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Linear algebra

• In scientific computing many tasks eventually take the form of a linear algebra problem.

- Systems of linear equations
- General least squares fitting:

-  ,   minimize  , , 

- Solving partial differential equations using the finite element method (FEM)
- May results in a huge but sparse matrix.

- Determination of eigenvalues and eigenvectors
- Energy eigenvalues in a quantum mechanical system

- Express wave function in terms of atom-like orbitals        

- Minimize  ( ) with respect to :   .  In matrix form 

- Vibration modes in molecules and solids

-  where  contains the displacement vectors of all atoms 

and  is the dynamical matrix  

- All eigenvalues  density of states   vibrational free energy  in harmonic approximation
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Systems of linear equations

• Systems  of linear equations solved in many problems in science and tehcnology

- Example: determining currents in an electrical circuit

- Applying Kirchoff’s and Ohm’s law in various loops and points in the circuit we get the following equations

                                   where  are the currents in the loops. 
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Systems of linear equations

- In matrix form this is 

      or  , where  ,   and 

- Solution by Matlab

>> R=[5 5 0 0 0; 0 0 1 -1 -1; 0 0 0 2 -3; 1 -1 -1 0 0; 0 5 -7 -2 0]
R =
     5     5     0     0     0
     0     0     1    -1    -1
     0     0     0     2    -3
     1    -1    -1     0     0
     0     5    -7    -2     0
>> v=[10 0 0 0 0]’
v =
    10
     0
     0
     0
     0
>> i=R\v
i =
         1.23364485981308
         0.766355140186916
         0.467289719626168
         0.280373831775701
         0.186915887850467

5 5 0 0 0
0 0 1 1– 1–
0 0 0 2 3–
1 1– 1– 0 0
0 5 7– 2– 0

i1
i2
i3
i4
i5

10
0
0
0
0

= Ri v= R

5 5 0 0 0
0 0 1 1– 1–
0 0 0 2 3–
1 1– 1– 0 0
0 5 7– 2– 0

= i

i1
i2
i3
i4
i5

= v

10
0
0
0
0

=

Check: 
>> R*i
ans =
                        10
     -2.77555756156289e-17
                         0
      2.22044604925031e-16
      1.11022302462516e-16
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Systems of linear equations

- Another simple example: cut-off of Lennard-Jones potential 
in molecular dynamics simulations

- Shift and tilt the potential:  and  continuous at 
:

- Problem: may change the potential at smaller  values

- Fit a polynomial  from 
:
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Systems of linear equations

• In general a system of linear equations is written in the form

and expanded 

                                    

-  unknowns  coupled with  equations

- Coefficients   and   known

- If  the equation may a unique solution  provided that
- None of the  equations is a linear combination of another (row degeneracy).
- All equations do not contain certain variables only in the exactly same linear combinations (column degeneracy).
- This is equivalent to existence of the inverse of   ( )  or that , or that the only solution to  is 

 or that .
- Otherwise matrix  is singular.

- Roundoff errors in numerical calculations: 
- near-degeneracy degeneracy
- solution found but wrong one (does not solve the original equation)
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Systems of linear equations

- If  generally no solution exists.
- We may try to find  that is nearest to the solution, e.g. in the sense of least squares.

- Different problems related systems of linear equations:

1. Find a solution vector  for the equation  where  is a square matrix. 

2. Find solutions to many systems in the same calculation: . 

- Every unknown vector  has a corresponding right-hand side vector . 

- Matrix  is the same for all equations.

3. Compute the inverse . 

- 

4. Compute the determinant of a square matrix . 

M N
x

x Ax b= A

Axk bk=

xk bk
A

Elements of the inverse can be expressed
as 

 ,  = th cofactor

This is not the way to calculate the inverse
numerically. It scales badly and is prone to
roundoff errors.

Aij
1– Cji

det A
----------------= Cji ji

A 1–

AA 1– 1=
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Systems of linear equations

• For general (not too large) matrices:

- Methods based on Gauss elimination
- Factorization if many solutions needed

• Large matrices:

- Iterative methods

• Sparse matrices vs. dense matrices
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Systems of linear equations: naive Gauss elimination

• A simple method to solve linear equations

- A numerical example

1. Subtract equation 1 from other equations so that  is eliminated from them

2. Subtract equation 2 from equations 3 and 4 so that  is eliminated 

6x1 2x2– 2x3 4x4+ + 16=

12x1 8x2– 6x3 10x4+ + 26=

3x1 13x2– 9x3 3x4+ + 19–=

6x1– 4x2 x3 18x4–+ + 34–=

x1
6x1 2x2– 2x3 4x4+ + 16=

4x2– 2x3 2x4+ + 6–=

12x2– 8x3 x4+ + 27–=

2x2 3x3 14x4–+ 18–=

x2
6x1 2x2– 2x3 4x4+ + 16=

4x2– 2x3 2x4+ + 6–=

2x3 5x4– 9–=

4x3 13x4– 21–=
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Systems of linear equations: naive Gauss elimination

3. Finally eliminate  from the 4th equation

4. The equation is now in upper triangular form and unknowns can readily be solved by backsubstitution

- In matrix form

   is transformed to  

x3
6x1 2x2– 2x3 4x4+ + 16=

4x2– 2x3 2x4+ + 6–=

2x3 5x4– 9–=

3x4– 3–=

x4
3–
3–

------ 1= =

2x3 5– 9–= x3 2–=

4x2– 4– 2+ 6–= x2 1=

6x1 2– 4– 4+ 16= x1 3=

6 2– 2 4
12 8– 6 10
3 13– 9 3
6– 4 1 18–

x1
x2
x3
x4

16
26
19–
34–

=

6 2– 2 4
0 4– 2 2
0 0 2 5–
0 0 0 3–

x1
x2
x3
x4

16
6–
9–
3–

=
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Systems of linear equations: naive Gauss elimination

- Check by Matlab

>> A=[6 -2 2 4 ; 12 -8 6 10; 3 -13 9 3; -6 4 1 -18]
A =
     6    -2     2     4
    12    -8     6    10
     3   -13     9     3
    -6     4     1   -18
>> b=[16 26 -19 -34]’
b =
    16
    26
   -19
   -34
>> A\b
ans =
                         3
         0.999999999999999
                        -2
                         1

>> A1=[6 -2 2 4; 0 -4 2 2; 0 0 2 -5; 0 0 0 -3]
A1 =
     6    -2     2     4
     0    -4     2     2
     0     0     2    -5
     0     0     0    -3
>> b1=[16 -6 -9 -3]’
b1 =
    16
    -6
    -9
    -3
>> A1\b1
ans =
     3
     1
    -2
     1

>> help mldivide
   Backslash or left matrix divide.
    A\B is the matrix division of A into B, which is roughly the
    same as INV(A)*B , except it is computed in a different way.
    If A is an N-by-N matrix and B is a column vector with N
    components, or a matrix with several such columns, then
    X = A\B is the solution to the equation A*X = B computed by
    Gaussian elimination. A warning message is printed if A is
    badly scaled or nearly singular.  A\EYE(SIZE(A)) produces the
    inverse of A.
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically

=
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Systems of linear equations: naive Gauss elimination

- Graphically: backsubstitution

=
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Systems of linear equations: naive Gauss elimination

• Naive Gauss elimination as an algorithm

- Equation has the form

- Elimination consists of  steps.
- At the  step ( ) the following substitutions are done to equation  ( )

- Backsubstitution

,  

a11x1 a12x2 a13x3 a1NxN+ + + + b1=

a21x1 a22x2 a23x3 a2NxN+ + + + b2=

a31x1 a32x2 a33x3 a3NxN+ + + + b3=

aN1x1 aN2x2 aN3x3 aNNxN+ + + + bN=

N 1–
kth k 1 N 1–= i k 1 i N+

aij aij
aik
akk
-------- akj–

bi bi
aik
akk
-------- bk–

k j N

xi
1

aii
------ bi aijxj

j i 1+=

N
–= i N N 1– 1=
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Systems of linear equations: naive Gauss elimination

- Then the bad news: in practice naive Gauss elimination can fail badly.
- Take for example the following equation

- Zero coefficient in the first line prevents the application of Gauss elimination.

- In numerical computation it need not be exactly zero:

- Here  is something very small.

- After the first elimination step

- After backsubstitution

,       

0x1 x2+ 1=

x1 x2+ 2=

x1 x2+ 1=

x1 x2+ 2=

x1 x2+ 1=

1 1---– x2 2 1---–=

x2

2 1---–

1 1---–
-----------------= x1

1 x2–
--------------=

Note: We can not substitute expression for  to
that of  and simplify it because computer does
not do that. 

x2
x1
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Systems of linear equations: naive Gauss elimination

-  small   large  

- For the solution we get ,

- Right solution , 

- Error of 100% !

- Change the order of equations: a working solution

- Order of elimination matters pivoting.

1 2 1---– 1 1---– 1---–

x1 0 x2 1

x1
1

1 –
----------- 1= x2

1 2–
1 –

--------------- 1=

x1 x2+ 2=

x1 x2+ 1=

x1 x2+ 2=

1 – x2 1 2–=

x2
1 2–
1 –

--------------- 1=

x1 2 x2– 1=
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Systems of linear equations: pivoting

• When the element of the matrix  that is to be eliminated ( , so called pivot element) 
happens to be zero elimination can not be done.

- Interchanging equations is allowed

- Find the first equation “below” the  equation that has coefficient in column  non-zero.

aij aij
aik
akk
-------- akj–

bi bi
aik
akk
-------- bk–

k j N

A akk

kth k

=interchange
equations

k 5=
akk 0=

ak k 1+ 0=

ak k 2+ 0
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Systems of linear equations: pivoting

- Partial pivoting: shuffle only equations (rows in the matrix)
- Full pivoting possible: bookkeeping in the program becomes complicated

- Strategy: shuffle equations in such a way that the pivoting element is the largest possible

- Index vector 

  

tells the order in which the equations are handled

- In the beginning calculate scaling factors  for all equations 

- From these form the vector 

- First elimination for the equation for which  is largest. Let’s call it equation .

- Equation  is subtracted from all others to zero matrix elements .

l l1 l2 lN=

si
si maxj aij( )= 1 i N

s s1 s2 sN=

ai1
si

---------- l1

l1 ai1
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Systems of linear equations: pivoting

- A handy way to do the index bookkeeping is the following 

- In the beginning set  

- Choose  so that it has the maximum value of .

- Exchange  and  in index vector .

- Now subtract equation  multiplied with coefficients   from equations , .

- Generally at step  

- Choose the index  so that   has the maximum value.

- Exchange indices  and .

- Use coefficients  when subtracting the pivot equation  from other equations , .

- Normally the scaling vector  is not updated during computation. General belief says that it not worth the trouble.

l 1 2 N=

j
ali1
sli

----------- 1 i N

lj l1 l

1
ali1
al11
--------- i 2 i N

k

j
alik
sli

----------- k i N

lj lk
alik
alkk
-------- lk li k 1+ i N

s
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Systems of linear equations: pivoting

- A numerical example: the original equation

- In the beginning  and .

- Calculate ratios .

- Choose  as the first maximum value in this vector: .

- After exchange index vector is  .

- Subtract equation 3 (in the original equation) from others weighted by appropriate coefficients:

.

- Next find the maximum from .

- Results is  and the new index vector is . 

3 13– 9 3
6– 4 1 18–

6 2– 2 4
12 8– 6 10

x1
x2
x3
x4

19–
34–

16
26

=

l 1 2 3 4= s 13 18 6 12=

ali1
sli

----------- i 1 2 3 4= 3
13
------ 6

18
------ 6

6
--- 12

12
------=

j j 3=

l 3 2 1 4=

0 12– 8 1
0 2 3 14–
6 2– 2 4
0 4– 2 2

x1
x2
x3
x4

27–
18–

16
6–

=

ali2
sli

----------- i 2 3 4= 2
18
------ 12

13
------ 4

12
------=

j 3= l 3 1 2 4=
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Systems of linear equations: pivoting

- Equation 1 is subtracted from equations 2 and 4 multiplied by  and , respectively:

- In the last step get maximum from .

- We get  and the index vector remains unchanged: .

- Equation 2 multiplied by  is subtracted from equation 4:

.

1 6– 1 3

0 12– 8 1

0 0 13
3
------ 83

6
------–

6 2– 2 4

0 0 2
3
---– 5

3
---

x1
x2
x3
x4

27–
45
2

------–

16
3

=

ali3
sli

----------- i 3 4= 13 3
18

------------- 2 3
12

----------=

j 3= l 3 1 2 4=

2 13–

0 12– 8 1

0 0 13
3
------ 83

6
------–

6 2– 2 4

0 0 0 6
13
------–

x1
x2
x3
x4

27–
45
2

------–

16
6

13
------–

=
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Systems of linear equations: pivoting

- Index vector is now  and the solution is obtained by going through it starting from the end:

 .

- Solution is .

l 3 1 2 4=

x4
6 13–
6 13–

---------------- 1= =

x2
27– 8 2–– 1 1–

12–
------------------------------------------------ 1= =

x1
16 2 1 2 2– 4 1––+

6
------------------------------------------------------------- 3= =

x3
45 2– 83 6 1+

13 3
----------------------------------------------------- 2–= =

x

3
1
2–

1

=
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Systems of linear equations: Gauss-Jordan elimination

• In Gauss elimination we get the solution corresponding to only one vector . 

• Gauss-Jordan: solutions for many  at the same time and also the inverse .

- ‘Augment’ the equation into form 

- Operation  denotes the combination of the two matrices:

- It easy to see that the above equation corresponds to four equations:

b

b A 1–

A x1 x2 x3 Y b1 b2 b3 1=

A B

a11 a12 a13
a21 a22 a23
a31 a32 a33

b11 b12 b13
b21 b22 b23
b31 b32 b33

a11 a12 a13 b11 b12 b13
a21 a22 a23 b21 b22 b23
a31 a32 a33 b31 b32 b33

=

A x1 b1=

A x2 b2=

A x3 b3=

A Y 1=
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Systems of linear equations: Gauss-Jordan elimination

-  The following operations do not change the equations
1. Exchange of two rows in matrix  and exchange of the corresponding rows in vectors  and unit matrix .

2. Substitute a row in  by a linear combination of all rows in  and the corresponding changes in  and .

3. Exchange two columns in  and exchange corresponding rows in  and . 

- Gauss-Jordan (GJ) elimination (with pivoting): use the abovementioned operations to change  into a unit matrix.
- Equations now read as:

- So we get solutions for many vectors  and the inverse .

- GJ elimination (without pivoting) goes like this
1. The first row is divided by .

2. The first row is subtracted from other rows scaled in such a way that . 
3. Now the first column corresponds to unit matrix.
4. The second row is divided by .

5. The second row is subtracted from other rows scaled in such a way that .
...

A bi 1

A A bi 1

A x Y

A

1 x1 b'1= 1 x2 b'2= 1 x3 b'3= 1 Y A 1–=

b A 1–

a11
ai1 0=

a22
ai2 0=
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Systems of linear equations: Gauss-Jordan elimination

- Example: a  matrix

    

- The corresponding changes are made to the vectors  and to the matrix .

- Gauss-Jordan is also prone to rounoff errors if pivoting is not used.
- In pivoting the order in which the elements  are handled is changed.

- The ciriterion is usually to choose the largest element among the candidates.

3 3

a11 a12 a13
a21 a22 a23
a31 a32 a33

1 a'12 a'13
a21 a22 a23
a31 a32 a33

1 a'12 a'13
0 a'22 a'23
0 a'32 a'33

1 a'12 a'13
0 1 a''23
0 a'32 a'33

1 0 a''13
0 1 a''23
0 0 a''33

1 0 a''13
0 1 a''23
0 0 1

1 0 0
0 1 0
0 0 1

bi Y

aii
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Systems of linear equations: Gauss-Jordan elimination

- Numerical Recipes routine for GJ elimination with full pivoting:

#include <math.h>

#define NRANSI

#include "nrutil.h"

#define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}

void gaussj(float **a, int n, float **b, int m)

{

  int *indxc,*indxr,*ipiv;

  int i,icol,irow,j,k,l,ll;

  float big,dum,pivinv,temp;

  

  indxc=ivector(1,n);

  indxr=ivector(1,n);

  ipiv=ivector(1,n);

  for (j=1;j<=n;j++) ipiv[j]=0;

  for (i=1;i<=n;i++) {

    big=0.0;

    for (j=1;j<=n;j++)

      if (ipiv[j] != 1)

for (k=1;k<=n;k++) {

  if (ipiv[k] == 0) {

    if (fabs(a[j][k]) >= big) {

      big=fabs(a[j][k]);

      irow=j;

      icol=k;

    }

  } else if (ipiv[k] > 1) nrerror("gaussj: Singular Matrix-1");

}

    ++(ipiv[icol]);

    if (irow != icol) {

      for (l=1;l<=n;l++) SWAP(a[irow][l],a[icol][l])

for (l=1;l<=m;l++) SWAP(b[irow][l],b[icol][l])

  }

    indxr[i]=irow;

    indxc[i]=icol;

   for (l=1;l<=n;l++) a[icol][l] *= pivinv;

    for (l=1;l<=m;l++) b[icol][l] *= pivinv;

    for (ll=1;ll<=n;ll++)

      if (ll != icol) {

dum=a[ll][icol];

a[ll][icol]=0.0;

for (l=1;l<=n;l++) a[ll][l] -= a[icol][l]*dum;

for (l=1;l<=m;l++) b[ll][l] -= b[icol][l]*dum;

      }

  }

  for (l=n;l>=1;l--) {

    if (indxr[l] != indxc[l])

      for (k=1;k<=n;k++)

SWAP(a[k][indxr[l]],a[k][indxc[l]]);

  }

  free_ivector(ipiv,1,n);

  free_ivector(indxr,1,n);

  free_ivector(indxc,1,n);

}

#undef SWAP

#undef NRANSI
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Systems of linear equations: Gauss-Jordan elimination

• Scaling behavior of matrix inversion by Gauss(-Jordan )

Elimination consists of  steps. 
At the  step ( ) the following substitutions 
are done to equation  ( )

, ,  

 scales as  !

• When we have to solve many equations with the same  there’s a remedy: LU factorization

- Factorization scales as .

- Results of factorization can be used to solve any equation corresponding to matrix  in .

N 1– O N
kth k 1 N 1–=

i k 1 i N+ O N

aij aij
aik
akk
-------- akj– bi bi

aik
akk
-------- bk– k j N O N

O N3

A

O N3

A O N2
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Systems of linear equations: LU factorization

• LU (lower triangular—upper triangular) factorization (or decomposition):

- Find matrices  and  so that 

- 
-  is a lower triangular matrix
-  is an upper triangular matrix

- E.g. for a  matrix 

                                                              

- Substituting  for  in the linear equation we get

- Now the equation can be solved in two steps

  ,   

L U

L U A=
L
U

4 4

L U A

11 0 0 0

21 22 0 0

31 32 33 0

41 42 43 44

11 12 13 14
0 22 23 24
0 0 33 34
0 0 0 44

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

=

L U A

A x L U x L U x b= = =

L y b= U x y=
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Systems of linear equations: LU factorization

- What do we gain here?

- When the matrix of the equation is in the triangular form solving it is trivial.
- Just use forward substitution for :

, , 

- And back substitution for :

, , 

- The reason for doing all this is that factorization is an  operation but solving the equation using  and  is 

.

y

y1
b1

11
---------= yi

1
ii

------- bi ijyj
j 1=

i 1–
–= i 2 3 N=

x

xN
yN

NN
----------= xi

1
ii

------ yi ijxj
j i 1+=

N
–= i N 1– N 2– 1=

O N3 L U

O N2
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Systems of linear equations: LU factorization

- Actually, the naive Gauss elimination does exactly LU factorization on the matrix .

- Let’s take a numerical example

- Doing the Gauss elimination we get the equation into form

- This can be interpreted as transforming the equation  into 

, 

A

6 2– 2 4
12 8– 6 10
3 13– 9 3
6– 4 1 18–

x1
x2
x3
x4

16
26
19–
34–

=

6 2– 2 4
0 4– 2 2
0 0 2 5–
0 0 0 3–

x1
x2
x3
x4

16
6–
9–
3–

=

Ax b=

MAx Mb=
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Systems of linear equations: LU factorization

- Here  is chosen in such a way that  is in the upper triangular form

- Forward elimination consists of a series of steps
- The first step gives

or  where 

M MA

MA

6 2– 2 4
0 4– 2 2
0 0 2 5–
0 0 0 3–

U=

6 2– 2 4
0 4– 2 2
0 12– 8 1
0 2 3 14–

x1
x2
x3
x4

16
6–

27–
18–

=

M1Ax M1b=

M1

1 0 0 0
2– 1 0 0
1
2
---– 0 1 0

1 0 0 1

=
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- The second step gives

or  where

- Finally the third step gives the upper triangular form

6 2– 2 4
0 4– 2 2
0 0 2 5–
0 0 4 13–

x1
x2
x3
x4

16
6–
9–

21–

=

M2M1Ax M2M1b=

M2

1 0 0 0
0 1 0 0
0 3– 1 0

0 1
2
--- 0 1

=

6 2– 2 4
0 4– 2 2
0 0 2 5–
0 0 0 3–

x1
x2
x3
x4

16
6–
9–
3–

=
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- This is equivalent to  where 

- Thus we get the matrix  as the product of all three multiplier matrices

- We wrote     

- Now  have such a simple structure (unit diagonal, lower triangular, only one column nonzero) that their inverse is 
obtained simply by inverting the sings of the nondiagonal elements:

M3M2M
1
Ax M3M2M1b=

M3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 2– 1

=

M

M M3M2M1=

MA U= A M 1– U M1
1– M2

1– M3
1– U LU= = =

Mi

L M1
1– M2

1– M3
1–

1 0 0 0
2 1 0 0
1
2
--- 0 1 0

1– 0 0 1

1 0 0 0
0 1 0 0
0 3 1 0

0 1
2
---– 0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1

1 0 0 0
2 1 0 0
1
2
--- 3 1 0

1– 1
2
---– 2 1

= = =
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- It is easy to verify that 

-  In summary: 

- The lower triangular elements of matrix  are the multipliers located at the positions of the elements their annihi-
lated from . 

-  is the final coefficient matrix obtained after the forward elimination phase.

LU

1 0 0 0
2 1 0 0
1
2
--- 3 1 0

1– 1
2
---– 2 1

6 2– 2 4
0 4– 2 2
0 0 2 5–
0 0 0 3–

6 2– 2 4
12 8– 6 10
3 13– 9 3
6– 4 1 18–

A= = =

L
A

U
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Systems of linear equations: LU factorization

- Let’s look at the factorization for a 4x4 matrix 

- On the left hand side we have  coefficients; on the right hand side 
- We can set  coefficients as we like.
- Normal convention  (this is understandable since  is the forward elimination matrix):

- Nice from the practical point of view:  
both  and   can be stored in the same array:

11 0 0 0

21 22 0 0

31 32 33 0

41 42 43 44

11 12 13 14
0 22 23 24
0 0 33 34
0 0 0 44

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

=

N2 N+ N2

N

ii 1= L

1 0 0 0

21 1 0 0

31 32 1 0

41 42 43 1

11 12 13 14
0 22 23 24
0 0 33 34
0 0 0 44

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

=

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

L U
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- How to do the LU factorization efficiently?

- th equation of this group reads (i.e. for element )

 

- How many terms are included in the equation depends on the order of  and :

,    (1)

, (2)

- As noted before we have here  equations but  unknowns. By setting  this is corrected.

11 0 0 0

21 22 0 0

31 32 33 0

41 42 43 44

11 12 13 14
0 22 23 24
0 0 33 34
0 0 0 44

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

=

ij aij

i1 1j i2 2j+ + aij=

i j

ik kj
k 1=

i
aij= i j

ik kj
k 1=

j
aij= i j

N2 N2 N+ ii 1=
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Systems of linear equations: LU factorization

- One efficient way to do the LU factorization is Crout’s algorithm

-  Set   (3)

- For every  do the following:

1. For all  solve  using the equations (1), (3):

, (if  no summing)

2. For all  solve  using equation (2):

- By going through a couple of iterations it is easy to see that those ‘s and ‘s that appear on the RHS are already 
determined when they are needed.

ii 1= i 1 N=

i 1 N=

j 1 i= ij

ij aij ik kj
k 1=

i 1–
–= i 1=

i j 1 j 2 N++= ij

ij
1
jj

------ aij ik kj
k 1=

j 1–
–=
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Systems of linear equations: LU factorization

- Filling of the  matrix: 
columns from left to right
every column from top to bottom:

diagonal elements

subdiagonal elementis

a

b

c

d

e

f

g

h

i

j

X

X
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Systems of linear equations: LU factorization

- The most simple non-trivial example 3x3 matrix:

- Calculate the factorization

A
a11 a12 a13
a21 a22 a23
a31 a32 a33

9 2 3
4 2 4
1 1 9

= =

a11 a12 a13
a21 a22 a23
a31 a32 a33

1 0 0

21 1 0

31 32 1

11 12 13
0 22 23
0 0 33

=
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Systems of linear equations: LU factorization

j 1= i 1= 11 a11 9= =

i 2= 21
1
11

--------a21
4
9
--- 0.4444= = =

i 3= 31
1
11

--------a31
1
9
--- 0.1111= = =

j 2= i 1= 12 a12 2= =

i 2= 22 a22 21 12– 2 4
9
---2– 1.111= = =

i 3= 32
1
22

-------- a32 31 12– 1
1.111
------------- 1 2

9
---– 0.7000= = =

j 3= i 1= 13 a13 3= =

i 2= 23 a23 21 13– 4 4
9
---3– 2.6667= = =

i 3= 33 a33 31 13– 32 23– 6.8000= = =
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Systems of linear equations: LU factorization

- The final results is:

- Check by Matlab:

L
1 0 0

0.4444 1 0
0.1111 0.7000 1

= U
9 2 3
0 1.1111 2.6667
0 0 6.8000

= A
9 2 3
4 2 4
1 1 9

=

>> L=[1 0 0; 0.4444 1 0; 0.1111 0.7 1.0]
L =
    1.0000         0         0
    0.4444    1.0000         0
    0.1111    0.7000    1.0000
>> U=[9 2 3; 0 1.1111 2.6667; 0 0 6.8]
U =
    9.0000    2.0000    3.0000
         0    1.1111    2.6667
         0         0    6.8000
>> L*U
ans =
    9.0000    2.0000    3.0000
    3.9996    1.9999    3.9999
    0.9999    1.0000    9.0000

>> A=[9 2 3; 4 2 4; 1 1 9]
A =
     9     2     3
     4     2     4
     1     1     9
>> [L,U]=lu(A);
>> L,U
L =
    1.0000         0         0
    0.4444    1.0000         0
    0.1111    0.7000    1.0000
U =
    9.0000    2.0000    3.0000
         0    1.1111    2.6667
         0         0    6.8000

Or using the matlab lu-function:
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Systems of linear equations: LU factorization

- How about pivoting? 

- Normally partial pivoting (row interchange) is enough.

- Row interchange can be formally written in the form

,   where  is the permutation matrix. 

- This is the form in which the LAPACK and Matlab LU routines give their results. 

- Permutation matrix has the form , i.e. unit matrix with rows shuffled.

- This particular example gives a matrix with the order of rows as  (instead of ):

- Later we give examples how to use LAPACK routines to LU factorize matrices and to use the factorization in solving 
linear equations. 

Sometimes the above is written
as 

. 

It easy to see that

 .

P'A LU=

P' P 1– PT= =

A PLU= P

P

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

=

2 4 1 3 1 2 3 4

PA

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

a21 a22 a23 a24
a41 a42 a43 a44
a11 a12 a13 a14
a31 a32 a33 a34

= =
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- Matlab lu-function:

 LU     LU factorization.
    [L,U] = LU(X) stores an upper triangular matrix in U and a
    "psychologically lower triangular matrix" (i.e. a product
    of lower triangular and permutation matrices) in L, so
    that X = L*U. X can be rectangular.
 
    [L,U,P] = LU(X) returns unit lower triangular matrix L, upper
    triangular matrix U, and permutation matrix P so that
    P*X = L*U.

>> X=rand(4)
X =
    0.2679    0.2126    0.2071    0.5751
    0.4399    0.8392    0.6072    0.4514
    0.9334    0.6288    0.6299    0.0439
    0.6833    0.1338    0.3705    0.0272
>> [L,U]=lu(X);
>> L*U
ans =
    0.2679    0.2126    0.2071    0.5751
    0.4399    0.8392    0.6072    0.4514
    0.9334    0.6288    0.6299    0.0439
    0.6833    0.1338    0.3705    0.0272
>> L,U
L =
    0.2871    0.0590    0.0832    1.0000
    0.4713    1.0000         0         0
    1.0000         0         0         0
    0.7321   -0.6015    1.0000         0
U =
    0.9334    0.6288    0.6299    0.0439
         0    0.5429    0.3103    0.4307
         0         0    0.0960    0.2542
         0         0         0    0.5160
>> [L,U,P]=lu(X);
>> P*X
ans =
    0.9334    0.6288    0.6299    0.0439
    0.4399    0.8392    0.6072    0.4514
    0.6833    0.1338    0.3705    0.0272
    0.2679    0.2126    0.2071    0.5751

>> L*U
ans =
    0.9334    0.6288    0.6299    0.0439
    0.4399    0.8392    0.6072    0.4514
    0.6833    0.1338    0.3705    0.0272
    0.2679    0.2126    0.2071    0.5751
>> L,U,P
L =
    1.0000         0         0         0
    0.4713    1.0000         0         0
    0.7321   -0.6015    1.0000         0
    0.2871    0.0590    0.0832    1.0000
U =
    0.9334    0.6288    0.6299    0.0439
         0    0.5429    0.3103    0.4307
         0         0    0.0960    0.2542
         0         0         0    0.5160
P =
     0     0     1     0
     0     1     0     0
     0     0     0     1
     1     0     0     0
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• Calculating the inverse  using LU decomposition

- Let’s take an example with  : 

- Definition of the inverse 
- This corresponds to equations:

, , 

- When we have computed the LU factorization we only need to do  forward and backsubstitution steps to get the 
inverse; in Fortran using LAPACK

call dgetrf(...,N,A,...) ! Compute the LU factorization
do j=1,N

b=0.0
b(j)=1.0
call dgerts(...,N,...,A,...,b,...) ! Solve Ax=b using LU
Ainv(1:N,j)=b

end do

A 1–

N 3= A 1–
b11 b12 b13
b21 b22 b23
b31 b32 b33

=

LUA 1– 1=

LU
b11
b21
b31

1
0
0

= LU
b12
b22
b32

0
1
0

= LU
b13
b23
b33

0
0
1

=

N
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Systems of linear equations: error estimation, condition number

• How do inaccuracies (due to finite precision and roundoff errors) in matrix  show up in the results?

- Assume a perturbation  in   
 error  in :

 
(to 1st order in perturbation)

- Define condition number of matrix :  

  

A

1) 
2) , iff 
3) , 
4) 
5) 

A 0
A 0= aij 0=

A A= R
A B+ A B+
AB A B

A A
x x

A A+ x x+ b=

x A 1– A x x+–=

x A 1– A x
x

x
----------- A 1– A

A

A A 1– A=

x
x

----------- A A
A

------------
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- This can be interpreted as:

- Condition number measures the sensitivity of the results on perturbations in the matrix .
- For ill-conditioned matrices the condition number is much larger than one.
- LAPACK routines XYYCON (see below) calculate the reciprocal of the condition number:

anorm=dlange(norm,n,n,a,n,work) ! Compute 
call dgetrf(n,n,a,n,ipiv,info1) ! Get LU factorization
call dgecon(norm,n,a,n,anorm,rcond,work,iwork,info2) ! Compute condition number

- Function RCOND(A) gives the same in Matlab.
- For well-conditioned matrices  and for ill-conditioned  ( is the machine epsilon).

- For perturbations in RHS vector :  

.

x
x

----------- A A
A

------------

relative error in results maximum amplification factor relative error in matrix

A

A

RCOND(A) 1 RCOND(A)

b A x x+ b b+= x A 1– b= x A 1– b

x
x

----------- A b
b

-----------
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- Examples with Matlab:

- Here we have used the singular value decomposition of a matrix. Zero elements in the diagonal matrix  tell that the 
matrix is singular. 

>> a=rand(5)
a =
    0.6418    0.0582    0.0748    0.9885    0.1288
    0.1785    0.5876    0.3100    0.6916    0.6868
    0.5294    0.4161    0.9441    0.2417    0.2972
    0.2187    0.1864    0.9807    0.8098    0.6472
    0.5481    0.0639    0.5551    0.9345    0.4638
>> [u1,s1,v1]=svd(a);
>> r1=rcond(a);
>> a(:,1)=a(:,2);
>> [u2,s2,v2]=svd(a);
>> r2=rcond(a);
>> a(1,1)=1.001*a(1,1);
>> [u3,s3,v3]=svd(a);
>> r3=rcond(a);
>> r1,r2,r3
r1 =        0.0146964338747443
r2 =        1.8740983020316e-18
r3 =        3.103933272459e-06

>> s1,s2,s3
s1 =
       2.5858            0            0            0            0
            0      0.93008            0            0            0
            0            0      0.62295            0            0
            0            0            0      0.44952            0
            0            0            0            0     0.087944
s2 =
       2.4969            0            0            0            0
            0      0.93435            0            0            0
            0            0      0.67109            0            0
            0            0            0      0.28254            0
            0            0            0            0    2.492e-17
s3 =
       2.4969            0            0            0            0
            0      0.93434            0            0            0
            0            0      0.67109            0            0
            0            0            0      0.28255            0
            0            0            0            0   1.2098e-05

>> help rcond
 RCOND  LAPACK reciprocal condition estimator.
    RCOND(X) is an estimate for the reciprocal 

  of the condition of X in the 1-norm obtained 
    by the LAPACK condition estimator. If X is well 
    conditioned, RCOND(X) is near 1.0. If X is badly 
    conditioned, RCOND(X) is near EPS. 

>> help svd
 SVD    Singular value decomposition.
    [U,S,V] = SVD(X) produces a diagonal matrix S, of the same 
    dimension as X and with nonnegative diagonal elements in
    decreasing order, and unitary matrices U and V so that
    X = U*S*V’.

S
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• A package of subroutines performing the most common linear algebra task.

- BLAS (Basic Linear Algebra Subroutines) performs the low-level matrix operations
- Often hardware vendors provide highly optimized BLAS routines for their platform.

- Source can be downloaded from e.g. NETLIB: http://www.netlib.org/lapack/

- Many Linux distributions have precompiled packages.
- You can also compile it yourself.

- User’s quide in HTML in http://www.netlib.org/lapack/lug/

- An easily installable LAPACK package on the course web page: 
http://www.physics.helsinki.fi/courses/s/tl3/progs/lapack/lapackf90.tgz

Application:

LAPACK routines

BLAS routines

user program,
Matlab, 

...
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- Naming scheme of the routines

- All driver and computational routines have names of the form XYYZZZ

- X indicates the data type:
S real
D double (precision)
C complex
Z double complex

- YY indicates the type of matrix

BD bidiagonal
DI diagonal
GB general band
GE general (i.e., unsymmetric, in some cases rectangular)
GG general matrices, generalized problem
GT general tridiagonal
HB (complex) Hermitian band
HE (complex) Hermitian
HG upper Hessenberg matrix, generalized problem
HP (complex) Hermitian, packed storage
HS upper Hessenberg
OP (real) orthogonal, packed storage
OR (real) orthogonal
PB symmetric or Hermitian positive definite band

PO symmetric or Hermitian positive definite
PP symmetric or Hermitian positive definite, packed storage
PT symmetric or Hermitian positive definite tridiagonal
SB (real) symmetric band
SP symmetric, packed storage
ST (real) symmetric tridiagonal
SY symmetric
TB triangular band
TG triangular matrices, generalized problem
TP triangular, packed storage
TR triangular (or in some cases quasi-triangular)
TZ trapezoidal
UN (complex) unitary
UP (complex) unitary, packed storage
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- ZZZ indicates the computation performed; for example:
SV solve linear equation
SVX solve linear equation (expert version)
TRF factorize
TRS use the factorization to solve linear equations
CON estimate the reciprocal of the condition number
TRI use the factorization to compute inverse of a matrix 
EV determine eigenvalues 

- For example: 
DGESV compute the solution to a double system of linear equations for general matrices
ZGEEV compute for an -by- complex nonsymmetric matrix the eigenvalues 
DGETRF compute an LU factorization of a general -by- matrix

N N
M N
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- Using LAPACK in Kumpula Linux (punk, mutteri, etc.) system:
gfortran test.f90 -llapack
gcc test.c -llapack -lm

- All routines have individual man pages on punk and mutteri:

# man dgesv

DGESV(l)                                                                        DGESV(l)
NAME
       DGESV - compute the solution to a real system of linear equations A * X = B,
SYNOPSIS
       SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
           INTEGER       INFO, LDA, LDB, N, NRHS
           INTEGER       IPIV( * )
           DOUBLE        PRECISION A( LDA, * ), B( LDB, * )
PURPOSE
       DGESV  computes the solution to a real system of linear equations A * X = B, 

where A is an N-by-N matrix and X and B
. . .
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- A typical subroutine interface (Fortran90):

  SUBROUTINE DGETRF( M, N, A, LDA, PIV, INFO )
INTEGER        INFO, LDA, M, N
INTEGER        PIV( * )
DOUBLE         PRECISION A( LDA, * )

PURPOSE
  DGETRF computes an LU factorization of a general 

M-by-N matrix A using partial pivoting with 
row interchanges.

ARGUMENTS
M (input) INTEGER

       The number of rows of the matrix A.  M >= 0.
N (input) INTEGER

       The number of columns of the matrix A.  N >= 0.
A (input/output) DOUBLE PRECISION array, 

dimension (LDA,N)
       On entry, the M-by-N matrix to be factored.  

On exit, the factors L
         and U from the factorization A = P*L*U; 

the unit diagonal elements of L are not stored.
LDA (input) INTEGER

The leading dimension of the array A.  LDA >= max(1,M).
PIV (output) INTEGER array, dimension (min(M,N))

        The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was
interchanged with row IPIV(i).

INFO (output) INTEGER
       = 0:  successful exit
       < 0:  if INFO = -i, the i-th argument had an illegal value
       > 0:  if INFO = i, U(i,i) is exactly zero. The factorization has
       been completed, but the factor U is exactly singular, and division
       by zero will occur if it is used to solve a system of equations.

A typical subroutine call when 
dealing with square matrices:

real :: a(n,n)
integer :: pivot(n),ok

. . . 

call dgetrf(n,n,a,n,pivot,ok)
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- Calling LAPACK routines from C

- LAPACK written in Fortran 77 :-(

- Things to remember when using both Fortran and C in the same program:

1. Fortran routine names have usually and underscore appended: in Fortran subr, in C subr_

2. In Fortran all subroutine parameters passed by reference. This means that in C they have to be pointers.

program fmain
  integer :: i
  i=1
  call csub(i)
  print ’(a,i2)’,’i=’,i
end program fmain

void csub_(int *i) {
  (*i)++;
}

c_f90> gfortran -c fmain.f90
c_f90> gcc -c csub.c
c_f90> gfortran fmain.o csub.o
c_f90> a.out
i= 2

#include <stdio.h>
int main() {
  int i;
  i=1;
  fsub_(&i);
  printf("i=%d\n",i);
  return 0;
}

subroutine fsub(i)
  integer :: i
  i=i+1
  return
end subroutine fsub

c_f90> gcc -c cmain.c
c_f90> gfortran -c fsub.f90
c_f90> gcc cmain.o fsub.o
c_f90> a.out
i=2

Main program in Fortran Main program in C
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- C-Fortran continued

3. The order of multidimensional array elements in memory is different in Fortran and C.
     E.g. a  matrix: 

double A[3][3] or 
real(kind=8) :: A(3,3).

     In C the last index changes fastest, in Fortran the first:

  order of elements in memory: 

    Consequently, you have to transpose the matrix before calling the Fortran routine. 
    (Or in C use one-dimensional arrays and take care of index arithmetics yourself.)

3 3

a11 a12 a13
a21 a22 a23
a31 a32 a33

C: a11 a12 a13 a21 a22 a23 a31 a32 a33

Fortran: a11 a21 a31 a12 a22 a32 a13 a23 a33
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Systems of linear equations: LAPACK

- Example for calling LAPACK routines from C

- Now a few practical examples1.

1. See http://www.physics.helsinki.fi/courses/s/tl3/progs/lapack/

Fortran:
  integer,parameter :: rk=8
  real(rk),allocatable :: a(:,:),b(:),x(:)
  integer :: n,ok
  integer,allocatable :: pivot(:)
. . . 

  allocate(a(n,n),b(n),pivot(n))
. . .

  do i=1,n
     read(5,*) (a(i,j),j=1,n)
  enddo
. . .

  call dgesv(n, 1, a, n, pivot, b, n, ok)

C:
  int n,i,j,c1,c2,*pivot,ok;
  double *A,*b;
. . .  
A=(double*)malloc((size_t)n*n*sizeof(double));

  b=(double *)malloc((size_t)n*sizeof(double));
  pivot=(int *)malloc((size_t)n*sizeof(int));
. . .

  for (i=0;i<n;i++) 
    for (j=0;j<n;j++) 
      scanf("%lg",&A[j*n+i]);
. . .

  c1=n;c2=1;  
  dgesv_(&c1, &c2, A, &c1, pivot, b, &c1, &ok);

Note that we use a 1D array instead of a 2D
one and store (actually read in) it in the right
(Fortran-like) order. 

Awkward?   Yes!!
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Systems of linear equations: GSL

- Gnu Scientific Library (GSL) also includes linear algebra routines.
- However, they are recommended to be used only with small systems. 
- Below is an simple example1 from the GSL info page2:

1. http://www.physics.helsinki.fi/courses/s/tl3/progs/gsl/linearalgebra/
2. To access the info help system on punk or mutteri give the command  info gsl  or use the info pages in GNU Emacs or Xemacs.

#include <stdio.h>
#include <gsl/gsl_linalg.h>

int main (void)
{
  double a_data[] = { 0.18, 0.60, 0.57, 0.96,

      0.41, 0.24, 0.99, 0.58,
      0.14, 0.30, 0.97, 0.66,
      0.51, 0.13, 0.19, 0.85 };

  
  double b_data[] = { 1.0, 2.0, 3.0, 4.0 };
  
  gsl_matrix_view m=gsl_matrix_view_array(a_data, 4, 4);
  gsl_vector_view b=gsl_vector_view_array(b_data, 4);  
  gsl_vector *x=gsl_vector_alloc (4);  
  int s;
  gsl_permutation *p=gsl_permutation_alloc(4);
  
  gsl_linalg_LU_decomp(&m.matrix, p, &s);
  
  gsl_linalg_LU_solve(&m.matrix, p, &b.vector, x);
  
  printf ("x = \n");
  gsl_vector_fprintf(stdout, x, "%g");
  
  gsl_permutation_free(p);
  return 0;
}

linearalgebra> gcc lusolve_gsl.c -lgsl -lgslcblas -lm
linearalgebra> a.out
x =
-4.05205
-12.6056
1.66091
8.69377

Note that GSL uses its own data types to present vec-
tors and matrices. These are essentially structs but
should be accesses by using the functions provided
by the library.  
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Systems of linear equations: other factorizations

• LU factorization assumes nothing about the matrix

- If  has some special properties (e.g. symmetries) there are faster1 and more stable factorizations

- Symmetric matrices: LDLT factorization:

, where  is a lower triangular matrix with unit diagonal and  is a diagonal matrix

- Positive definite matrices ( , or equivalently all eigenvalues2 are positive): Cholesky factorization:

, where  is a lower triangular matrix

- LAPACK uses Cholesky factorization for positive definite matrices in routines XPOSV, XPOTRF, ...
- Matlab has the function chol:

1. Though they still behave as .
2. We will talk about eigenvalues and eigenvectors later.

A

O N3

A LDLT= L D

xTAx 0  x

A LLT= L

>> help chol
 CHOL   Cholesky factorization.
    CHOL(X) uses only the diagonal and upper triangle of X.
    The lower triangular is assumed to be the (complex conjugate)
    transpose of the upper.  If X is positive definite, then
    R = CHOL(X) produces an upper triangular R so that R’*R = X.
    If X is not positive definite, an error message is printed.
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Systems of linear equations: other factorizations

- Permutation matrix

 is a unit matrix with rows interchanged.

- In practice stored as a vector: 

- Shuffle rows: 
- Shuffle columns: 

- To preserve symmetry use 

P

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

=

p 2 4 1 3=

A PA
A AP

A PAPT
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Systems of linear equations: iterative methods

• In the case of very large systems of linear equations roundoff errors sometimes prevent using the direct methods described 
above. 

- One has to resort to iterative metods.

• Let  be the solution of the equation

- We don’t know its exact value but an approximation  where  is an unknown error.
- Insert it to the equation:

(1)

- Subtract the two equations:

(2)

- Solving  from (1) and substituting it in (2) we get 

(3)

- Because  RHS of (3) is known we can solve  from it 
 subtract the obtained  from the current solution 
 a better approximation to the true solution.

x

Ax b=

x x+ x

A x x+ b b+=

A x b=

b

A x A x x+ b–=

x
x

Scientific computing III 2013:   3. Systems of linear equations                                                                                                                                                                              68

Systems of linear equations: iterative methods

- Graphically:

- One way of using these methods is to first find a solution by direct methods and then improve the approximation by a few 
iterations. 

x

x x+

x
b

b b+

b

A

A 1–
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Systems of linear equations: iterative methods

- We assumed solution has error 

- However, also  has errors: let  be its approximation, and residual matrix 

  

- Now a few steps of matrix algebra gives:

- Let’s denote the truncated sum of the previous expression as 

(4)

- Further define 

- Based on all this it is easy to show that (4) satisfies the following recurrence relation 

- This is exactly equation (3) when we write  and  as  (   ).

- This means that the LU factorization of  need not be exact but only the residual has to be ‘small’; i.e. . 

x

A 1– B0 R

R 1 B0A– B0A 1 R–=

A 1– A 1– B0
1– B0 A 1– B0

1– B0 B0A 1– B0 1 R– 1– B0 1 R R2 R3+ + + + B0= = = = =

Bn 1 R R2 R3 Rn+ + + + + B0=

Bnn
lim A 1–=

xn Bnb

xn 1+ xn B0 b Axn–+=

x– xn 1+ xn–= A 1– B0 x– A 1– b Axn–=

A R 1
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Systems of linear equations: iterative methods

- Let’s take a simple example: the Gauss-Jacobi method
- Equation  can be written as

,   .

- Now, assuming   we can solve vector  by iteration

    ,  .

- How about convergence of the iteration? One can show that1 if 

, where  and ,  is the set of ‘s eigen-

values and if  is strictly diagonally dominant: , 

then .

1. K.E.Atkinson: An Introduction to Numerical Analysis, paragraph 8.6

Ax b=

xi
1

aii
------ bi aijxj

j 1= j i

N
–= i 1 2 N=

aii 0 i x

xi
m 1+ 1

aii
------ bi aijxj

m

j 1= j i

N
–= i 1 2 N=

r M 1 M

0 a12 a11 a1N a11
a21 a22 0 a2N a22

aN1 aNN 0

= r M max M= M M

A aij
j 1= j i

N
aii i 1 2 N=

x m

m
lim x=
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Systems of linear equations: iterative methods

- Generally in an iterative method to solve  the matrix is split , so that the equation can be written as 

- Matrix  is chosen such that equation  is easy to solve
- I.e.  is diagonal, triangular, etc.

- The iteration to solve the original equation is now
, ,    with  given (guessed).

- One can show that the method converges for any  if 
, where .

 
- A variation of the Gauss-Jacobi method is Gauss-Seidel:

, 

- This can be cast into matrix form as 

Ax b= A N P–=
Nx b Px+=

N Ny c=
N

Nx m 1+ b Px m+= m 0 x 0

x 0

r M 1 M N 1– P=

xi
m 1+ 1

aii
------ bi aijxj

m 1+

j 1=

i 1–
– aijxj

m

j i 1+=

N
–= i 1 2 N=

N

a11 0 0 0

a21 a22 0 0

0
aN1 aNN

=
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Systems of linear equations: iterative methods

• Some iterative methods are based on optimization methods.

- Conjugate gradient (CG) method finds a minimum of a scalar function ; 

- CG is exact (minimum found in steps) for quadratic functions
- The method is derived by approximating  by a quadratic form

 ,

where  is so called  Hessian matrix (positive definite: , )

- The minimum is found when the gradient is zero:

     

- So by minimizing the function  we find the solution to the group of linear equations  .

- The principle of the CG methods is to start with some initial value of  and iterate so that the new ‘direction’ is found so 
that it minimizes the function in that direction but does not spoil the minimzations of previous iterated directions:

 , where  is chosen so that  is minimized, and , when .

(We will talk more about CG when dealing with function minimization.)

- There is a wide variety of iterative methods and in many cases the methods are specific to the problem at hand. 

f x x x1 x2 xN
T=

N
f x

f x 1
2
---xTAx bTx– c+=

A xTAx 0 x

f x 0= 1
2
---xTAx bTx– c+ 0= Ax b– 0=

f x Ax b=

x

xk 1+ xk kpk+= k f xk 1+ pi
TApj 0= i j
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Systems of linear equations: sparse matrices

• In many application the matrix  is large but has only few non-zero elements; it is sparse.
- In these cases abovementioned direct methods are inefficient

- Most arithmetic operations are performed on zeroes.
- Memory is wasted in storing zeroes.

- However, in some cases LU factorization is straightforward for sparse matrices:
- LU factorization of a tridiagonal system is trivial

,             i.e. if   .

void tridag(double a[], double b[], double c[], double r[], double u[], unsigned long n)
{

       unsigned long j;
        double bet,*gam;

        gam=malloc(sizeof(double)*n);
bet=b[0];

          u[0]=r[0]/b[0];
        for (j=1;j<n;j++) {
                gam[j]=c[j-1]/bet;
                bet=b[j]-a[j]*gam[j];
                u[j]=(r[j]-a[j]*u[j-1])/bet;
        }
        for (j=n-2;j>1;j--)
                u[j] -= gam[j+1]*u[j+1];

        free(gam);
}

A

b1 c1 0    

a2 b2 c2    

      
   aN 1– bN 1– cN 1–
    0 aN bN

u1
u2

uN 1–
uN

r1
r2

rN 1–
rN

= i j– 1 aij 0=

Matrix elements , ,  stored in
arrays a[], b[], c[].

ai bi ci
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Systems of linear equations: sparse matrices

• Many kinds of sparsity:

- During the computation there is the possibility that the number of 
nonzero elements increases: fill-in

- This may be minimized by clever enumeration of variables.

- Moreover, it may be wise to enumarate the variables initially in 
such a way that the resulting matrix has a band structure:

 if 

- For sparse matrix operation there are libraries (NAG, IMSL) and 
Matlab has a toolbox for sparse matrices.

- Iterative methods are commonly used with large sparse matrices.

- Subroutine library for solving large sparse matrices by iterative 
methods: ITPACK

www.netlib.org/itpack

W.H. Press et al., Numerical Recipes, Fig. 2.7.1

aij 0 i j– a positive constant


