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Eigenvalue problems

• Determination of eigenvalues and eigenvectors

, 

where  is an  matrix,
eigenvector , 
and eigenvalues  are in general complex numbers

• In physics:

- Energy eigenvalues in a quantum mechanical system

- Express wave function in terms of atom-like orbitals        

- Minimize  ( ) with respect to :   

- In matrix form 

- Vibration modes in molecules and solids

-  where  contains the displacement vectors of all atoms 

and  is the dynamical matrix  
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Eigenvalue problems

- A simple example: CO2 molecule:

- Equations of motion (in 1D):

- Assume all vibrate with the same frequency : trial solution ,  ( are the initial positions; ini-
tial velocities are zero)

- Substitute these  to equations of motion we get 
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Eigenvalue problems

- We want to find eigenvalues  and eigenvectors  of the matrix  where , 

- Solution by Maxima:

- Eigenvalues   

- Eigenvectors   
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Eigenvalue problems

- Another vibration example: Cu trimer
eval  0.0000 0.0000  0.0000  0.0000  0.0000  0.0000  7.6393  7.6393  20.3185

x1           -0.1520          -0.5432  0.3139         -0.5773 -0.0099  -0.5000
y1            0.4974          -0.1898 -0.5476         -0.0099  0.5773  -0.2887
z1      0.7137         0.5774                 -0.3966           

x2           -0.1519          -0.5432  0.3139          0.2800  0.5049   0.5000 
y2           -0.4770          -0.3920 -0.4496          0.5049 -0.2800  -0.2887 
z2     -0.0134         0.5774                  0.8164                    

x3            0.6919          -0.3681  0.2290          0.2972 -0.4950  
y3            0.0102          -0.2909 -0.4986         -0.4950 -0.2972   0.5774  
z3     -0.7003         0.5774                 -0.4198         
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Eigenvalue problems

- Similar calculations for larger copper clusters than just a trimer (phonon density of states).

Icosahedral Cu with 3871 atoms
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Eigenvalue problems

- All vibration modes of a atomic system can be found out by computing eigenvalues of the dynamical (Hessian) matrix 

 

- In potential energy minima all eigenvalues  of the dynamical matrix are positive. (I.e.  is positive definite.)

- Vibration frequencies 

- If   no vibration. (May be a result of poor energy minimization.)

- Transition state theory: find saddle points in potential energy hypersurface

- In saddle point all but one eigenvalue are positive. 
(Think of a saddle point on a 2D surface: curvature in one direction is pos-
itive in another negative.)
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Eigenvalue problems

• Eigenvalues are those values of  with which the equation  has a nonzero solution .

 eigenvalues are the roots of the (characteristic) polynomial of th degree  

- However, this is not a good method to solve ‘s.

- Many methods for determining eigenvalues utilize the fact that the eigenvalues are invariant in similarity transformations:

   ( is a nonsingular matrix)

- Eigenvectors of the transformed matrix are  ( are the eigenvectors of )

- By similarity transformations  is put into form that allows more or less easy determination of eigenvalues by e.g. var-
ious iterative methods.

- In the best cases  can be diagonalized:

- For every matrix it is possible to form Schur factorization: , where  is an upper triangular matrix with ‘s 
on the diagonal

- In many cases it is advisable to transform the matrix into e.g. tridiagonal or Hessenberg forms (upper triangular+one 
row below diagonal) before computations.

- What methods to use depends also whether the matrix is symmetric or real.
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Eigenvalue problems

- Properties of the eigenvalues of a matrix depend on the type of the matrix:

Matrix Eigenvalues
Upper or lower triangular Diagonal elements of 
Hermitian: Real

Positive definite: Positive
Positive semidefinite: Non-negative

- How to generate a positive definite matrix (e.g. when experimenting with Matlab)?
If matrix  has all columns linearly independent then the following matrix  is positive definite1:

.

- Positive definiteness is an important concept in function minimization: the Hessian matrix of a multivariate function is 
positive definite at the minimum.

- A useful property of a partitioned matrix is that its eigenvalues can be computed from its partitions:

,      

1. See e.g. Golub-van Loan, section 4.2
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Eigenvalue problems

• Canonical forms of square matrices: Relation of the structure of the matrix to its eigenvalues and eigenvectors:
(assume  and  are  square matrices)

-  and  are similar if there is a nonsingular matrix  such that
.

- If  and  are similar then they have the same characteristic polynomials

and, consequently, same eigenvalues and eigenvectors.

- Schur normal form:  can be expressed as 
 (  )

where  is a unitary1 matrix and  is upper triangular and 
,

and the eigenvalues of  are the diagonal elements of .

- Principal axis theorem: If  is Hermitian2 , then 
1) it has real  eigenvalues  (not necessarily distinct) and 

2)  corresponding eigenvectors  that form an orthonormal basis in  (or  if  real)
3) there is a unitary matrix  such that 

1. , for real matrices .  is the conjugate transpose of ; i.e. , where  is the complex conjugate of .

2.

A B n n
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A B

fA fB=

It is easy to show that if matrix  is upper or lower triangu-
lar then its eigenvalues are simply the diagonal elements.
This follows from the fact that the determinant of a triangu-
lar matrix  is simply
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Eigenvalue problems

- Singular value decomposition (SVD):  (let it be a  matrix) can be expressed in form
,

where  is a  unitary martix
 is a  unitary matrix
 is a “diagonal”  matrix:

,     

- The real positive numbers  are called the singular values of . They are arranged such that

;

- If  is defined as  then one can show that

.
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Eigenvalue problems

- Moreover, if we write the matrices  and  in terms of their column vectors:
,  ,

one can prove the following SVD expansion of the matrix :

.

- The 2-norm and the Frobenius norms can be expressed in terms of the singular values:

, 

.

- QR factorization is a common decomposition used in computing eigenvalues and eigenvectors.

- An  real matrix  can be written in form

, 

where  is an orthogonal matrix ( ) and  is an upper triangular matrix.
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Eigenvalue problems

• All methods to determine eigenvalues are iterative (cf. find zeroes of a polynomial)

• Power method
- Many more advanced methods are based on it.
- Finds  with the largest absolute value and the corresponding eigenvector.
- Assume that  has eigenvalues   and linearly independent eigenvectors .

- Further assume that , and ; i.e. both eigenvalues and vectors are real.

- Basic algorithm:
1. Choose the initial vector 

2. For  do

! this keeps the eigenvector estimate normalized to one

! eigenvalue estimate
    end

- It easy to show that  and  when :
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Eigenvalue problems

- Convergence of the power method depends on the ratio .

- If  has eigenvalues then  has eigenvalues . ( 
 Using the power method the smallest eigenvalue can be computed (inverse iteration).

- This can be combined with shift:   now we can determine the eigenvalue , where  is the 

eigenvalue of  that is closest to  (inverse iteration with shift).

- By applying the method with different values of   all eigenvalues can in principle be determined.

- There are many ways to remove the effects of already determined eigenvalues from matrix  

- E.g. by doing the transformation  the largest eigenvalue zeroed and the power method can be 
applied to determine the second largest one (deflation).

- A generalization of the power method is orthogonal iteration where a basis corresponding to  largest eigenvalues is 
generated. 
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Eigenvalue problems

- QR method is based on the previous method and also uses the QR factorization to determine all eigenvalues.

- Usually matrix  is similarity transformed to so called Hessenberg or tridiagonal form before the QR algorithm is 
applied.

- This must be done by similarity transformations in order to preserve the eigenvalues of the original matrix.
- Matrix  is a Hessenberg matrix if 

, for all 
i.e. upper triangular except for a single nonzero subdiagonal.
(Note that if the matrix is symmetric its Hessenberg form is tridiagonal.)

- Applying the QR method to this matrix is much cheaper than to a general matrix.

- This preliminary reduction is done by the Householder transformation or by Givens rotation.

- Householder matrices  are orthogonal

,  ,

and the transformation is of the form

.
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Ã Pn 2– Pn 1– P1AP1
T Pn 1–

T Pn 2–
T=



Scientific computing III 2013:   4. Eigenvalue problems                                                                                                                                                                                      15

Eigenvalue problems

- In the QR algorithm a sequence of matrices , ,  is formed in the following fashion:

0. 

1. Do the QR factorization: .

2. Compute the new iterate:  (i.e. )

3.  .
4. Go to 1.

- As a limit this iteration produces an upper triangular matrix .

- And remember: the eigenvalues of the original matrix  are the diagonal elements.
- For proof see e.g. Golub-van Loan, Chapter 7.

- The iteration can be written as 
.

- Because all  are orthogonal then the above transformation is a similarity transformation and  has the same eigen-

values as the original matrix .

- When eigenvalues are known, eigenvectors can be obtained by e.g. inverse iteration with shift.
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Eigenvalue problems

- LAPACK uses the QR method for eigenvalues and vectors
 

DGEEV - compute for an N-by-N real nonsymmetric matrix A, the eigenvalues
  and, optionally, the left and/or right eigenvectors
SYNOPSIS
  SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR, LDVR,
                    WORK, LWORK, INFO )
      CHARACTER     JOBVL, JOBVR
      INTEGER       INFO, LDA, LDVL, LDVR, LWORK, N
      DOUBLE PRECISION A(LDA,*), VL(LDVL,*), VR(LDVR,*), WI(*), WORK(*), WR(*)

- Matlab and Octave have function eig:

 EIG    Eigenvalues and eigenvectors.
    E = EIG(X) is a vector containing the eigenvalues of a square
    matrix X.

    [V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a
    full matrix V whose columns are the corresponding eigenvectors so
    that X*V = V*D.
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Eigenvalue problems

- Example code using DGEEV (complex version of the routine):

! http://www.nacse.org/demos/lapack/codes/eigen-f.html

program eigenvalue
  integer,parameter :: rk=8
  real(rk)::  A(3,3), DUMMY(3,3), WORK(9)
  real(rk) :: br(3),bi(3)
  integer i, ok

  A(1,1)=3.1; A(1,2)=1.3;  A(1,3)=-5.7
  A(2,1)=1.0; A(2,2)=-6.9; A(2,3)=5.8
  A(3,1)=3.4; A(3,2)=7.2;  A(3,3)=-8.8

    call DGEEV(’N’,’N’,3,A,3,br,bi,DUMMY,1,DUMMY,9,WORK,9,ok)

  if (ok==0) then
     do i=1, 3

write(*,*) br(i),bi(i)
     enddo
  else
     write (*,*) "An error occured"
   endif

end program eigenvalue

- Output:
f90> ifort -o eigendouble eigendouble.f90 -llapack
f90> ./eigendouble
  0.625482501680223        2.30344243268150
  0.625482501680223       -2.30344243268150
  -13.8509653848302       0.000000000000000E+000

Matlab:
A =
    3.1000    1.3000   -5.7000
    1.0000   -6.9000    5.8000
    3.4000    7.2000   -8.8000
>> [v,d]=eig(A)
v =
  -0.7160            -0.7160             0.2890
  -0.2686 + 0.3703i  -0.2686 - 0.3703i  -0.6375
  -0.3721 + 0.3738i  -0.3721 - 0.3738i   0.7142
d =
   0.6255 + 2.3034i        0                  0
        0             0.6255 - 2.3034i        0
        0                  0           -13.8510
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Eigenvalue problems

• Examples of execution times for calculating eigenvalues of large matrices using LAPACK:

Test AMD LAPACK and BLAS implementations in libacml.a
-----------------------------------------------------
Program: dynmat_eigen.f90

Calculates all eigenvalues of a symmetric matrix (relaxat dynamical matrix, to be precise) using LAPACK
routine dsyev.

A) LAPACK and BLAS in libacml.a used.
B) LAPACK and BLAS compiled from sources downloaded from netlib.
Compilation on ametisti and sepeli:
A) pathf90 -static -O3 -ipa -fno-math-errno -m64 -march=opteron -o dynmat_eigen_acml dynmat_eigen.f90 -L/home/akuronen/acml -lacml
B) pathf90 -static -O3 -ipa -fno-math-errno -m64 -march=opteron -o dynmat_eigen_default dynmat_eigen.f90 lapack.f blas.f dlamch.f
Run:
A) ./dynmat_eigen_acml    ${Nat} < dm_ico${Nat}.dat > ev_ico${Nat}.data
B) ./dynmat_eigen_default ${Nat} < dm_ico${Nat}.dat > ev_ico${Nat}.dat

Results from sepeli (AMD Opteron):
                        CPU time (s)

Nat     Matrix size        A            B         A/B
-------------------------------------------------------
 147    441 x   441     0.078988     0.077989    1.012
1415   4245 x  4245    94.133690   159.87070     0.589
3871  11613 x 11613  1703.0691    3127.5565      0.545

Home computer (AMD Athlon):
(liblapack compiled from f90 sources at
                        CPU time (s)

Nat    Matrix size         A            B         A/B
--------------------------------------------------------
 147   441 x   441      0.14997800   0.12798100  1.172
1415  4245 x  4245     81.391627   132.44986     0.615
3871 11613 x 11613   1899.9832    2682.6172      0.708
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Eigenvalue problems

• Below is shown the CPU time usage of an ab inito code SIESTA for a silicon system. 
- Solution is performed by so called direct diagonalization; i.e. calculating eigenvalues.

Simulations by E. Holmström
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Eigenvalue problems

• Summary:

- If you want all eigenvalues of a matrix that fits into your computers memory the QR method is a good choice.
- I.e. use LAPACK or Matlab/Octave

- For computing only a few eigenvalues there are efficient methods that are also suitable for large sparse matrices.
- Check out e.g. J. Haataja et al., Numeeriset menetelmät käytännössä, CSC, 1999. 

- If you know the appoximate values of the eigenvalues then the power method with shift and inversion is a good method 
to improve the approximations.


