
Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       1

Integration

• A sheet of corrugated roofing is constructed by a 
machine that presses a flat metallic sheet into 
one which has a cross section of a sine wave.

- We want to know how much material is 
needed to construct say 50 cm of corrugated 
roofing. 

- Let’s assume that the profile of the roofing is 

 .

- We have to find the path length  of :

,

- Now we can see that   

- Finally we get 

x
A

f x A 2 x---------sin=

ds

dx

dy

y f x=
s f x

s sd

0

s0

=

ds 2 dx 2 dy 2+=

ds dx 2 dy 2+ dx 1 dy
dx
------

2
+ dx 1 f x 2+= = =

s dt 1 f t 2+

0

x

dx 1 2 t--------cos
2

+

0

x0

= =

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       2

Integration

- There is no closed form expression for this integral so we have to resort to numerical methods.

- The results using the Romberg method is shown below with values  and :

- Just for curiosity: a good approximation for the integral is 

 

A 5 cm= 10 cm=

s x 3.4035 x 0.0703 oscillations+ +=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       3

Integration

• Note that quite a lot can be done using the symbolic mathematics programs like Maple, Maxima etc:
(example below is made using Maxima from TeXmacs scientific editor; 
see http://www.math.u-psud.fr/~anh/TeXmacs/TeXmacs.html)

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       4

Integration

• In this chapter we deal mostly with numerical integration of functions with one variable (1D integrals).

• Multidimensional integrals are more complicated to compute.
- A popular method to compute them is the Monte Carlo integration. 
- Actually, one can show that when the dimension of the problem is larger than 4 then  for the MC methods behaves 

more nicely than the same quantity for more conventional methods. 
- Here  is the error as a function of the number of function evaluations.

• Numerical integration is sometimes called numerical quadrature.

nfe

nfe

  Quadrature \Quad"ra*ture‚ n. [L. quadratura: cf. F. quadrature.]

     1. (Math.) The act of squaring; the finding of a square
        having the same area as some given curvilinear figure; as,
        the quadrature of a circle; the operation of finding an
        expression for the area of a figure bounded wholly or in
        part by a curved line, as by a curve, two ordinates, and
        the axis of abscissas.
        [1913 Webster]
  
     2. A quadrate; a square. --Milton.
        [1913 Webster]
  
     3. (Integral Calculus) The integral used in obtaining the
        area bounded by a curve; hence, the definite integral of
        the product of any function of one variable into the
        differential of that variable.
        [1913 Webster]
 



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       5

Integration

• Our purpose is to compute the value of the integral

- This the area under the curve .

- The general philosophy behind all the numerical integra-
tion methods is 

1) to approximate the integrand by an 

    easily integrable function 

2) divide the interval into smaller pieces (partition into subintervals) 

- The most common approximation is a polynomial.
- Easy to integrate.
- We already know how to interpolate functions using polynomials.

- Methods differ in 
1) the degree of approximation
2) the way of partitioning 

- As in the case of numerical differentiation there are two directions to gain accuracy:
1) refine the partition (decrease step size )
2) go to higher degree polynomials

- In fact, the same method — Richardson extrapolation — is used in both integration and differentiation

f x( )

x

a x0= b xN=x1 xN 1–x2

h
I f x xd

a

b

=

f x

f x xd
a
b P x xd

a
b

f x xd
a
b f x xd

xi 1–

xi

i 1=
N=

h

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       6

Integration: trapezoidal rule

• Let us assume we have an equidistant partition of the interval :

,  ,  ,  

- Function values at the nodes are 

- The integral is computed as a sum of integrals in the subintervals :

- The most simple (non-trivial) approximation is the linear one:

- In this case the integral of the subinterval is simply the area of the trapezoid

a b

xi x0 ih+= i 0 1 N= x0 a= xN b=

f xi fi

xi xi 1+

I f x xd

xi 1–

xi

i 1=

N
=

x1 x2

f1

f2
f x fi 1–

fi fi 1––
xi xi 1––
---------------------- x xi 1––+=

f x( ) xd

x1

x2
1
2
--- x2 x1– f2 f1+



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       7

Integration: trapezoidal rule

- And the total integral is 

- The error in  can be estimated based on what we know about the error in interpolation (let’s use the same notation as 

in chapter 6;  is now the polynomial order):

for each   so that

- Now we have    (and )

- The error is                       (1)

I IT
h
2
--- fi fi 1++

i 0=

N
h fi

i 1=

N 1–
h
2
--- f0 fN++= =

IT
n

x a b x a b

f x P x f n x
n!

------------------------ x xi–
i 1=

n
+=

n 2= f x P x– f x
2

--------------------- x a– x b–= P x b x– f a x a– f b+
b a–

-----------------------------------------------------------=

ET f x P x–

a

b
f x

2
--------------------- x a– x b–

a

b

= =

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       8

Integration: trapezoidal rule

- The integral mean-value theorem says that 

 for which 

- This means that we can write (1) as (we removed the explicit  depen-
dence from ):  

- The error term for the integral divided into subintervals is obtained as 

,    

- For the term in brackets 

a b w x f x xd

a

b

f w x xd

a

b

=

x

ET
f

2
------------- x a– x b–

a

b
f

2
------------- b a– 3

6
-------------------–= =

ET
h3

12
------– f i

i 1=

N
h3N
12

----------– 1
N
---- f i

i 1=

N
= = i xi xi 1–

minx a b f'' x 1
N
---- f i

i 1=

N
maxx a b f'' x



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       9

Integration: trapezoidal rule

- Since  is a very nice function (as they always are) its second derivative attains its all values between the minimum 
and maximum at some point in the interval :

 for some value 

- So, we finally get the error term in form (and let’s take the absolute value of it)

  for some .

- Coding the trapeziodal rule is a piece of cake:

double Trapezoid(double (*f)(double x), double a, double b, int n) 
{ 

int i; 
double h, result; 

h = (b-a)/(double)n;
result = 0.5*(f(a)+f(b)); 

for (i=1; i<n; i++) result += f(a+i*h);

return(h*result); 
}

f
a b

f'' 1
N
---- f i

i 0=

N
= a b

ET
h3N
12

----------f'' h2 b a–
12

-----------------------f''= = a b

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       10

Integration: trapezoidal rule

- For example take the Gaussian   on :

For  the result is    
For  the result is 
The correct answer is     with seven decimals.

- Let’s estimate the error using the previous expression:

,   

It is easy to see that  on .

- To have an error of at most  we require that  or 

- Using the routine with n=58 we obtain 0.7468059 which is incorrect in the 5th digit.

- Thus, with the error expression we can estimate how many points we need in order the get the desired accuracy. 

- However, this requires that we can estimate the second derivative, which is not always the case.

f x e x– 2= 0 1

N 60= 0.7468071
N 500= 0.7468238

0.7468241

f x 2xe x– 2–= f'' x 4x2 2– e x– 2=

f'' x 2 0 1

ET
h2

6
-----

0.5 4–10 h b a– N 0.01732= N 58



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       11

Integration: trapezoidal rule

- However, as we look at the formula for the trapezoidal rule

we can see that it is easy to add more points to the expression without the need to redo the computation from the begin-
ning:

1) Start with using only the end points  and .
2) Add more points between the old ones and update  accordingly until its value does not change more than a 

predetermined value.

IT h fi
i 1=

N 1–
h
2
--- f0 fN++=

a b
IT

N 1=

N 2=

N 4=
N 8=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       12

Integration: trapezoidal rule

- The formula for the iterated trapezoidal rule is easily derived.

- Let’s assume that the interval  is divided into  parts:

- We need the method to calculate  from :

- The bracketed expression should be calculated with as little extra computation as possible:

a b 2N

IT N h f a ih+
i 1=

2N 1–
h
2
--- f a f b++=

IT N IT N 1–

IT N 1
2
---IT N 1– IT N 1

2
---IT N 1––+=

IT N h f a ih+
i 1=

2N 1–
C+=

IT N 1– 2h f a 2ih+
i 1=

2N 1– 1–
2C+=

C h
2
--- f a f b+=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       13

Integration: trapezoidal rule

- By subtraction we get 

- So, the iterative trapezoidal formula is 

, 

,  

IT N 1
2
---IT N 1–– h f a ih+

i 1=

2N 1–
h f a 2ih+

i 1=

2N 1– 1–
– h f a 2i 1– h+

i 1=

2N 1–

= =

IT N 1
2
---IT N 1– h f a 2i 1– h+

i 1=

2N 1–

+= N 0

h b a–
2N

------------= IT 0 1
2
--- b a– f a f b+=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       14

Integration: trapezoidal rule

- And in C (notation is a bit different; in anticipation of the Romberg method)

void RecTrapezoid(double (*f)(double x), double a, double b, int N, double *R) 
{ 

int i, j, k, kmax=1; 
double h, sum; h = b-a; 
/* Value of R(0,0) */ 
R[0] = (h/2.0)*(f(a)+f(b)); 
/* Successive approximations R(n,0) */ 
for (i=1;i<=N; i++) { 

h = h/2.0; 
sum = 0; 
kmax = kmax*2; 
for (k=1; k<=kmax-1;k+=2) 

sum += f(a+k*h); 
R[i] = 0.5*R[i-1]+sum*h; 

} 
}



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       15

Integration: trapezoidal rule

- Example of application

N 9=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       16

Integration: higher order methods

• Taking more points into the integral of the subinterval  we can develop higher order methods

- Using three points we get the Simpson rule:

- Here we approximate the integrand with a parabola in ;

- This is easily integrated as

f x xd
xi 1–

xi

x1 x2 x3

f1
f2

f3

x

f x

PN x f x0 x1 xi x xj–
j 0=

i 1–

i 0=

N
=

f x( ) xd

x1

x3

h 1
3
---f1

4
3
---f2

1
3
--- f3+ + O h5f 4( )+=

x1 x3

f x( ) f2
f3 f1–

2h
-------------- x x2–

f3 2f2– f1+

2h2
----------------------------- x x2– 2 O x2 x– 3( )+ + +=

f x( ) xd

x1

x3

f2
f3 f1–

2h
-------------- x x2–

f3 2f2– f1+

2h2
----------------------------- x x2– 2+ + xd

x1

x3

f2
f3 f1–

2h
--------------x

f3 2f2– f1+

2h2
-----------------------------x2+ + xd

h–

h

=

=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       17

Integration: higher order methods

- And by summing the subintegrals such that they do not overlap we get the approximation for the integral

- This formula can not be directly used in iterative computations.

- The error term of the trapezoidal rule can be written in the form (Euler-Maclaurin sum formula; note that here we do not 
truncate the series after the first term as we did previously):

- Note that we only have even powers of  here.  are Bernoulli numbers ( , , ...)

- Let’s assume that we have computed the integral using the trapezoidal rule and with  subintervals: 

- Similarly let  be the calculated with  subintervals.

- Now if we calculate the weighted average of these two approximations we get 

f x( ) xd

x0

xN

h 1
3
---f0

4
3
---f1

2
3
--- f2

4
3
---f3

2
3
--- fN 2–

4
3
---fN 1–

1
3
---fN+ + + + + + +=

f x( ) xd

x0

xN

h 1
2
---f0 f1 f2 fN 1–

1
2
---fN+ + + + +

B2h2

2!
------------ f'N f'0–– –

B2kh2k

2k !
----------------- fN

2k 1– f0
2k 1––– –=

h B2k B2 1 6= B4 1 30–=

N SN
S2N 2N

S 4
3
---S2N

1
3
---SN–=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       18

Integration: higher order methods

- Expanding this we get 

- It is easy to see that the error terms with   cancel and the lowest order error will be .

- In fact, expanding the above expression we get the Simpson rule.

- Does this sound familiar? It should. What we have is simply Richardson exrapolation (RE).

- We can go further to higher orders by using RE: Romberg algorithm

S 4
3
--- h

h2 f'N f'0–
4 12

-----------------------------– O h4+ 1
3
--- h

2
---

h2 f'N f'0–
12

-----------------------------– O h4––=

h2 O h4



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       19

Integration: Romberg algorithm

- Richardson extrapolation in short:

1) 

2) Goal is to find the limit 

3) Choose a value for  and calculate the numbers  ,   

4) Now 

5) We can get more accurate estimates by RE using the recursion relation:

6) It can be shown that the quantities  have the form

h( ) L a2kh2k

k 1=

–=

L h
h 0
lim=

h D n 1 h
2n
-----= n 1 2=

D n 1 L A k 1 h
2n
-----

2k
+=

D n m 1+( ) 4m

4m 1–
----------------D n m( ) 1

4m 1–
----------------D n 1– m( )–=

D n m

D n m( ) L A k m( ) h
2n
-----

2k

k m=

+=

D 1 1( )
D 2 1( ) D 2 2( )
D 3 1( ) D 3 2( ) D 3 3( )

D N 1( ) D N 2( ) D N 3( ) D N N( )

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       20

Integration: Romberg algorithm

- We have already seen that the trapezoidal formula for the integral has the form similar to 
 we can use RE to improve the estimate of the trapezoidal rule.

- It goes as follows

1) First compute integrals using the trapezoidal rule for different step sizes  . 

Denote these as . 

2) Refine the trapezoidal rule results using RE:

h

h b a–
2n

----------------=

R n 0

R n 0 1
2
---R n 1– 0 h f a 2i 1– h+

i 1=

2n 1–

+=

R 0 0 1
2
--- b a– f a f b+=

R n 1 m 1++( ) R n 1 m+( ) 1
4m 1+ 1–
------------------------ R n 1 m+( ) R n m( )–+=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       21

Integration: Romberg algorithm

- As a result we get the familiar triangle

- The first column is computed using the trapezoidal rule and others are higher order refinements.

- The recursion formula can be expressed graphically as 

R 0 0( )
R 1 0( ) R 1 1( )
R 2 0( ) R 2 1( ) R 2 2( )

R n 0( ) R n 1( ) R n 2( ) R n n( )

00

20

30

40

10

21

31

41

11

22

32

42

33

43 44

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       22

Integration: Romberg algorithm

- This is quite simple to code:

void Romberg(double (*f)(double x), double a, double b, int n, double R[][MAXN]) 
{ 

int i, j, k, kmax=1; 
double h, sum; 

h = b-a; R[0][0] = (h/2.0)*(f(a)+f(b)); 

for (i=1; i<=n; i++) { 

h = h/2.0; sum = 0; 
kmax = kmax*2; 

/* Trapezoidal estimate R(i,0) */ 
for (k=1; k<=kmax-1; k+=2) 

sum += f(a+k*h); 
R[i][0] = 0.5*R[i-1][0]+sum*h; 

/* Successive R(i,j) */ 
for(j=1; j<=i; j++) 

R[i][j] = R[i][j-1] +(R[i][j-1]-R[i-1][j-1])/(pow(4.0,(double)j)-1.0); 
} 

}

- Here the elements of the array   are computed row by row up to the specified number of rows,  
(this number need not to be very large because the method converges very quickly, 
e.g.,  is often suitable).

R i j n

n 4 5=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       23

Integration: Romberg algorithm

- Example:

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       24

Integration: adaptive algorithms

• It is not always the best strategy to select the subintervals to be equidistant.
- We need an adaptive algorithm to select automatically the partitioning of the interval.

- Here we use the Simpson’s rule (SR) presented previously:

- It’s error can be estimated by the formula1 

, 

- The principle of the adaptive algorithm is the following:

- First we divide the interval  into two subintervals.
- Then we decide whether each of the subintervals is further divided. 
- The process continues until some specific accuracy is achieved.

- We have to develop a test for deciding whether to do the division
- SR for the integral can be written as 

where  

1. Atkinson, Eq. (5.1.15)

f x xd

a

b
b a–

6
------------ f a 4f a b+

2
------------ f b+ +

E 1
90
------– b a–

2
------------

5
f 4= a b

a b

I S a b E a b+=

S a b b a–
6

------------ f a 4f a b+
2

------------ f b+ +=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       25

Integration: adaptive algorithms

- Letting  we have 

,  where  and 

- Two applications of the SR give [ ]

 where  and 

- Now we subtract the first evaluation from the second:

 

- So the second application of SR can be written as 

  

- This can be used to evaluate the accuracy of our 
approximation of 

h b a–=

I S 1 E 1+= S 1 S a b= E 1 1
90
------ h

2
---

5
f 4–=

c a b+ 2=

I S 2 E 2+= S 2 S a c S c b+= E 2 1
90
------ h 2

2
----------

5
f 4– 1

90
------ h 2

2
----------

5
f 4– E 1

16
----------= =

I I– 0 S 2 E 2 S 1– E 1–+= =

S 2 S 1– E 2 E 1– 15E 2= =

E 2 S 2 S 1–
15

--------------------------=

Well, it is a bit misleading to write the integral
in this way. To be precise the errors  are all
maximum errors. 

EI S 2 E 2+ S 2 S 2 S 1–
15

--------------------------+= =

I

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       26

Integration: adaptive algorithms

- We can use the following test to decide whether to continue the splitting process:

- If the test is not satisfied the interval  is split into two subintervals  and .

- Performing the test for these subintervals we have to use the tolerance .

1
15
------ S 2 S 1–

a b a c c b

2



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       27

Integration: adaptive algorithms

- Adaptive algorithm can be programmed as a recursive procedure.

- Two variables are used to calculate the approximation using SR:

one_simpson: 

two_simpson:  

- After evaluating  and  we use the division test  to check 
whether to go on with subdivisions.

S 1 S a b h
6
--- f a 4f c f b+ += =

S 2 S a c S c b+ h
12
------ f a 4f d 2f c 4f e f b+ + + += =

S 1 S 2 S 2 S 1– 15

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       28

Integration: adaptive algorithms

- If the criterion is not fulfilled the procedure calls itself with left_simpson corresponding to the left side  and 
the right_simpson corresponding to . At recursive calls .

- Below is the C implementation:

double Simpson(double a, double b, double eps, int level, int level_max) 
{ 

int i, j, k, kmax=1; 
double c, d, e, h, result; 
double one_simpson, two_simpson; 
double left_simpson, right_simpson; 
h = b-a; 
c = 0.5*(a+b); 
one_simpson = h*(f(a)+4.0*f(c)+f(b))/6.0; 
d = 0.5*(a+c); e = 0.5*(c+b); 
two_simpson = h*(f(a)+4.0*f(d)+2.0*f(c)+4.0*f(e)+f(b))/12.0; 
/* Check for level */ 
if (level+1 >= level_max) { 

result = two_simpson; 
printf("Maximum level reached\n"); 

} else { 
/* Check for desired accuracy */ 
if (fabs(two_simpson-one_simpson) < 15.0*eps) 

result = two_simpson + (two_simpson-one_simpson)/15.0; 
/* Divide further */ 
else { 

left_simpson = Simpson(a,c,eps/2.0,level+1,level_max); 
right_simpson = Simpson(c,b,eps/2.0,level+1,level_max); 
result = left_simpson + right_simpson; 

} 
} 
return(result); 

}

a c
c b 2



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       29

Integration: adaptive algorithms

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       30

Integration: adaptive algorithms

- One can explicitely derive higher order integration formulas (so called Newton-Cotes formulas) by increasing the order of 
the interpolating polynomial.
- The first four formulas (including trapezoidal and Simpson’s rules) are as below:

: trapezoidal

: Simpson

: 3/8

: Milne

- Here, as usual, ,  .

- These are for one subinterval. The composite formulas can be easily derived.
- For more information, see e.g. Atkinson, section 5.2.

n 1= f x xd

a

b
h
2
--- f a f b+ h2

12
------f 2–=

n 2= f x xd

a

b
h
3
--- f a 4f a b+

2
------------ f b+ + h5

90
------f 4–=

n 3= f x xd

a

b
3h
8

------ f a 3f a h+ 3f b h– f b+ + + 3h5

80
--------- f 4–=

n 4= f x xd

a

b
2h
45
------ 7f a 32f a h+ 12f a b+

2
------------ 32f b h– 7f b+ + + + 8h7

945
---------f 6–=

h b a–
n

------------= a b



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       31

Integration: Gaussian quadrature

• In the previous algorithms the integrals were computed by evaluating the function at more or less evenly spaced points and 
by weighting them appropriately.

• However, the more we have free parameters the higher is the order of the method.

• The basic idea of Gaussian quadrature (GQ) is to choose the points where the function is evaluated in an optimal way.

- This means that the ‘number of degrees of freedom’ is doubled.

- In principle the degree of the method is also doubled: With the same number of function evaluations we get more accu-
rate results. 

- But remember: The function has to be smooth and nice behaving.

- GQ algorithms are often derived for weighted integrals:

- Here  is the weight function. 
- It is useful for e.g. removing singularities from the integrand.

- The node positions  and weights  are chosen such that the quadrature is exact for polynomial .

W x( )f x( ) xd

a

b

wjf xj( )
j 1=

N

W x

xi wi f x

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       32

 Integration: Gaussian quadrature

- For example in computing the integral

it is wise to choose the weight function as 

- The weight function need not be written explicitely:  by writing  and  the integral is 

- How do we determine the nodes  and weights ?

- A straightforward way is to write down equations that require that the GQ is exact for polynomials upto some degree.

cos2x–exp

1 x2–
------------------------------- xd

1–

1

W x( ) 1

1 x2–
------------------=

g x( ) W x( )f x( )= vj wj W xj( )=

g x( ) xd

a

b

vjg xj( )
j 1=

N
=

xi wi



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       33

Integration: Gaussian quadrature

- Let’s take a simple example:

- Integration in the interval  with the weight function .

- We have to determine  and  such that the error

is zero for polynomials with as high degree as possible.

- Note that the nodes and weights also depend on : , . However, for simplicity, we drop the second subscript.

- We know that 

1– 1 W x 1=

f x( ) xd

1–

1

wjf xj( )
j 1=

N

xi wi

EN f( ) f x( ) xd

1–

1

wjf xj( )
j 1=

N
–=

N xj N wj N

EN a0 a1x amxm+ + +( ) a0EN 1( ) a1EN x( ) amEN xm( )+ + +=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       34

Integration: Gaussian quadrature

- This means that  for all polynomials with degree below  only if 

,    

- Let . We now have two parameters  and , which should satisfy

or 

- So, the integral takes the form

EN x 0= m 1+

EN xi( ) 0= i 0 1 m=

N 1= x1 w1

EN 1( ) 0=

EN x( ) 0=

1 xd
1–

1
w1– 0=

x xd

1–

1

w1x1– 0=

w1 2=

x1 0=

f x( ) xd

1–

1

2f 0( )



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       35

Integration: Gaussian quadrature

- A sidenote: This is actually so called midpoint rule for 
evaluating the integral:

- Let . Now we have four parameters: 

- These are obtained by solving:

,   

or 

f x( )

x

a x0= b xN=x1 xN 1–x2

h

f x xd

a

b

h f
xi 1– xi+

2
----------------------

i 1=

N
=

N 2= w1 w2 x1 x2

EN xi( ) xi xd

1–

1

w1x1
i w2x2

i+– 0= = i 0 1 2 3=

w1 w2+ 2=

w1x1 w2x2+ 0=

w1x1
2 w2x2

2+ 2 3=

w1x1
3 w2x2

3+ 0=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       36

Integration: Gaussian quadrature

- Solution for this is 

and the approximation for the integral is 

.

- This rule has a degree of three. Using Simpson’s rule the same accuracy is obtained by using three points.

w1 1=

w2 1=

x1
3

3
-------–=

x2
3

3
-------=

f x( ) xd

1–

1

f 3
3

-------–( ) f 3
3

-------( )+



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       37

Integration: Gaussian quadrature

- For an arbitrary value of  we have  parameters and they can be obtained requiring that 

 

is accurate for integrals of polynomials with degree  or lower. 

- The equations are 

,   

or 

- However, this is not the way to go. These are nonlinear equations and not so easy to solve.

- Better methods are based on orthogonal polynomials.

N 2N

f x( ) xd

1–

1

wjf xj( )
j 1=

N

2N 1–

EN xi( ) 0= i 0 1 2 2N 1–=

wjxj
i

j 1=

N 0 i 1 3 5 2N 1–=
2

i 1+
----------- i 0 2 4 2N 2–=

=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       38

Integration: Gaussian quadrature

- Let the integration interval be . 

- Inner product of two polynomials (or functions in general) with weight  is defined as 

.

- Two polynomials are orthogonal if 

.

- A polynomial is normalized if 

.

- With the following algorithm one can construct a set of mutually orthogonal polynomials with exactly one member of 
degree , ,  :

1. , 

2. ,  (The last term omitted when !)

     where  ,       and   ,  .

a b

W x

f g W x f x g x xd

a

b

=

f g 0=

f f 1=

j pj x j 0 1 2=

p 1– x( ) 0 p0 x( ) 1

pj 1+ x( ) x aj– pj x( ) bjpj 1– x( )–= j 0 1 2= j 0=

aj
xpj pj
pj pj

-----------------= j 0 1 2= bj
pj pj

pj 1– pj 1–
-----------------------------= j 1 2 3=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       39

Integration: Gaussian quadrature

- These polynomials are of the form 

- They can always be normalized by dividing by .

- Every polynomial  has exactly  distinct roots in the interval .

- Roots of  interleave the  roots of : use  to locate roots of .

- The connection between orthogonal polynomials and GQ is the following theorem:

pj x xj cj 1– xj 1– cj 2– xj 2–+ + +=

pj pj

pj x j a b

pj x j 1– pj 1– x pj 1– x pj x

- For each  there is a unique numerical integration formula 

which is exact for polynomials of . 
The nodes are the roots of the polynomial  
which is a member of the set of orthogonal polynomials 
defined in the interval  with respect to weight . 
The weights are 

.

N

W x f x( ) xd

a

b

wjf xj( )
j 1=

N

degree 2N 1–
pN x

a b W x

wj
pN 1– pN 1–

pN 1– xj( )p'N xj( )
---------------------------------------=

For proof see e.g. 
Atkinson chapter 5.3.

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       40

Integration: Gaussian quadrature

- Note that in principle the weights could be obtained from equations

- Note that  when  because  is a constant and polynomials are orthogonal.

- One can show that with these nodes and weights also polynomials ,  are integrated exactly. 

- Preparing a GQ scheme has three stages

1. Generate the orthogonal polynomials by the recursion formula.
2. Determine the roots of the polynomials. 
3. Compute the weights.

- List of nodes and weights for the abovementioned ‘classical’ cases can be found in the literature:
- See for example Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 

edited by: Abramowitz, M.; Stegun, I.A
(Online version of the book at http://www.knovel.com/knovel2/Toc.jsp?BookID=528 doesn’t seem to include the 
tables!)

w1p0 x1( ) w2p0 x2( ) w+ Np0 xN( )+ + W x( )p0 x( ) xd
a
b=

w1p1 x1( ) w2p1 x2( ) w+ Np1 xN( )+ + W x( )p1 x( ) xd
a
b=

w1pN 1– x1( ) w2pN 1– x2( ) w+ NpN 1– xN( )+ + W x( )pN 1– x( ) xd
a
b=

W x( )pj x( ) xd
a
b 0= j 0 p0 x

pk x( ) k N N 1 2N 1–+=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       41

Integration: Gaussian quadrature

- In the literature there a quite a few ‘classical’ GQ schemes for different weight functions:

Gauss-Legendre: 

Gauss-Chebyshev: 

Gauss-Laguerre: 

Gauss-Hermite: 

Gauss-Jacobi: , where 

W x( ) 1=
1– x 1
j 1+ Pj 1+ 2j 1+ xPj jPj 1––=

W x( ) 1

1 x2–
------------------=

1– x 1
Tj 1+ 2xTj Tj 1––=

W x( ) x e x–=
0 x

j 1+ Lj 1+ x– 2j 1+ + + Lj j + Lj 1––=

W x( ) e x2–=
– x
Hj 1+ 2xHj 2jHj 1––=

W x( ) 1 x– 1 x+=
1– x 1

cjPj 1+ dj ejx+ Pj fjPj 1––=

cj 2 j 1+ j 1+ + + 2j + +=

dj 2j 1+ + + 2 2–=

ej 2j + + 2j 1+ + + 2j 2+ + +=

fj 2 j + j + 2j 2+ + +=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       42

Integration: Gaussian quadrature

- For the Chebyshev GQ the nodes and weights are readily calculated as 

- When the nodes and weights are known the integral is computed  simply as 

- Limits of integration can easily be changed if desired: e.g. 

xj

j 1
2
---–

N
--------------------cos=

wj N
----=

f x( ) xd

a

b

wif xi( )
i 1=

N
=

1– 1 a b



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       43

Integration: Gaussian quadrature

- Error estimation of Gaussian quadrature is more complicated than in the case of e.g. trapezoidal or Simpson’s rule.

- For derivation of a general error expression see e.g. Atkinson, chapter 5.3.

- A common practical method to estimate error is the comparison of consecutive iterations (i.e. results with increasing 
number of nodes):

,

where . 

- The fact that in calculating  we can not utilize  brings some inefficiency here.

- However, there are Gaussian quadrature rules that a designed such that they use the previous nodes.
- One example of this is the Gauss-Kronrod quadrature rule.

I In– Im In–

m n

Im In

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       44

Integration: Gaussian quadrature

- In Gauss-Kronrod quadrature we start from Gaussian quadrature 

.

- To get a more accurate estimate we calculate 

,

where the nodes of  are reused but all weigths  and  are new. 

- In addition there are  new nodes .

- Kronrod showed that  is accurate for polynomials with degrees up to .

- The error estimate could be calculated as
.

- However, experience says that this is usually too pessimistic; a more realistic is
.

GN

GN wif xi
i 1=

N
=

K2N 1+ aif xi
i 1=

N
bjf yj

j 1=

N 1+
+=

GN ai bi
N 1+ yj
K2N 1+ 3N 1+

GN K2N 1+–

200 GN K2N 1+– 1.5



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       45

Integration: Gaussian quadrature

- For example the nodes and weights of Gauss-Legendre quadrature:

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       46

Integration: Gaussian quadrature

- Comparison of the methods (source Atkinson: An Introduction to Numerical Analysis)

I ex xcos xd

0

=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       47

Integration: improper integrals

• Improper integrals have one of the following properties:

1) Upper limit is  or lower limit is .
2) Integrand goes to finite values at the endpoints but can not be evaluated. E.g.  at .
3) There is an integrable singularity at either endpoint. E.g.  at .
4) There is an integrable singularity at a known point in the interval.

- Note that some integrals are simply impossible to evalutate: e.g.   ,    .

- In case (1) changing the integration may variable help.

- For the interval  suitable substitutions are 

 :

:

- For interval  one can try for example

:

–
xsin x x 0=

x 1 2/– x 0=

xd
x

-----

1

xcos xd

–

0

t x
1 x+
------------= 0 0 1

t e x–= 0 1 0

–

t ex 1–
ex 1+
--------------= – 1– 1

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       48

Integration: improper integrals

- Gauss-Laguerre and Gauss-Hermite quadratures are defined for infinite intervals:

Gauss-Laguerre: 

Gauss-Hermite: 

- For example  can be computed by using Gauss-Laguerre 

quadrature ( ):

- Results for various values of  (exact value ):

           2  0.432459454679844
           4  0.504879279460199
           8  0.499987753735300
          16  0.499999999985333
          32  0.500000000000000
          64  0.500000000000000
         128  0.500000000000000
         256  0.500000000000000

W x( ) x e x–=
0 x

W x( ) e x2–=
– x

I e x– xsin xd

0

=

0=

I wi xisin
i 1=

N

N I 1
2
---=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       49

Integration: improper integrals

- Case (2) can often be computed by open methods (i.e. methods that do not evaluate the function at the end points). 

- Note that GQs are examples of these kind of rules.

- Case (3) can often be computed by changing the variable.

- A simple case: . Its exact value is . 

- Applying Gauss-Laguerre quadrature (with the proper interval scaling  enables us to compute :
  2 1.65068012388578
  4 1.80634254040352
  8 1.89754094923051
 16 1.94722751142287
 32 1.97320909141769
 64 1.98650087152911
128 1.99322419413980
256 1.99660549565866
512 1.99830109231141

- However, convergence is slow even though GLQ removed the difficulty of eveluating the function in origin.

- In general for inverse-square-root singularities  in the integral  the following substitution may help:

 

I xd
x

------

0

1

= I 2=

0 1 1– 1 I

f x xd

a

b

x a– t2=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       50

Integration: improper integrals

- This gives the integral in the form 

   

- Now our example integral reduces to ( , , ) 

.

- Case (4) can be integrated in two parts so that we end up with singularities at the endpoints.

f x xd

a

b

2tf a t2+ td

0

b a–

=

a 0= b 1= f x x 1 2/–=

xd
x

------

0

1

2tf t2 td

0

1

2 td

0

1

2= = =



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       51

Integration: summary of 1D integrals

• If your function is one of those nice-behaving ones Gaussian quadrature is probably the best choice.
- You need to know the nodes and weights.
- They can be found in the literature (in form of tables and subroutines) for ‘classical’ quadrature weights. 
- Also, when going to higher number of nodes the previous results can not be utlilized.

• Romberg’s method is almost as good as GQ. 
- For nice functions if you don’t know suitable GQ rules.

• If your function is not nice-behaving trapezoidal or Simpson’s rule are robust though slow.
- Adaptive algorithms may save some CPU time.

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       52

Integration: multidimensional integrals

• Multidimensional integrals are problematic for two reasons:

1) The number of function evaluations increases quickly when the desired accuracy becomes better.

2) Integration volume may have a complicated shape.

• Certain integrals can be reduced to 1D.
• For example so called iterated integrals can be expressed as 1D integrals:

• If the integration volume is complicated but the function smooth one could use the Monte Carlo method.

• If the volume is simple and the function smooth we can break up the integral into repeated 1D integrals:

tnd

0

x

tn 1–d

0

tn

t2d

0

t3

f t1( ) t1d

0

t2
1

n 1– !
------------------ x t– n 1– f t( ) td

0

x

=

I xd yd xf x y z( )d

x y zf x y z( )d

z1 x y( )

z2 x y( )

d

y1 x( )

y2 x( )

d

x1

x2

=

=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       53

Integration: multidimensional integrals

- E.g. integration of a function over unit circle:

- Let’s call the innermost integral in the above equation as 

and its integral as 

- The final results is the integral of  over 

xd

1–

1

yd f x y( )

1 x2––

1 x2–

G x y

G x y( ) zf x y z( )d

z1 x y( )

z2 x y( )

=

H x

H x( ) G x y( ) yd

y1 x( )

y2 x( )

=

H x1 x2

I H x( ) xd

x1

x2

=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       54

Integration: multidimensional integrals

- Graphically:

ou
te

rm
os

t i
nt

eg
ra

l

innermost integral

y

x



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       55

Integration: multidimensional integrals

- In C we could say it as below 
static double xsav,ysav;
static double (*nrfunc)(double,double,double);

double quad3d(double (*func)(double, double, double), 
double x1, double x2)
{

double qgaus(double (*func)(double), double a, 
double b);

double f1(double x);

nrfunc=func;
return qgaus(f1,x1,x2);

}

double f1(double x)
{

double qgaus(double (*func)(double), double a, 
double b);

double f2(double y);
double yy1(double),yy2(double);

xsav=x;
return qgaus(f2,yy1(x),yy2(x));

}

double f2(double y)
{

double qgaus(double (*func)(double), double a, double b);
double f3(double z);
double z1(double,double),z2(double,double);
ysav=y;
return qgaus(f3,z1(xsav,y),z2(xsav,y));

}

double qgaus(double (*func)(double), double a, double
b)
{

int j;
double xr,xm,dx,s;
static double x[]={0.0,0.1488743389,0.4333953941,

0.6794095682,0.8650633666,0.9739065285};
static double w[]={0.0,0.2955242247,0.2692667193,

0.2190863625,0.1494513491,0.0666713443};
xm=0.5*(b+a);
xr=0.5*(b-a);
s=0;
for (j=1;j<=5;j++) {

dx=xr*x[j];
s += w[j]*((*func)(xm+dx)+(*func)(xm-dx));

}
return s *= xr;

}

double f3(double z)
{
return (*nrfunc)(xsav,ysav,z);

}

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       56

Integration: multidimensional integrals

- And below the main program using this routine:
  

/* Driver for routine quad3d */
#include <stdio.h>
#include <math.h>
#define PI 3.1415927
#define NVAL 10
static double xmax;
double quad3d(double (*func)(double, 
double, double), double x1, double x2);
double func(double x,double y,double z)
{

return x*x+y*y+z*z;
}
double z1(double x,double y)
{

return (double) 
-sqrt(xmax*xmax-x*x-y*y);

}
double z2(double x,double y)
{
   return (double) sqrt(xmax*xmax-x*x-y*y);
}
double yy1(double x)
{

return (double) -sqrt(xmax*xmax-x*x);
}
double yy2(double x)
{

return (double) sqrt(xmax*xmax-x*x);
}

int main(void)
{
int i;
double xmin,s;

printf(“Integral of r^2 over a spherical 
volume\n\n”);
printf(“%13s %10s 
%11s\n”,”radius”,”QUAD3D”,”Actual”);
for (i=1;i<=NVAL;i++) {

xmax=0.1*i;
xmin = -xmax;
s=quad3d(func,xmin,xmax);
printf(“%12.2f %12.6f %11.6f\n”,
xmax,s,4.0*PI*pow(xmax,5.0)/5.0);

}
return 0;
}



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       57

Integration: multidimensional integrals

- This program integrates  ( ) over a sphere  with radius .

- The exact value is .

- And the results:

3dint> a.out
Integral of r^2 over a spherical volume

       radius     QUAD3D      Actual
        0.10     0.000025    0.000025
        0.20     0.000805    0.000804
        0.30     0.006112    0.006107
        0.40     0.025756    0.025736
        0.50     0.078601    0.078540
        0.60     0.195583    0.195432
        0.70     0.422733    0.422406
        0.80     0.824187    0.823550
        0.90     1.485211    1.484063
        1.00     2.515219    2.513274

- Note the large error though we use a 10-point GQ in 1D integration.

f x y z r2= r x2 y2 z2+ += R
4
5
--- R5

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       58

Integration: multidimensional integrals

• Another way to compute multidimensional integrals is so called product rule 

- Let’s assume that we have a 2D integral

- As in the 1D case we could try to find an approximation of the form 

which integrates exactly 2D polynomials with degree no more than . 
-  is the error.

- A 2D polynomial with degree  has terms  and .
- For example when  the polynomial is 

- One (though not necessarily the optimal) way is so called product rule.

I f x y( ) Ad
D

=

I wif xi yi( )
i 1=

N
RN+=

d
RN

d xpyq p q+ d
d 2=

a00 a10x a01y a20x2 a11xy a02y2+ + + + +



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       59

Integration: multidimensional integrals

- Let’s write

(1)

(2)

- This 2D integral can be written in the form

f x( ) xd wif xi( )
i 1=

N
R1+=

g y( ) yd

a

b

pig yi( )
i 1=

M
R2+=

f x y( ) xd yd

a

b

wif xi y( )
i 1=

N
R1+ yd

a

b

wi f xi y( ) yd

a

b

i 1=

N
R1 yd

a

b

+

wi pjf xi yj( )
j 1=

M
R2+

i 1=

N
R1 yd

a

b

+

wipjf xi yj( )
j 1=

M

i 1=

N
wiR2

i 1=

N
R1 yd

a

b

+ +

wipjf xi yj( )
j 1=

M

i 1=

N
R+

=

=

=

=

=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       60

Integration: multidimensional integrals

- This the product rule. 

- We use  points to compute the integral.

- Below is a simple example of a  product rule:

- One can show that if equations (1) and (2) are exact for polynomials with degrees no more than  and  then product 

rule integrates exactly polynomials  where  and . 

NM

3 2

1 1

1– 1–

d1 d2

xpyq p d1 q d2



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       61

Integration: multidimensional integrals

- Let’s take an example:

- Exact value of the integral 

- The code on the following page computes this integral with number of nodes as an input.

- Note: This code uses NR routines; e.g. gauleg to compute Gauss-Legendre nodes and weights.

f x y( ) xye x2y–=
x y 0 1

f x y xd yd

0

1

0

1

xye x2y– xd yd

0

1

0

1
1

2e
------ 0.18393972= =

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       62

Integration: multidimensional integrals

  #include <stdio.h>
#include <math.h>
#include <stdlib.h>
#define NRANSI
#include “nr.h”
#include “nrutil.h”

float f(float x, float y)
{
 return x*y*exp(-x*x*y); 
 /* return sin(5.0*x*x)*cos(y*x); */

}

int main(int argc, char **argv)
{
 int nx,ny,i,j;
 float x1,x2,y1,y2;
 float s;
 float *xx,*wx,*xy,*wy;

 if (argc!=7 ) {
 fprintf(stderr,
”Komentorivi: %s nx ny x1 x2 y1 y2\n”,argv[0]);
 return (1);

 }
  nx=atoi(*++argv); ny=atoi(*++argv);
  x1=atof(*++argv); x2=atof(*++argv);
  y1=atof(*++argv); y2=atof(*++argv);

xx=vector(1,nx);
 wx=vector(1,nx);
 xy=vector(1,ny);
 wy=vector(1,ny);

  
 gauleg(x1,x2,xx,wx,nx);

  gauleg(y1,y2,xy,wy,ny);
  s=0.0;
  for (i=1;i<=nx;i++)
  for (j=1;j<=ny;j++) 

 s+=wx[i]*wy[j]*f(xx[i],xy[j]);
 printf(“GL-kvadratuuri %20.12g\n”,s);
 return (0);
}
#undef NRANSI



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       63

Integration: multidimensional integrals

- Results:

2d> xgauleg 3 3 0 1 0 1
GL-kvadratuuri       0.183959037066
Tarkka arvo          0.183939725161
2d> xgauleg 5 5 0 1 0 1
GL-kvadratuuri       0.183939725161
Tarkka arvo          0.183939725161

- This is not bad. Though note that the function is smooth and the integration volume regular.
- Not also that the function is evaluated nx ny times.

- A more difficult case is 

- Because the integral oscillates we need many nodes to get reason-
able results:

I 5x2sin xy ydcos xd

0

3

0

3

=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       64

Integration: multidimensional integrals

- Sometimes the integration area is not rectangular.

- By suitably changing variables the are can be transformed into rectangular shape:
- E.g. integral over a triangle:

,   

- Let’s change variables: ,   , 

- Now the integral is written as 

and we can use the product rule.

- However, the transformation changes the sampling density of the integration 
area:

I f x y( ) Ad= x y : 0 x 1 0 y x=

u x= v y
x
--= du dx= dv dy

x
------=

I xd

0

1

yd f x y( )

0

x

ud

0

1

vd f x y( )u

0

1

= =



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       65

Integration: multidimensional integrals

- There are methods where the nodes are chosen in a more optimal way than in the prod-
uct rule.

- For example the 3x3 Gauss-Legendre product rule has degree of 5 and need 9 function 
evaluations:

- Radon formula gives more optimal nodes: in the 7 point method 

where , , .

- This method is of degree 5 and needs only 7 function evaluations.

f x y( ) xd yd

1–

1

1–

1
5
9
--- f r s( ) f r s–( ) f r– s( ) f r– s–( )+ + +

20
63
------ f 0 t( ) f 0 t–( )+ 8

7
---f 0 0( )+ +

r 3 5= s 1 3= t 14 15=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       66

Integration: multidimensional integrals

• Monte Carlo (MC) method

- Computing the value of  by MC:

- Generate  random numbers in the interval  and calculate the number of hits 

to the gray area :

- The accuracy of the result depends on  and behaves as :

  

1 A

BC

O x

y

Ntot 0 1

Nhit

4Nhit
Ntot

-------------

Ntot O Ntot
1– 2



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       67

Integration: multidimensional integrals

- In 1D integration other methods are superior compared to MC. 

- But let’s take an example from statistical physics:

- We have to compute the average potential energy of the system  

where  and  is the system potential energy.

- Our system consists of 100 atoms in a box .

- A rough Simpson’s method would need  function evaluations.

- MC integration using unbiased sampling:

1) Generate configuration  by randomly placing atoms to the box.

2) Calculate system potential energy  and Boltzmann factor 

- The integral becomes now

U Ue U– rd=

1 kBT= U

x y z L 2– L 2

10300

i

U i e U–

U U i e U i–

i 1=

n

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       68

Integration: multidimensional integrals

- This is very inefficient as can be seen from the figures below:

 

- Here the Metropolis sampling was started from a random gonfiguration; . 

- The interaction was Lennard-Jones: 

unbiased

T 5 K=

U r( ) 4
r
---

12

r
---

6
–=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       69

Integration: multidimensional integrals

- So, when generating the points in MC integration it is useful to do that in such a way that we sample the volume in those 
places where the integrand is not negligible: importance sampling.

- Assume we must compute the integral

- Let’s write it in the form 

where  is an arbitrary probability density (i.e. , ).

- Now we generate a sample of size  by choosing random numbers  that have the distribution  in the interval 
.

- In this case the integral can be written as 

F xf x( )d

x1

x2

=

F x f x( )
x( )

--------- x( )d

x1

x2

=

x x( ) 0 x x( )d
x1

x2 1=

N x
x1 x2

F f( )
( )

----------=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       70

Integration: multidimensional integrals

- The most simple density would be 

, 

when the integral would be 

- What would be the optimal density function?

- The error of the integral can be written as 

- As an integral this is 

x( ) 1
x2 x1–
----------------= x1 x x2

F
x2 x1–

N
---------------- f i( )

i 1=

N

F 2 f2 2 f 2–=

F 2 f2
2

------ xd

x1

x2
f--- xd

x1

x2 2

– f2
2

------ xd

x1

x2

f xd

x1

x2 2

–= =



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       71

Integration: multidimensional integrals

- Now we apply variational calculus to find the optimal :

                            (Note the additional condition of normalization of .)

- By dropping the middle term (it doesn’t depend on ) and moving the variation inside the integral we get 

   

- Really nice: in order to get  we should know the integral of the function (well, of its absolute value)!

- There are workarouns to this problem:

1)  need not necessarily be exactly the optimum but being near to it may suffice.
2) Generating samples from a distribution can be done without knowing its normalization.

 Markov chain Monte Carlo

------ f2
2

------ xd

x1

x2

f xd

x1

x2 2

– xd

x1

x2

+ 0=

f2

2
------– + 0= f

f xd
x1

x2
------------------=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       72

Integration: multidimensional integrals

- In Metropolis MC we generate a series of points (or system states or configurations) in such a way that they obey the 
desired probability density. (Markov chain)

- The algorithm consists of the probability density of the states : , and the transition probabilites between states: .

- The series of states generated by these obey the probability density   if 

(i) 

(ii) 

(iii) 

- The system also has to be ergodic: it is possible to go from a state to any other state (not in one step necessarily).

- What is essential here is that only the ratio of probability densities is needed  no need to know the normalization.

-  Conditions (i)-(iii) are not very strict: They leave a lot for your imagination.

m m mn

m

mn 0

mn
n

1=

m mn n nm=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       73

Integration: multidimensional integrals

- Metropolis Monte Carlo is one (and the first1) realization of this 

- Here  is a symmetric stochastic matrix: . In a way it describes the ‘trial’ probability of the. 

- Based on the symmetry of  one can easily show that the above algorithm obeys the conditions (i),(ii),(iii).

- If you want to know more about the MC method attend the course(s)

Basics of Monte Carlo simulations
Monte Carlo simulations in physics
http://beam.helsinki.fi/~eholmstr/mc/

1. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of State Calculations by Fast Computing Machines, J. Chem. 
Phys., 21 (1953) 1087.

mn

mn n m m n;

mn
n

m
------- n m m n,;

1 mn
m n

– m n=

=

mn mn nm=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       74

Integration: multidimensional integrals

• A final note: A list of top ten algorithms (one of them) of the 20th century can be found at 
http://www.siam.org/siamnews/05-00/current.htm

- Below is the list (it seems to be in the cronological order)

1. Metropolis Monte Carlo. von Neuman et al., 1946

2. Simplex linear programming method (optimization). Dantzig, 1947

3. Krylov subspace iteration method (solving  for large matrices). Hestenes et al., 1950

4. Decompositional approach to matrix computations. Householder, 1951

5. Fortran optimizing compiler. Backus, 1957

6. QR algorithm for eigenvalue problems. Francis, 1959-61

7. Quicksort. Hoare, 1962

8. Fast Fourier transform. Cooley and Tukey, 1965

9. Integer relation detection algorithm. Ferguson and Forcade, 1977

10. Fast multipole algorithm. Greengard and Rokhlin, 1987

Ax b=



Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       75

Integration: practical tools

• Matlab 
quad adaptive Simpson
quadl adaptive Lobatto  (GQ on  with  

and end points included)

• Octave
quad integration using Quadpack routines

• Quadpack
Package of integration routines written in Fortran 77. 
Atkinson: ‘The package is well tested and appears to be an 
excellent collection of programs.’
Can be downloaded from http://www.netlib.org/quadpack
See also 
http://www.scs.fsu.edu/~burkardt/f_src/quadpack/quadpack.html

• SLATEC
Both adaptive and non-adaptive routines
(d)gaus8:adaptive 8-point Gauss-Legendre 
(d)qnc79:adaptive 7-point Newton-Cotes

• GSL
Reimplements the algorithms used in Quadpack
Both adaptive and non-adaptive routines

Adaptive Gauss: use previous nodes (but
new weights) (Kronrod extension; Gauss-
Kronrod quadrature):

 

Patterson:  points.

W x f x xd

a

b

wif xi
i 0=

N
=

W x f x xd

a

b

vif xi
i 0=

2N 1+
=

N N M+

Note:
-point Newton-Cotes = 

approximating the function
by a polynomial of degree

Trapezoidal rule = 2-point Newton-Cotes
Simpson             = 3-point Newton-Cotes 

N

N 1–

1– 1 W x 1=

Scientific computing III 2013:   7. Integration                                                                                                                                                                                                       76

Integration: practical tools

• In many applications there are certain special integrals for which efficient methods have been developed.

- Double-folded integrals using Fourier-Bessel expansion.
- Fermi-Dirac integrals.
- Fourier integrals.


