the Hessian matrix is not calculated explicitly.

- Using some initial guess for the Hessian it is update so that it approaches the exact Hessian during the simulation.

- A good initial guess is e.g. unit matrix .

- Different quasi-Newton algorithms differ on the method of updating the Hessian.

sk
T f xk( ) 0

sk
TH xk( )sk 0

Hii
lim H=

H1 1=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   31

Minimization of functions: quasi-Newton’s methods

- Below we present two ways to update the Hessian.

- When far from the minimum the algorithms guarantee that the Hessian is positive definite. 
- When we are near the minimum the Hessian approaches the real values of Hessian and we obtain quadratic conver-

gence. 

- Because Hessian is never calculated explicitly it is sufficient to use its inverse  in all computations.

- Remember that . From this we get 

- This is the exact Hessian. It is natural to assume that updating our approximation is of similar form:

.

- We can also think that the update consists of expressions including terms 

  and 

.

H 1–

H x( )s f x( )–=

xi 1+ xi– H 1– f xi 1+( ) f xi( )–=

xi 1+ xi– Hi 1+
1– f xi 1+( ) f xi( )–=

xi 1+ xi–

f xi 1+( ) f xi( )–

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   32

Minimization of functions: quasi-Newton’s methods

- In the so called Davidon-Fletcher-Powell (DFP) algorithm update is done as 

here  means a matrix formed from vectors: .

- The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is similar to DFP but includes an additional term

where vector  is 

 .

Hi 1+
1– Hi

1– xi 1+ xi– xi 1+ xi–

xi 1+ xi– T f xi 1+( ) f xi( )–
--------------------------------------------------------------------------------

Hi
1– f xi 1+( ) f xi( )– Hi

1– f xi 1+( ) f xi( )–

f xi 1+( ) f xi( )– THi
1– f xi 1+( ) f xi( )–

------------------------------------------------------------------------------------------------------------------------------------------–

+=

u v u v ij uivj=

f xi 1+( ) f xi( )– THi
1– f xi 1+( ) f xi( )– u u+

u

u
xi 1+ xi–

xi 1+ xi– T f xi 1+( ) f xi( )–
--------------------------------------------------------------------------------

Hi
1– f xi 1+( ) f xi( )–

f xi 1+( ) f xi( )– THi
1– f xi 1+( ) f xi( )–

----------------------------------------------------------------------------------------------------------------–

=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   33

Minimization of functions: quasi-Newton’s methods

- To give an example we use the Numerical Recipes routine dfpmin (BFGS algorithm).
- The routine definition is (source NR):

                      

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   34

Minimization of functions: quasi-Newton’s methods

- The function to be minimized is 

and its derivatives
f x y( ) 1 e x2 4– ysin2–=

f
x

----- 1
2
---xe x2 4– ysin2=

f
y

----- 2e x2 4– ycos ysin–=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   35

Minimization of functions: quasi-Newton’s methods

- The main program looks like (note its float instead of double):

    #include <stdio.h>
#include <math.h>
#define NRANSI
#include "nr.h"
#include "nrutil.h"
#define A 4.0
#define NDIM 2
#define GTOL 1.0e-4

static int nfunc,ndfunc;

float func(float x[])
{
  nfunc++;
  return 1.0-
       exp(-x[1]*x[1]/A)*sin(x[2])*sin(x[2]);
}

void dfunc(float x[],float df[])
{
  float t;
  ndfunc++;
  t=exp(-x[1]*x[1]/A);
  df[1]=2.0/A*x[1]*t*sin(x[2])*sin(x[2]);
  df[2]=-2.0*t*cos(x[2])*sin(x[2]);
}

int main(int argc, char **argv)
{
  int iter;
  float *p,fret;
  if (argc!=3) {
    fprintf(stderr,"Usage: %s x0 y0 \n",argv[0]);
    return (1);
  }
  p=vector(1,NDIM);
  p[1]=atof(*++argv);
  p[2]=atof(*++argv);
  nfunc=ndfunc=0;
  printf("Starting vector: (%7.4f,%7.4f)\n",
            p[1],p[2]);
  dfpmin(p,NDIM,GTOL,&iter,&fret,func,dfunc);
  printf("Iterations: %3d\n",iter);
  printf("Func. evals: %3d\n",nfunc);
  printf("Deriv. evals: %3d\n",ndfunc);
  printf("Solution vector: (%9.6f,%9.6f)\n",
         p[1],p[2]);
  printf("Func. value at solution %14.6g\n",fret);
  free_vector(p,1,NDIM);
  return 0;
}

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   36

Minimization of functions: quasi-Newton’s methods

- Compilation and run (routine dfpmin was changed by adding the output of iteration points):

dfpmin> cc -o xdfpmin xdfpmin.c dfpmin.c lnsrch.c nrutil.c -lm
xdfpmin.c:
dfpmin.c:
lnsrch.c:
nrutil.c:
dfpmin> xdfpmin -0.2 3.6
Starting vector: (-0.2000, 3.6000)
ITE: 0 -0.2 3.6 0.806124
ITE: 1 -0.180612 4.38577 0.110225
ITE: 2 -0.145471 4.65777 0.00824103
ITE: 3 -0.0685644 4.72128 0.00125362
ITE: 4 -0.0227184 4.71944 0.000178732
ITE: 5 0.000113919 4.71283 2.02031e-07
ITE: 6 2.49532e-05 4.71241 6.16609e-10
ITE: 7 1.98841e-07 4.71239 1.0103e-14
Iterations:   7
Func. evals:  10
Deriv. evals:   8
Solution vector: ( 0.000000, 4.712389)
Func. value at solution     1.0103e-14
dfpmin>



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   37

Minimization of functions: quasi-Newton’s methods 

- Below a couple of iteration paths:

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   38

Minimization of functions: conjugate gradients 

• As we saw the steepest descent method has the drawback of ending up to a zig-zag path:

- In the conjugate gradients (CG) method the new directions in the iteration are chosen in such a way that they do not ruin 
the minimization  in the directions we have already done (direction are conjugate to the previous ones).



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   39

Minimization of functions: conjugate gradients 

• Minimization and systems of linear equations1:

- Assume we have a function 

- Its derivative (gradient) is 

- Assume  and  is an arbitrary vector. One can show that if  is symmetric then 

- If  is positive definite i.e.  then  is the minimum of  [because ].

- Conclusion: If  is a positive definite and symmetric matrix then the following two are equivalent:

1. Vector  is the solution of .

2. Vector  minimizes .

1. Note the slight differences in the notation as compared to other material in this chapter.

f x 1
2
---xTAx bTx– c+=

f' x
x1

f x
xN

f x
T 1

2
---ATx 1

2
---Ax b–+ Ax b–= = =

If A symmetric

x* A 1– b= p A

f p f x* 1
2
--- p x*–

T
A p x*–+=

A x xTAx 0 x* f x p x*–
T

A p x*– 0

A

x* Ax b– 0=

x* f x 1
2
---xTAx bTx– c+=

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   40

Minimization of functions: conjugate gradients 

• What is really meant by two directions being conjugate to each other? Consider an arbitrary function  of  dimensional 
argument, and construct its Taylor-series around a point :

- The matrix  is the so called Hessian matrix. In this approximation the gradient of  is , and a change in the 
gradient  over some distance  is again 

- The previous direction in which we have moved is , gradient is . How to construct the next direction ?

- In the current point: .

- After the next step we still want    the change in the gradient  should be perpendicular to :

- If this is valid, the directions  and  are considered to be conjugated (or  conjugated).

f x N
P

f x f P f
xi

-------xi
i

1
2
---

2f
xi xj

---------------xixj
i j

+ + + c bTx– 1
2
---xTAx+=

where   c f P      b f P      A–
2f

xi xj
---------------

P

= =

A f f Ax b–=
f x

f A x=

u g v

g u

g' u f u

uT f 0= uTAv 0=

u v A



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   41

Minimization of functions: conjugate gradients 

- In the CG method two vectors  and  are used to calculate the new direction into which to move. 
-  is the actual direction into which the line minimization is carried out.
- In solving linear equations, these are iterated as follows:

where

,   .

- The vectors  and  fulfill the orthogonality and conjugation requirements1:

, when 

- Not suitable for large systems: the  matrix !
- However, suppose that we have . Further, suppose we proceed from  to direction  to the local minu-

mum of  located at , and set .

- Now this vector  is the same as would have been constructed by the above iteration because2

(a)

Line minimization: (b)

From (a) and (b) we can solve .

1. For proof see e.g. E. Polak, Computational Methods in Optimization:  A Unified Approach, Academic Press, 1971, Chapter 2.3

2. Here we assume that our function is of the quadratic form: . 

g h
h

One can see that these can be written as

,  i
gi

Thi

hi
TAhi

----------------= i
gi 1+

T gi 1+

gi
Tgi

-------------------------
gi 1+ gi– Tgi 1+

gi
Tgi

--------------------------------------------= =

gi 1+ gi i Ahi      and     hi 1+– gi 1+ ihi+= =

i
gi

Tgi

gi
TAhi

----------------= i
gi 1+

T Ahi

hi
TAhi

----------------------=

g h

gi
Tgj 0       hi

TAhj 0     gi
Thj 0= = = i j

N N A
gi – f xi= xi hi

f x xi 1+ xi hi+= gi 1+ – f xi 1+=

gi 1+

c bTx– xTAx 2+

gi Axi– b+=

gi 1+ A xi hi+– b+ Axi– Ahi– b+ gi Ahi–= = =

hi
T f xi 1+ hi

Tgi 1+– 0= =

hi
Tgi hi

TAihi=

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   42

Minimization of functions: conjugate gradients 

- Using these equations we obtain the following algorithm for conjugate gradient minimization:

1. Get the initial point for iteration . Set , , .

2. Minimize  in direction ; i.e. minimize  with respect to . Set .

3. Set  .

4. Compute .

5. Update the direction: .

- The above is the original, so called Fletcher-Reeves - algorithm. In some cases it is more efficient to use the so called 
Polak-Ribiere- version, which is identical to the above except that step 4 is:

 4. Calculate .

- It is also possible to reset the iteration (if something seems to go wrong) by resetting the search direction to the opposite 
of the gradient. 

x1 g1 f x1( )–= h1 g1= i 1=

f x hi f xi hi+ xi 1+ xi hi+=

gi 1+ f xi 1+( )–=

i
gi 1+ gi– Tgi 1+

gi
Tgi

--------------------------------------------=

hi 1+ gi 1+ ihi+=

i
xi gi+ Txi

gi
Tgi

----------------------------=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   43

Minimization of functions: conjugate gradients 

- Note that the CG method is exact for quadratic functions in the sense that they are minimized in exactly  iterations. ( 
is the dimension of the problem).

- Near the minimum quadratic is a good approximation.

N N

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   44

Minimization of functions: conjugate gradients 

- The concept of  conjugated vectors can be illustrated by the following1.

1. J. R. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain, www.cs.cmu.edu/~quake-papers/ painless-conjugate-gradient.pdf

A

Steepest descent

Vectors xi Vectors Axi



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   45

Minimization of functions: conjugate gradients 

- As an example we take the familiar function  (using the NR CG routine frprmn):

  

f x y( ) 1 e x2 4– ysin2–=

#include <stdio.h>
#include <math.h>
#define NRANSI
#include “nr.h”
#include “nrutil.h”
#define A 4.0
#define NDIM 2
#define FTOL 1.0e-6

static int nfunc,ndfunc;

float func(float x[])
{
  nfunc++;
  return 1.0-exp(-x[1]*x[1]/A)*sin(x[2])*sin(x[2]);
}

void dfunc(float x[],float df[])
{
  float t;
  ndfunc++;
  t=exp(-x[1]*x[1]/A);
  df[1]=2.0/A*x[1]*t*sin(x[2])*sin(x[2]);
  df[2]=-2.0*t*cos(x[2])*sin(x[2]);
}

int main(int argc, char **argv)
{
  int iter;
  float fret,*p;

 
  p=vector(1,NDIM);
  if (argc!=3) {
    fprintf(stderr,”Usage: %s x0 y0 \n”,argv[0]);
    return (1);
  }
  p=vector(1,NDIM);
  p[1]=atof(*++argv);
  p[2]=atof(*++argv);
  printf(“Starting vector: (%7.4f,%7.4f)\n”,p[1],p[2]);
  frprmn(p,NDIM,FTOL,&iter,&fret,func,dfunc);
  printf(“Iterations: %3d\n”,iter);
  printf(“Func. evals: %3d\n”,nfunc);
  printf(“Deriv. evals: %3d\n”,ndfunc);
  printf(“Solution vector: (%9.6f,%9.6f)\n”,p[1],p[2]);

printf(“Func. value at solution %14.6g\n”,fret);
  free_vector(p,1,NDIM);
  return 0;
}

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   46

Minimization of functions: conjugate gradients 

- Compilation and run:

frprmn> cc -o xfrprmn xfrprmn.c frprmn.c mnbrak.c linmin.c nrutil.c
frprmn> xfrprmn -0.2 3.6
Starting vector: (-0.2000, 3.6000)
ITE: 0 -0.2 3.6 0.806124
ITE: 1 -0.172527 4.71345 0.00741493
ITE: 2 -0.00504783 4.72753 0.000235587
ITE: 3 8.32696e-05 4.7124 1.78478e-09
ITE: 4 1.24055e-08 4.71239 2.22045e-16
Iterations:   5
Func. evals:  68
Deriv. evals:   5
Solution vector: (-0.000000, 4.712389)
Func. value at solution    2.22045e-16



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   47

Minimization of functions: conjugate gradients 

- And the iteration graphically:

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   48

Minimization of functions: conjugate gradients 

• CG is a suitable method for large problems because the Hessian matrix is not needed at all.

- It has been widely applied e.g. in the field of atomistic simulations where the dimension of the problem may easily be of 
the order of .105



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   49

Minimization of functions: GSL 

• Quasi-Newton method is also implemented in the GNU Scientific Library (GSL) minimization routines:

- In Xemacs: Help  Info  Info Contents  gsl-ref

- In GNU Emacs:  Help Manuals  Browse Manuals with Info  gsl-ref

- Shell: info gsl-ref

- GSL is included in most Linux distributions (e.g. RH/Fedora packages gsl and gsl-devel.
- It is also installed on punk.helsinki.fi .

- Compilation: cc -o prog prog.c -lm -lgsl -lgslcblas

- Note that you may have to use compiler options -I and -L if the header files or libraries are in nonstandard directories. 

- GSL home page: http://www.gnu.org/software/gsl/

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   50

Minimization of functions: stochastic methods 

• Methods described above are deterministic in the sense that the initial point of the iteration determines the outcome of the 
computation.

• In stochastic methods iteration is done in a random fashion so that you (very) probably find the minimum.
[Well, you can always repeat the iteration exactly by starting the random number generator with the same seed number(s).]

• Here we present two stochastic methods:

1. Simulated annealing
2. Genetic algorithms

• These methods are particularly suitable for discrete optimization (combinatorial problems) but can as well be used in contin-
uous minimizations. 

• Both methods are inspired by nature:

Simulated annealing:  heating and cooling of materials in order to reach their equilibrium structure
Genetic algorithms   :  evolution of species



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   51

Minimization of functions: simulated annealing 

• Annealing: heat material to high temperatures and then slowly cool it  material attains its equilibrium structure 
- I.e. (free) energy is minimized.

• Simulated annealing (SA): 
- energy function to be minimized 
- temperature control parameter

• Physical system follows the Boltzmann distribution1

, (BD1)

where  is the probability that the system is in the state with energy .

- In Metropolis Monte Carlo (MC) simulations we generate configurations that have the distribution (BD1). 

- In simulate annealing we generate configurations or vectors  that have the distribution 

, (BD2)

where  is a control parameter having the role of temperature. 

- One can show that when  distribution (BD2) approaches the minimum configuration

,      where  is the position of the function minimum.

1. In this chapter we set Boltzmann constant . 

E r f x

kB 1=

P E r( ) e E r T–

P E E

x

P f( ) e f x( ) c–

c

c 0

Pmin f( ) x xmin–( ) xmin

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   52

Minimization of functions: simulated annealing 

• How do we generate points  with distribution? 

- Metropolis MC.

- Assume we have the iteration point .

- We add a perturbation  to it.

- Accept the new iteration point  by probability

, (MMC)  

where 

- In other words: 
If we would go downhill we accept the new state right away.
However, if we would go uphill there is a finite probability to accept the new state.

- The last point is important in the sense that with SA it is possible to reach other function minima than the nearest 
local one.

x

xi

x

xj xi x+=

Pacc i j( )
1 fij 0

fij
c

--------–exp fij 0
=

fij f xj( ) f xi( )–=



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   53

Minimization of functions: simulated annealing 

- That equation (MMC) really generates states with the right distribution can be proved as follows.

- We take a discrete notation here. It can be generalized to continuous variables.

- Let the system probability distribution be denoted by the vector . 
- Its elements tell the probability of each state at iteration . 

- We have a Markov process1 that is generated by the stochastic matrix . 
- Element  gives the probability for transition .
- In general a stochastic matrix fulfills the following conditions

,  .

- We can proceed forward in the Markov chain by operating by the stochastic matrix
.

- In long time limit of the probability distribution is obtained by

- This equilibrium distribution fulfills the eigen value equation 

i.e. we have a stationary state.

- By expanding this we get 

.              (EQD)

1. The new state only depends on the current one, not the previous states; i.e. no memory.

P i

i

Q
Qij i j

Qij
j

1= Qij 0

P i 1+ P i Q=

P P 1 Qlim=

P PQ=

PmQmn
m

Pn=

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   54

Minimization of functions: simulated annealing  

- Instead of using exactly equation (EQD) for out algorithm we take a more restricting condition; 
so called detailed balance on which we base our algorithm:

(DB)

- It is easy to see that 

- Another condition for the algorithm is that one must ne able to reach all the possible states (ergodicity).
- Moreover, the trial probability for the iteration must be symmetric.

- The algorithm looks like this:

PiQij PjQji=

(EQD) (DB)

1. Set the initial value for the control parameter .
2. Set . Set the initial state .

3. Change the system state: .
4. Compute the change in the function value: .
5. Generate an evenly distributed random  number in the interval . 
6. If  accept the new state. 
7. Set . If  go to step 3, otherwise go to step 8.

8. Lower the control parameter; e.g. , .
9. If  stop.
10. Set  and go to step 3.

c c0=
i 1= xi x0=

xi xi x+
f f xi x+( ) f xi( )–=

0 1
f c–exp

i i 1+ i imax

c c 0 1
c cmin

i 1



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   55

Minimization of functions: simulated annealing  

- For an example let’s take the familiar function 

     

f x y( ) 1 e x2 4– ysin2–=
#include <stdio.h>
#include <math.h>
#define NRANSI
#include “nr.h”
#include “nrutil.h”
#define NDIM 2
#define MAXSTEP 1000
#define A 4.0
static int nfunc=0;
int metropx(float de, float t, long *seed);
float func(float x[]) {
  nfunc++;return 1.0-
   exp(-x[1]*x[1]/A)*sin(x[2])*sin(x[2]);}

int main(int argc, char **argv)
{
  int niter,iter,i,j,ans;
  float fret,*x,Tfrac,Tini,Tmin,
      T,dx,ddx,f1,f2,df;
  long seed; 
  x=vector(1,NDIM);
  if (argc!=9) {
    fprintf(stderr,”Usage: %s x0 y0 niter 
    Tfrac Tini Tmin seed dx\n”, 
    argv[0]); return (1);
  }
  x=vector(1,NDIM);
  x[1]=atof(*++argv); x[2]=atof(*++argv);

niter=atoi(*++argv); Tfrac=atof(*++argv);
  Tini=atof(*++argv); Tmin=atof(*++argv);
  seed=atoi(*++argv); dx=atof(*++argv);
  T=Tini;

  printf(“i: %d %g %g %g %g\n”,
       0,T,x[1],x[2],func(x));
  for (i=1;i<=MAXSTEP;i++) {
    for (iter=1;iter<=niter;iter++) {
      for (j=1;j<=NDIM;j++) {

f1=func(x);
ddx=dx*(2.0*ran3(&seed)-1.0);
x[j]+=ddx;
f2=func(x);
df=f2-f1;
ans=metropx(df,T,&seed);
if (!ans) x[j]-=ddx;

      }
    }
    T*=Tfrac;
    if (T<Tmin) {
      printf(“Iteration ended at step %d: 
           T = %g\n”,i,T);
      printf(“Minimun = %g %g\nF(xmin) = %g\n”,
           x[1],x[2],func(x));
      printf(“Function evaluations =  %d\n”,
           nfunc);
      return;
    }

}
}

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   56

Minimization of functions: simulated annealing  

- Below is shown how the iteration proceeds. 
niter=1000, Tini=1.0, Tfrac=0.95, and Tmin=0.00001.

- We see that the convergence is very slow. 



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   57

Minimization of functions: simulated annealing  

- By adjusting the parameters we get somewhat faster convergence: i.e. dependence on the initial temperature 

- This example was only to demonstrate the method. 2D minimization is best done using CG of quasi-Newton’s methods. 

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   58

Minimization of functions: simulated annealing  

- As an example of a more suitable problem is the traveling salesman problem:



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   59

Minimization of functions: simulated annealing  

- Another example: packing of rectangles.

translation

rotation

exchange

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   60

Minimization of functions: genetic algorithms  

• Genetic algorithms (GA) have obtained their inspiration from Darwin’s theory of evolution. 
- The idea is to perform natural selection for some group of parameters  (population) which describes well the real sys-

tem. 
- The group is allowed to breed by mating, after which natural selection is carried out (i.e. the poorest adapted species are 

killed).
- Also mutations may be introduced.

• The parameters  can be considered to correspond to a gene sequence, DNA.

• As a concrete example let’s take as an example an application of GA to chemistry1:structure of molecule dimers.

- Let us consider the interaction between two molecules A and B.
- The relative position and orientation of the molecules is described by coordinates and angles:  . 
- If we now discretize the possible positions and angles, using e.g. 16 possibilities for each dimension, the state of the mol-

ecule can be described with 24 bits of information, for instance
(4.5 Å,5.0 Å,9.0 Å,120o, 100o,60o)=(1001:1010:1110:0110:0101:0011).

- The breeding operation is defined such that the binary string is exchanged from some point forward (“crossover”). So if 
we have two parents

and the exchange position is chosen to be 21, we get the children

1. Xiao and Williams, Chem. Phys. Lett. 215 (1993) 17.

G

G

x y z

P1 = (1001:1010:1110:0110:0101:0011)
P2 = (1001:1010:1110:0100:1011:1110)

C1 = (1001:1010:1110:0110:0101: 1110)
C2 = (1001:1010:1110:0100:1011: 0011)



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   61

Minimization of functions: genetic algorithms  

- The algorithm can be described as:

0. Start. Create the initial population , .

1. Mating and breeding. Select two well-adjusted parents for breeding. This is done by selecting a given parent  with 
state  with the probability

where the mating ‘temperature’  is selected as the range of energies among the whole population . Exchange 
the gene sequence of a parents with another starting from a random position. 

2. Mutation. With a given probability  exchange the state of a bit (0 1 or 1 0) for all bits in all individuals.

[3. Minimize the energy of the child to the closest local minimum. This is done by e.g. CG.]

4. Natural selection. If the child has lower energy than any of the parents, allow it to stay alive. Then check that its 
energy does not match the energy of any parent within an energy range . If this is true, include it in the population, and 
kill the least-well adapted parent (the one with the highest ).

5. Convergence test. If convergence has not been reached, return to stage 1.

- The authors found the equilibrium structures for benzene, naphtalene, and anthracene dimers.

G G1 G2 GN= Gi x y z i=

i
Gi

P Gi e
E Gi Tm–

Tm Gi

E
E

Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   62

Minimization of functions: genetic algorithms  

- Using a rather similar GA the equilibrium structure of carbon clusters was determined in Deaven and Ho, Phys. Rev. Lett. 
75 (1995) 288.

- Their method of mating and breeding can be described by the figure on the right.

- They could obtain the C60 buckyball structure by starting from a random configuration.



Scientific computing III 2013:   8. Minimization of functions                                                                                                                                                                                                   63

Minimization of functions: stochastic optimization  

• Simulated annealing:
+ Easy to implement
+ May work well both for discrete and continuous problems
- Convergence may be slow
- Convergence may depend on cooling scheme

• Genetic algorithms
+ May work well for problems where others fail: finding of global minimum.
+ May work well both for discrete and continuous problems
- Convergence may be slow
- Building the model (genes, breeding, mutations)
- May be difficult to tell beforehand whether the method works when you face a new problem.


