Linear algebra

• In scientific computing many tasks eventually take the form of a linear algebra problem.

- Systems of linear equations

- General least squares fitting:

$$-y(x) = \sum_{k=1}^{M} a_k X_k(x)$$
, minimize $\chi^2 \to (\mathbf{A}^T \mathbf{A})\mathbf{a} = \mathbf{A}^T \mathbf{b}$, $A_{ij} = \frac{X_j(x_i)}{\sigma_i}$, $b_i = \frac{y_i}{\sigma_i}$

- Solving partial differential equations using the finite element method (FEM)

- May results in a huge but sparse matrix.

- Determination of eigenvalues and eigenvectors

- Energy eigenvalues in a quantum mechanical system
 - Express wave function in terms of atom-like orbitals $|\psi\rangle = \sum_p a_p |p\rangle$
- Minimize $\langle \psi | H | \psi \rangle E \langle \psi | \psi \rangle$ ($H_{pq} = \langle p | H | q \rangle$) with respect to a_p : $\sum_q (H_{pq} E\delta_{pq}) = 0$. In matrix form $\mathbf{Ha} = E\mathbf{a}$ - Vibration modes in molecules and solids
- - $\mathbf{K}\mathbf{u} = m\omega^2 \mathbf{u}$ where \mathbf{u} contains the displacement vectors of all atoms

and **K** is the dynamical matrix
$$K_{ij} = \frac{\partial^2 E_{\text{pot}}}{\partial x_i \partial x_j}$$

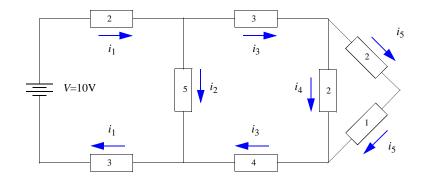
- All eigenvalues $\omega_i \Rightarrow$ density of states $N(\omega) \Rightarrow$ vibrational free energy F in harmonic approximation

$$F = E_{\rm P} + k_{\rm B}T \int_{0}^{\infty} N(\omega) \ln\left[2\sinh\left(\frac{h\omega}{4\pi k_{\rm B}T}\right)\right] d\omega$$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations

- Systems of linear equations solved in many problems in science and tehcnology
 - Example: determining currents in an electrical circuit



- Applying Kirchoff's and Ohm's law in various loops and points in the circuit we get the following equations

$$5i_1 + 5i_2 = 10$$

$$i_3 - i_4 - i_5 = 0$$

$$2i_4 - 3i_5 = 0$$
 where i_k are the currents in the loops.

$$i_1 - i_2 - i_3 = 0$$

$$5i_2 - 7i_3 - 2i_4 = 0$$

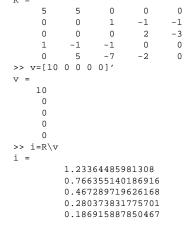
Systems of linear equations

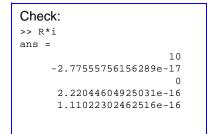
- In matrix form this is

$$\begin{bmatrix} 5 & 5 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 2 & -3 \\ 1 & -1 & -1 & 0 & 0 \\ 0 & 5 & -7 & -2 & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \\ i_5 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ or } \mathbf{Ri} = \mathbf{v} \text{ , where } \mathbf{R} = \begin{bmatrix} 5 & 5 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 2 & -3 \\ 1 & -1 & -1 & 0 & 0 \\ 0 & 5 & -7 & -2 & 0 \end{bmatrix} \text{ , } \mathbf{i} = \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \\ i_5 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 10 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

- Solution by Matlab

>> R=[5 5 0 0 0; 0 0 1 -1 -1; 0 0 0 2 -3; 1 -1 -1 0 0; 0 5 -7 -2 0] R =





Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations

- Another simple example: cut-off of Lennard-Jones potential in molecular dynamics simulations

 $V_{\rm LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$

- Shift and tilt the potential: V(r) and V'(r) continuous at r_c :

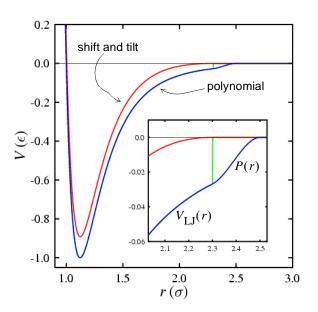
$$V(r) = V_{LJ}(r) - (r - r_{c})V_{LJ}(r_{c}) - V_{LJ}(r_{c})$$

- Problem: may change the potential at smaller r values

- Fit a polynomial $P(r) = ar^3 + br^2 + cr + d$ from $[r_c, r_c + \Delta r_c]$:

$$\begin{cases} P(r_{\rm c}) = V_{\rm LJ}(r_{\rm c}) \\ P'(r_{\rm c}) = V_{\rm LJ}(r_{\rm c}) \\ P(r_{\rm c} + \Delta r_{\rm c}) = 0 \\ P'(r_{\rm c} + \Delta r_{\rm c}) = 0 \end{cases} \rightarrow \begin{bmatrix} r_{\rm c}^3 & r_{\rm c}^2 & r_{\rm c} & 1 \\ 3r_{\rm c}^3 & 2r_{\rm c}^2 & 1 & 0 \\ (r_{\rm c} + \Delta r_{\rm c})^3 & (r_{\rm c} + \Delta r_{\rm c})^2 & (r_{\rm c} + \Delta r_{\rm c}) & 1 \\ 3(r_{\rm c} + \Delta r_{\rm c})^2 & 2(r_{\rm c} + \Delta r_{\rm c}) & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} V_{\rm LJ}(r_{\rm c}) \\ V_{\rm LJ}(r_{\rm c}) \\ 0 \\ 0 \end{bmatrix}$$

 $r_{\rm c} = 2.3$ Å $\Delta r_{\rm c} = 0.2$ Å



Systems of linear equations

• In general a system of linear equations is written in the form

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

and expanded

- N unknowns $x_i, j = 1, 2, ..., N$ coupled with M equations
- Coefficients a_{ii} and b_i known
- If N = M the equation may a unique solution **x** provided that
 - None of the M equations is a linear combination of another (row degeneracy).
 - All equations do not contain certain variables only in the exactly same linear combinations (column degeneracy).
 - This is equivalent to existence of the inverse of A (A⁻¹) or that $det(A) \neq 0$, or that the only solution to Ax = 0 is

 $\mathbf{x} = 0$ or that rank $(\mathbf{A}) = N$.

- Otherwise matrix A is singular.
- Roundoff errors in numerical calculations:
 - near-degeneracy \rightarrow degeneracy
 - solution found but wrong one (does not solve the original equation)

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations

- If M > N generally no solution exists.

- We may try to find ${\boldsymbol x}$ that is nearest to the solution, e.g. in the sense of least squares.

- Different problems related systems of linear equations:
- 1. Find a solution vector \mathbf{x} for the equation $A\mathbf{x} = \mathbf{b}$ where \mathbf{A} is a square matrix.
- 2. Find solutions to many systems in the same calculation: $Ax_k = b_k$.
 - Every unknown vector \mathbf{x}_k has a corresponding right-hand side vector \mathbf{b}_k .
 - Matrix A is the same for all equations.
- 3. Compute the inverse \mathbf{A}^{-1} .

$$- AA^{-1} = 1$$

4. Compute the determinant of a square matrix A.

Elements of the inverse can be expressed as

$$A_{ij}^{-1} = \frac{C_{ji}}{\det(\mathbf{A})}$$
, $C_{ji} = ji^{\text{th}} \operatorname{cofactor}$

This is not the way to calculate the inverse numerically. It scales badly and is prone to roundoff errors.

Systems of linear equations

- For general (not too large) matrices:
 - Methods based on Gauss elimination
 - Factorization if many solutions needed
- Large matrices:
 - Iterative methods
- Sparse matrices vs. dense matrices

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: naive Gauss elimination

• A simple method to solve linear equations

- A numerical example

$$\begin{cases}
6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\
12x_1 - 8x_2 + 6x_3 + 10x_4 = 26 \\
3x_1 - 13x_2 + 9x_3 + 3x_4 = -19 \\
-6x_1 + 4x_2 + x_3 - 18x_4 = -34
\end{cases}$$

1. Subtract equation 1 from other equations so that x_1 is eliminated from them

$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\ -4x_2 + 2x_3 + 2x_4 = -6 \\ -12x_2 + 8x_3 + x_4 = -27 \\ 2x_2 + 3x_3 - 14x_4 = -18 \end{cases}$$

2. Subtract equation 2 from equations 3 and 4 so that x_2 is eliminated

$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\ -4x_2 + 2x_3 + 2x_4 = -6 \\ 2x_3 - 5x_4 = -9 \\ 4x_3 - 13x_4 = -21 \end{cases}$$

Systems of linear equations: naive Gauss elimination

3. Finally eliminate x_3 from the 4th equation

$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \\ -4x_2 + 2x_3 + 2x_4 = -6 \\ 2x_3 - 5x_4 = -9 \\ -3x_4 = -3 \end{cases}$$

4. The equation is now in upper triangular form and unknowns can readily be solved by backsubstitution

$$x_{4} = \frac{-5}{-3} = 1$$

$$2x_{3} - 5 = -9 \Rightarrow x_{3} = -2$$

$$-4x_{2} - 4 + 2 = -6 \Rightarrow x_{2} = 1$$

$$6x_{1} - 2 - 4 + 4 = 16 \Rightarrow x_{1} = 3$$

.

- In matrix form

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 16 \\ 26 \\ -19 \\ -34 \end{bmatrix} \text{ is transformed to } \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 16 \\ -6 \\ -9 \\ -3 \end{bmatrix}$$

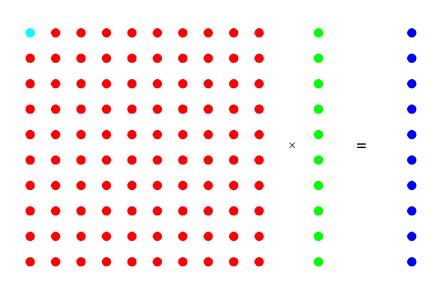
Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: naive Gauss elimination

- Check by Matlab

```
>> A=[6 -2 2 4 ; 12 -8 6 10; 3 -13 9 3; -6 4 1 -18]
                                                          >> A1=[6 -2 2 4; 0 -4 2 2; 0 0 2 -5; 0 0 0 -3]
                                                          A1 =
A =
    6
         -2
                2
                      4
                                                               6
                                                                    -2
                                                                           2
                                                                                 4
   12
        -8
                 6
                    10
                                                               0
                                                                   -4
                                                                           2
                                                                                2
             9 3
1 -18
                                                                   0 2
0 0
   3
        -13
                                                               0
                                                                                -5
          4
   -б
                                                               0
                                                                                -3
>> b=[16 26 -19 -34]'
                                                          >> b1=[16 -6 -9 -3]'
b =
                                                          b1 =
   16
                                                              16
   26
                                                              -б
  -19
                                                              -9
  -34
                                                              -3
>> A\b
                                                          >> A1\b1
ans =
                                                          ans =
                                                               3
                         3
         0.99999999999999999
                                                               1
                       -2
                                                              -2
                        1
                                                               1
```

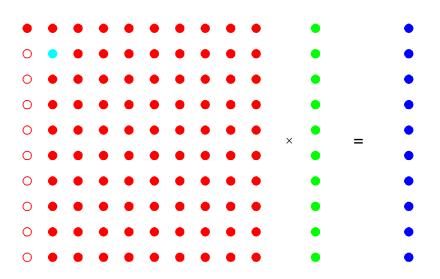
```
>> help mldivide
    Backslash or left matrix divide.
    A\B is the matrix division of A into B, which is roughly the
    same as \ensuremath{\mathsf{INV}}(A)\,{}^{\star}B , except it is computed in a different way.
    If A is an N-by-N matrix and B is a column vector with \ensuremath{\mathtt{N}}
    components, or a matrix with several such columns, then
    X = A\B is the solution to the equation A*X = B computed by
    Gaussian elimination. A warning message is printed if A is
    badly scaled or nearly singular. A\EYE(SIZE(A)) produces the
    inverse of A.
```

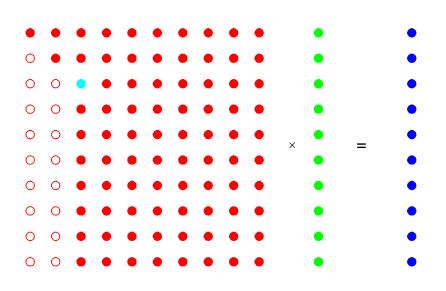


Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: naive Gauss elimination

- Graphically

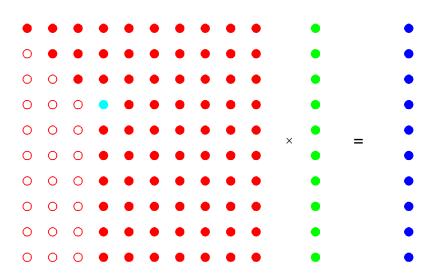


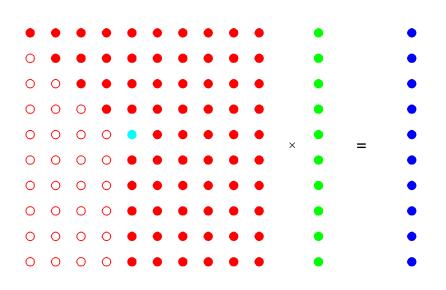


Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: naive Gauss elimination

- Graphically

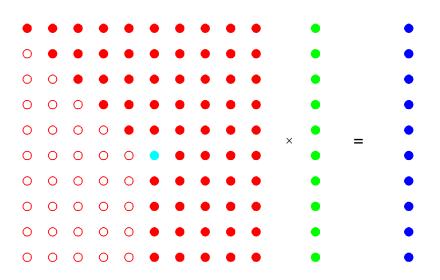


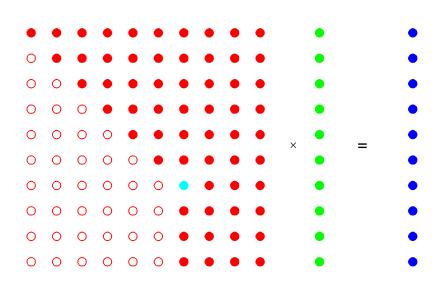


Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: naive Gauss elimination

- Graphically

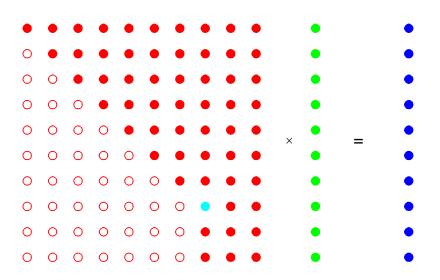


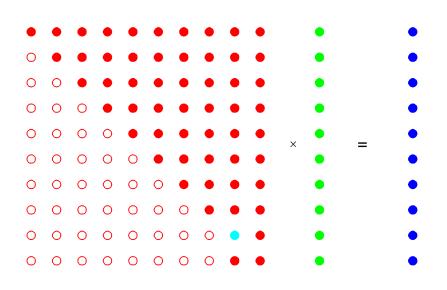


Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: naive Gauss elimination

- Graphically

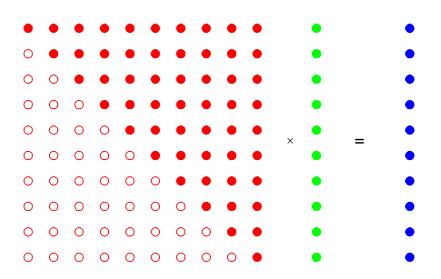




Scientific computing III 2013: 3. Systems of linear equations

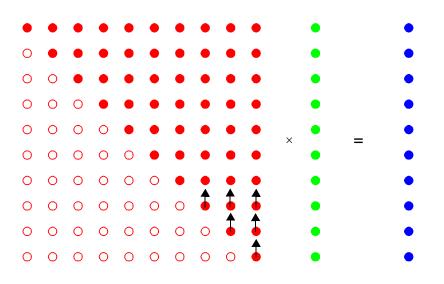
Systems of linear equations: naive Gauss elimination

- Graphically



Systems of linear equations: naive Gauss elimination

- Graphically: backsubstitution



Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: naive Gauss elimination

- Naive Gauss elimination as an algorithm
 - Equation has the form

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1N}x_N = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2N}x_N = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3N}x_N = b_3 \\ \dots \\ a_{N1}x_1 + a_{N2}x_2 + a_{N3}x_3 + \dots + a_{NN}x_N = b_N \end{cases}$$

- Elimination consists of N-1 steps.
 - At the *k*th step (k = 1, ..., N-1) the following substitutions are done to equation $i (k+1 \le i \le N)$

$$\begin{cases} a_{ij} \leftarrow a_{ij} - \left(\frac{a_{ik}}{a_{kk}}\right) a_{kj} \\ , k \le j \le N \\ b_i \leftarrow b_i - \left(\frac{a_{ik}}{a_{kk}}\right) b_k \end{cases}$$

- Backsubstitution

$$x_i = \frac{1}{a_{ii}} \left[b_i - \sum_{j=i+1}^N a_{ij} x_j \right], \quad i = N, N-1, \dots, 1$$

Systems of linear equations: naive Gauss elimination

- Then the bad news: in practice naive Gauss elimination can fail badly.
 - Take for example the following equation
 - $\begin{cases} 0x_1 + x_2 = 1\\ x_1 + x_2 = 2 \end{cases}$

- Zero coefficient in the first line prevents the application of Gauss elimination.

- In numerical computation it need not be exactly zero:

$$\begin{cases} \varepsilon x_1 + x_2 = 1\\ x_1 + x_2 = 2 \end{cases}$$

- Here $\boldsymbol{\epsilon}$ is something very small.
- After the first elimination step

$$\begin{cases} \varepsilon x_1 + x_2 = 1\\ \left(1 - \frac{1}{\varepsilon}\right) x_2 = 2 - \frac{1}{\varepsilon} \end{cases}$$

- After backsubstitution

$$x_2 = \frac{\left(2 - \frac{1}{\varepsilon}\right)}{\left(1 - \frac{1}{\varepsilon}\right)}, \qquad x_1 = \frac{1 - x_2}{\varepsilon}$$

Note: We can not substitute expression for x_2 to that of x_1 and simplify it because computer does not do that.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: naive Gauss elimination

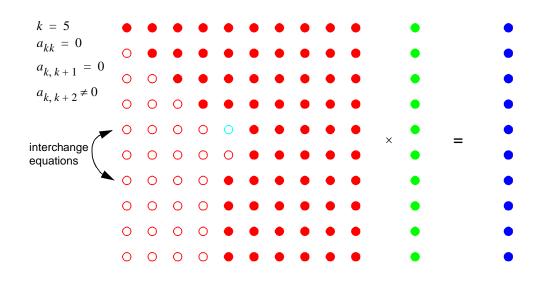
- ϵ small $\rightarrow 1/\epsilon$ large $\rightarrow 2 \frac{1}{\epsilon} \approx 1 \frac{1}{\epsilon} \approx -\frac{1}{\epsilon}$
- For the solution we get $x_1 \approx 0$, $x_2 \approx 1$
- Right solution $x_1 = \frac{1}{1-\varepsilon} \approx 1$, $x_2 = \frac{1-2\varepsilon}{1-\varepsilon} \approx 1$
- Error of 100% !
- Change the order of equations: a working solution

$$\begin{cases} x_1 + x_2 = 2\\ \varepsilon x_1 + x_2 = 1 \end{cases} \Rightarrow \begin{cases} x_1 + x_2 = 2\\ (1 - \varepsilon)x_2 = 1 - 2\varepsilon \end{cases} \Rightarrow \begin{cases} x_2 = \frac{1 - 2\varepsilon}{1 - \varepsilon} \approx 1\\ x_1 = 2 - x_2 \approx 1 \end{cases}$$

- Order of elimination matters \rightarrow pivoting.

Systems of linear equations: pivoting

- When the element of the matrix **A** that is to be eliminated (*a*_{kk}, so called *pivot element*) happens to be zero elimination can not be done.
 - Interchanging equations is allowed
 - Find the first equation "below" the kth equation that has coefficient in column k non-zero.



Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: pivoting

- Partial pivoting: shuffle only equations (rows in the matrix)
- Full pivoting possible: bookkeeping in the program becomes complicated
- Strategy: shuffle equations in such a way that the pivoting element is the largest possible
 - Index vector

$$\mathbf{l} = \begin{bmatrix} l_1 & l_2 & \dots & l_N \end{bmatrix}$$

tells the order in which the equations are handled

- In the beginning calculate scaling factors s_i for all equations

$$s_i = \max_i (|a_{ij}|), 1 \le i \le N$$

- From these form the vector

$$\mathbf{s} = \begin{bmatrix} s_1 & s_2 & \dots & s_N \end{bmatrix}$$

- First elimination for the equation for which $\frac{|a_{i1}|}{s_i}$ is largest. Let's call it equation l_1 .
- Equation l_1 is subtracted from all others to zero matrix elements a_{i1} .

$$\begin{cases} a_{ij} \leftarrow a_{ij} - \left(\frac{a_{ik}}{a_{kk}}\right) a_{kj} \\ , k \le j \le N \\ b_i \leftarrow b_i - \left(\frac{a_{ik}}{a_{kk}}\right) b_k \end{cases}$$

Systems of linear equations: pivoting

- A handy way to do the index bookkeeping is the following
 - In the beginning set $\mathbf{I} = \begin{bmatrix} 1 & 2 & \dots & N \end{bmatrix}$
 - Choose *j* so that it has the maximum value of $\left\{ \frac{|a_{l_i}1|}{s_{l_i}} | 1 \le i \le N \right\}$.
 - Exchange l_i and l_1 in index vector **I**.
 - Now subtract equation 1 multiplied with coefficients $\frac{a_{l_i1}}{a_{l_i1}}$ from equations $i, 2 \le i \le N$.
 - Generally at step k

- Choose the index j so that $\left\{ \frac{|a_{l,k}|}{s_{l_i}} \middle| k \le i \le N \right\}$ has the maximum value.

- Exchange indices l_i and l_k .
- Use coefficients $\frac{a_{l_ik}}{a_{l_kk}}$ when subtracting the pivot equation l_k from other equations l_i , $k + 1 \le i \le N$.
- Normally the scaling vector s is not updated during computation. General belief says that it not worth the trouble.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: pivoting

- A numerical example: the original equation

$$\begin{bmatrix} 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \\ 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -19 \\ -34 \\ 16 \\ 26 \end{bmatrix}$$

- In the beginning $\mathbf{l} = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$ and $\mathbf{s} = \begin{bmatrix} 13 & 18 & 6 & 12 \end{bmatrix}$.

- Calculate ratios $\left\{ \frac{|a_{l_i1}|}{s_{l_i}} \middle| i = 1, 2, 3, 4 \right\} = \left\{ \frac{3}{13}, \frac{6}{18}, \frac{6}{6}, \frac{12}{12} \right\}.$
- Choose j as the first maximum value in this vector: j = 3.
- After exchange index vector is $\mathbf{I} = \begin{bmatrix} 3 & 2 & 1 & 4 \end{bmatrix}$.
- Subtract equation 3 (in the original equation) from others weighted by appropriate coefficients:

$$\begin{bmatrix} 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \\ 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -27 \\ -18 \\ 16 \\ -6 \end{bmatrix}.$$

- Next find the maximum from $\left\{ \frac{|a_{l,2}|}{s_{l_i}} \middle| i = 2, 3, 4 \right\} = \left\{ \frac{2}{18}, \frac{12}{13}, \frac{4}{12} \right\}.$

- Results is j = 3 and the new index vector is $\mathbf{l} = \begin{bmatrix} 3 & 1 & 2 & 4 \end{bmatrix}$.

Systems of linear equations: pivoting

- Equation 1 is subtracted from equations 2 and 4 multiplied by -1/6 and 1/3, respectively:

$$\begin{bmatrix} 0 & -12 & 8 & 1 \\ 0 & 0 & \frac{13}{3} & -\frac{83}{6} \\ 6 & -2 & 2 & 4 \\ 0 & 0 & -\frac{2}{3} & \frac{5}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -27 \\ -\frac{45}{2} \\ 16 \\ 3 \end{bmatrix}$$

- In the last step get maximum from $\left\{ \frac{|a_{l_i3}|}{s_{l_i}} \middle| i = 3, 4 \right\} = \left\{ \frac{13/3}{18}, \frac{2/3}{12} \right\}.$

- We get j = 3 and the index vector remains unchanged: $\mathbf{I} = \begin{bmatrix} 3 & 1 & 2 & 4 \end{bmatrix}$.
- Equation 2 multiplied by -2/13 is subtracted from equation 4:

$$\begin{bmatrix} 0 & -12 & 8 & 1 \\ 0 & 0 & \frac{13}{3} & -\frac{83}{6} \\ 6 & -2 & 2 & 4 \\ 0 & 0 & 0 & -\frac{6}{13} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -27 \\ -\frac{45}{2} \\ 16 \\ -\frac{6}{13} \end{bmatrix}$$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: pivoting

- Index vector is now $I = \begin{bmatrix} 3 & 1 & 2 & 4 \end{bmatrix}$ and the solution is obtained by going through it starting from the end:

$$x_4 = \frac{-6/13}{-6/13} = 1$$

$$x_2 = \frac{-27 - 8(-2) - 1(1)}{-12} = 1$$

$$x_1 = \frac{16 + 2(1) - 2(-2) - 4(1)}{6} = 3$$

$$x_3 = \frac{(-45/2) + (83/6)(1)}{13/3} = -2$$

- Solution is $\mathbf{x} = \begin{bmatrix} 3 \\ 1 \\ -2 \\ 1 \end{bmatrix}$.

Systems of linear equations: Gauss-Jordan elimination

- \bullet In Gauss elimination we get the solution corresponding to only one vector ${\bf b}$.
- Gauss-Jordan: solutions for many \mathbf{b} at the same time and also the inverse \mathbf{A}^{-1} .
 - 'Augment' the equation into form

$$\mathbf{A} \cdot [\mathbf{x}_1 \cup \mathbf{x}_2 \cup \mathbf{x}_3 \cup \mathbf{Y}] = [\mathbf{b}_1 \cup \mathbf{b}_2 \cup \mathbf{b}_3 \cup \mathbf{1}]$$

- Operation $\mathbf{A} \cup \mathbf{B}$ denotes the combination of the two matrices:

$a_{11} a_{12} a_{13}$		$b_{11} \ b_{12} \ b_{13}$		$a_{11} a_{12} a_{13} b_{11} b_{11}$	$b_{12} b_{13}$
$a_{21} \ a_{22} \ a_{23}$	\cup	$b_{21} \; b_{22} \; b_{23}$	=	$a_{21} a_{22} a_{23} b_{21} b_{21}$	$b_{22} b_{23}$
$a_{31} \ a_{32} \ a_{33}$		$b_{31} \ b_{32} \ b_{33}$		$a_{31} a_{32} a_{33} b_{31} b_{31}$	

- It easy to see that the above equation corresponds to four equations:

 $\mathbf{A} \cdot \mathbf{x}_1 = \mathbf{b}_1$ $\mathbf{A} \cdot \mathbf{x}_2 = \mathbf{b}_2$ $\mathbf{A} \cdot \mathbf{x}_3 = \mathbf{b}_3$ $\mathbf{A} \cdot \mathbf{Y} = \mathbf{1}$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: Gauss-Jordan elimination

- The following operations do not change the equations
 - 1. Exchange of two rows in matrix A and exchange of the corresponding rows in vectors \mathbf{b}_i and unit matrix 1.
 - 2. Substitute a row in A by a linear combination of all rows in A and the corresponding changes in \mathbf{b}_i and 1.
 - 3. Exchange two columns in A and exchange corresponding rows in x and Y.
- Gauss-Jordan (GJ) elimination (with pivoting): use the abovementioned operations to change A into a unit matrix.
 Equations now read as:

 $1 \cdot x_1 = b'_1$ $1 \cdot x_2 = b'_2$ $1 \cdot x_3 = b'_3$ $1 \cdot Y = A^{-1}$

- So we get solutions for many vectors \mathbf{b} and the inverse \mathbf{A}^{-1} .
- GJ elimination (without pivoting) goes like this
 - 1. The first row is divided by a_{11} .
 - 2. The first row is subtracted from other rows scaled in such a way that $a_{i1} = 0$.
 - 3. Now the first column corresponds to unit matrix.
 - 4. The second row is divided by a_{22} .
 - 5. The second row is subtracted from other rows scaled in such a way that $a_{i2} = 0$.

Systems of linear equations: Gauss-Jordan elimination

- Example: a 3×3 matrix

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & a'_{12} & a'_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & a'_{12} & a'_{13} \\ 0 & a'_{22} & a'_{23} \\ 0 & a'_{32} & a'_{33} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & a'_{12} & a'_{13} \\ 0 & 1 & a''_{23} \\ 0 & a'_{32} & a'_{33} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & a''_{13} \\ 0 & 1 & a''_{23} \\ 0 & 0 & a''_{33} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & a''_{13} \\ 0 & 1 & a''_{23} \\ 0 & 0 & a''_{33} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & a''_{13} \\ 0 & 1 & a''_{23} \\ 0 & 0 & a''_{33} \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & a''_{13} \\ 0 & 1 & a''_{23} \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- The corresponding changes are made to the vectors \mathbf{b}_i and to the matrix \mathbf{Y} .
- Gauss-Jordan is also prone to rounoff errors if pivoting is not used.
- In pivoting the order in which the elements a_{ii} are handled is changed.
 - The ciriterion is usually to choose the largest element among the candidates.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: Gauss-Jordan elimination

- Numerical Recipes routine for GJ elimination with full pivoting:

```
#include <math.h>
                                                                                    for (l=1;l<=n;l++) a[icol][1] *= pivinv;
#define NRANST
                                                                                     for (l=1;l<=m;l++) b[icol][1] *= pivinv;</pre>
#include "nrutil.h"
                                                                                     for (ll=1;ll<=n;ll++)</pre>
 \texttt{#define SWAP(a,b) } \{\texttt{temp=(a);(a)=(b);(b)=temp;} \} 
                                                                                      if (11 != icol) {
                                                                                    dum=a[11][icol];
void gaussj(float **a, int n, float **b, int m)
                                                                                    a[11][icol]=0.0;
                                                                                    for (l=1;l<=n;l++) a[l1][l] -= a[icol][l]*dum;
{
  int *indxc,*indxr,*ipiv;
                                                                                    for (l=1;l<=m;l++) b[l1][1] -= b[icol][1]*dum;
  int i,icol,irow,j,k,l,ll;
                                                                                       }
  float big,dum,pivinv,temp;
                                                                                   for (l=n;l>=1;l--) {
  indxc=ivector(1,n);
                                                                                     if (indxr[1] != indxc[1])
  indxr=ivector(1,n);
                                                                                       for (k=1;k<=n;k++)
  ipiv=ivector(1,n);
                                                                                          SWAP(a[k][indxr[1]],a[k][indxc[1]]);
  for (j=1;j<=n;j++) ipiv[j]=0;</pre>
  for (i=1;i<=n;i++) {
                                                                                   free_ivector(ipiv,1,n);
    big=0.0;
                                                                                   free_ivector(indxr,1,n);
   for (j=1; j \le n; j++)
                                                                                   free_ivector(indxc,1,n);
      if (ipiv[j] != 1)
   for (k=1;k<=n;k++) {
                                                                                 #undef SWAP
     if (ipiv[k] == 0) {
                                                                                 #undef NRANSI
      if (fabs(a[j][k]) \ge big) 
        big=fabs(a[j][k]);
         irow=j;
         icol=k;
       }
     } else if (ipiv[k] > 1) nrerror("gaussj: Singular Matrix-1");
   }
    ++(ipiv[icol]);
    if (irow != icol) {
      for (l=1;l<=n;l++) SWAP(a[irow][1],a[icol][1])</pre>
   for (l=1;l<=m;l++) SWAP(b[irow][1],b[icol][1])</pre>
    indxr[i]=irow;
    indxc[i]=icol;
```

Systems of linear equations: Gauss-Jordan elimination

• Scaling behavior of matrix inversion by Gauss(-Jordan)

Elimination consists of
$$N-1$$
 steps. $O(N)$ At the kth step $(k = 1, ..., N-1)$ the following substitutionsare done to equation $i \ (k+1 \le i \le N)$ $O(N)$

$$a_{ij} \leftarrow a_{ij} - \left(\frac{a_{ik}}{a_{kk}}\right) a_{kj}, \ b_i \leftarrow b_i - \left(\frac{a_{ik}}{a_{kk}}\right) b_k, \ k \le j \le N$$

 \rightarrow scales as $O(N^3)$!

- \bullet When we have to solve many equations with the same ${\bf A}$ there's a remedy: LU factorization
 - Factorization scales as $O(N^3)$.
 - Results of factorization can be used to solve any equation corresponding to matrix A in $O(N^2)$.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

- LU (lower triangular—upper triangular) factorization (or decomposition):
 - Find matrices ${\bf L}$ and ${\bf U}$ so that
 - $-\mathbf{L}\cdot\mathbf{U} = \mathbf{A}$
 - L is a lower triangular matrix
 - U is an upper triangular matrix
 - E.g. for a 4×4 matrix

$$\begin{array}{ccccc} \mathbf{L} & \mathbf{U} & \mathbf{A} \\ \begin{bmatrix} \alpha_{11} & 0 & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\ \alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44} \end{bmatrix} \cdot \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\ 0 & \beta_{22} & \beta_{23} & \beta_{24} \\ 0 & 0 & \beta_{33} & \beta_{34} \\ 0 & 0 & 0 & \beta_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

- Substituting $\mathbf{L}\cdot\mathbf{U}$ for \mathbf{A} in the linear equation we get

$$\mathbf{A} \cdot \mathbf{x} = (\mathbf{L} \cdot \mathbf{U}) \cdot \mathbf{x} = \mathbf{L} \cdot (\mathbf{U} \cdot \mathbf{x}) = \mathbf{b}$$

- Now the equation can be solved in two steps
 - $\mathbf{L} \cdot \mathbf{y} = \mathbf{b}$, $\mathbf{U} \cdot \mathbf{x} = \mathbf{y}$

- What do we gain here?

- When the matrix of the equation is in the triangular form solving it is trivial.
- Just use forward substitution for y:

$$y_1 = \frac{b_1}{\alpha_{11}}, y_i = \frac{1}{\alpha_{ii}} \left[b_i - \sum_{j=1}^{i-1} \alpha_{ij} y_j \right], i = 2, 3, ..., N$$

- And back substitution for x:

$$x_N = \frac{y_N}{\beta_{NN}}, x_i = \frac{1}{\beta_{ii}} \left[y_i - \sum_{j=i+1}^N \beta_{ij} x_j \right], i = N - 1, N - 2, ..., 1$$

- The reason for doing all this is that factorization is an $O(N^3)$ operation but solving the equation using L and U is $O(N^2)$.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

- Actually, the naive Gauss elimination does exactly LU factorization on the matrix A.
- Let's take a numerical example

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 16 \\ 26 \\ -19 \\ -34 \end{bmatrix}$$

- Doing the Gauss elimination we get the equation into form

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 16 \\ -6 \\ -9 \\ -3 \end{bmatrix}$$

- This can be interpreted as transforming the equation Ax = b into

 $\mathbf{MAx} = \mathbf{Mb}$,

- Here ${\bf M}$ is chosen in such a way that ${\bf M}{\bf A}$ is in the upper triangular form

$$\mathbf{MA} = \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \equiv \mathbf{U}$$

- Forward elimination consists of a series of steps - The first step gives

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & -12 & 8 & 1 \\ 0 & 2 & 3 & -14 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 16 \\ -6 \\ -27 \\ -18 \end{bmatrix}$$

or $\mathbf{M}_1 \mathbf{A} \mathbf{x} = \mathbf{M}_1 \mathbf{b}$ where

$$\mathbf{M}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -\frac{1}{2} & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

- The second step gives

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 4 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 16 \\ -6 \\ -9 \\ -21 \end{bmatrix}$$

or $\mathbf{M}_{2}\mathbf{M}_{1}\mathbf{A}\mathbf{x} = \mathbf{M}_{2}\mathbf{M}_{1}\mathbf{b}$ where

$$\mathbf{M}_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & \frac{1}{2} & 0 & 1 \end{bmatrix}$$

- Finally the third step gives the upper triangular form

$$\begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 16 \\ -6 \\ -9 \\ -9 \\ -3 \end{bmatrix}$$

- This is equivalent to
$$\mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1 \mathbf{A} \mathbf{x} = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1 \mathbf{b}$$
 where

$$\mathbf{M}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix}$$

- Thus we get the matrix ${\bf M}$ as the product of all three multiplier matrices

$$\mathbf{M} = \mathbf{M}_3 \mathbf{M}_2 \mathbf{M}_1$$

- We wrote $\mathbf{M}\mathbf{A} = \mathbf{U} \rightarrow \mathbf{A} = \mathbf{M}^{-1}\mathbf{U} = \mathbf{M}_1^{-1}\mathbf{M}_2^{-1}\mathbf{M}_3^{-1}\mathbf{U} = \mathbf{L}\mathbf{U}$
- Now **M**_{*i*} have such a simple structure (unit diagonal, lower triangular, only one column nonzero) that their inverse is obtained simply by inverting the sings of the nondiagonal elements:

$$\mathbf{L} = \mathbf{M}_{1}^{-1} \mathbf{M}_{2}^{-1} \mathbf{M}_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & -\frac{1}{2} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ \frac{1}{2} & 3 & 1 & 0 \\ -1 & -\frac{1}{2} & 2 & 1 \end{bmatrix}$$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

- It is easy to verify that

$$\mathbf{LU} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ \frac{1}{2} & 3 & 1 & 0 \\ -1 & -\frac{1}{2} & 2 & 1 \end{bmatrix} \begin{bmatrix} 6 & -2 & 2 & 4 \\ 0 & -4 & 2 & 2 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -3 \end{bmatrix} = \begin{bmatrix} 6 & -2 & 2 & 4 \\ 12 & -8 & 6 & 10 \\ 3 & -13 & 9 & 3 \\ -6 & 4 & 1 & -18 \end{bmatrix} = \mathbf{A}$$

- In summary:

- The lower triangular elements of matrix L are the multipliers located at the positions of the elements their annihilated from A.
- U is the final coefficient matrix obtained after the forward elimination phase.

- Let's look at the factorization for a 4x4 matrix

$$\begin{bmatrix} \alpha_{11} & 0 & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\ \alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44} \end{bmatrix} \cdot \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\ 0 & \beta_{22} & \beta_{23} & \beta_{24} \\ 0 & 0 & \beta_{33} & \beta_{34} \\ 0 & 0 & 0 & \beta_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

- On the left hand side we have $N^2 + N$ coefficients; on the right hand side N^2

- We can set N coefficients as we like.

- Normal convention $\alpha_{ii} = 1$ (this is understandable since L is the forward elimination matrix):

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \alpha_{21} & 1 & 0 & 0 \\ \alpha_{31} & \alpha_{32} & 1 & 0 \\ \alpha_{41} & \alpha_{42} & \alpha_{43} \end{bmatrix} \cdot \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\ 0 & \beta_{22} & \beta_{23} & \beta_{24} \\ 0 & 0 & \beta_{33} & \beta_{34} \\ 0 & 0 & 0 & \beta_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

- Nice from the practical point of view:

both
$$\mathbf{L}$$
 and \mathbf{U} can be stored in the same array:

$$\begin{array}{c} \alpha_{21} \ \beta_{22} \ \beta_{23} \ \beta_{24} \\ \alpha_{31} \ \alpha_{32} \ \beta_{33} \ \beta_{34} \\ \alpha_{41} \ \alpha_{42} \ \alpha_{43} \ \beta_{44} \end{array}$$

 $\beta_{11} \ \beta_{12} \ \beta_{13} \ \beta_{14}$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

- How to do the LU factorization efficiently?

$$\begin{bmatrix} \alpha_{11} & 0 & 0 & 0 \\ \alpha_{21} & \alpha_{22} & 0 & 0 \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\ \alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44} \end{bmatrix} \cdot \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\ 0 & \beta_{22} & \beta_{23} & \beta_{24} \\ 0 & 0 & \beta_{33} & \beta_{34} \\ 0 & 0 & 0 & \beta_{44} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

- ij^{th} equation of this group reads (i.e. for element a_{ij})

$$\alpha_{i1}\beta_{1j} + \alpha_{i2}\beta_{2j} + \dots = a_{ij}$$

- How many terms are included in the equation depends on the order of *i* and *j*:

$$\sum_{k=1}^{i} \alpha_{ik} \beta_{kj} = a_{ij}, \ i \le j$$

$$\sum_{k=1}^{j} \alpha_{ik} \beta_{kj} = a_{ij}, \ i > j$$
(2)

- As noted before we have here N^2 equations but $N^2 + N$ unknowns. By setting $\alpha_{ii} = 1$ this is corrected.

- One efficient way to do the LU factorization is Crout's algorithm
 - Set $\alpha_{ii} = 1$ i = 1, ..., N (3)
 - For every i = 1, ..., N do the following:
 - 1. For all j = 1, ..., i solve β_{ij} using the equations (1), (3):

$$\beta_{ij} = a_{ij} - \sum_{k=1}^{i-1} \alpha_{ik} \beta_{kj}$$
, (if $i = 1$ no summing)

2. For all i = j + 1, j + 2, ..., N solve α_{ij} using equation (2):

$$\alpha_{ij} = \frac{1}{\beta_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} \alpha_{ik} \beta_{kj} \right)$$

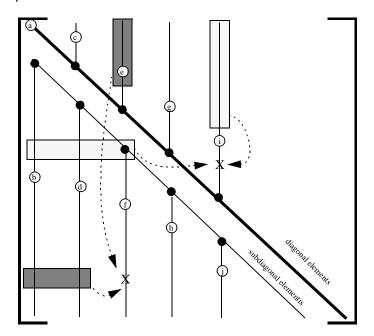
- By going through a couple of iterations it is easy to see that those α 's and β 's that appear on the RHS are already determined when they are needed.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

- Filling of the $\alpha\beta\,$ matrix:

columns from left to right every column from top to bottom:



- The most simple non-trivial example 3x3 matrix:

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 9 & 2 & 3 \\ 4 & 2 & 4 \\ 1 & 1 & 9 \end{bmatrix}$$

- Calculate the factorization

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \alpha_{21} & 1 & 0 \\ \alpha_{31} & \alpha_{32} & 1 \end{bmatrix} \cdot \begin{bmatrix} \beta_{11} & \beta_{12} & \beta_{13} \\ 0 & \beta_{22} & \beta_{23} \\ 0 & 0 & \beta_{33} \end{bmatrix}$$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

$$j = 1 \quad i = 1 \qquad \beta_{11} = a_{11} = 9$$
$$i = 2 \qquad \alpha_{21} = \frac{1}{\beta_{11}}a_{21} = \frac{4}{9} = 0.4444$$
$$i = 3 \qquad \alpha_{31} = \frac{1}{\beta_{11}}a_{31} = \frac{1}{9} = 0.1111$$

$$j = 2 \quad i = 1 \qquad \beta_{12} = a_{12} = 2$$

$$i = 2 \qquad \beta_{22} = a_{22} - \alpha_{21}\beta_{12} = 2 - \frac{4}{9}2 = 1.111$$

$$i = 3 \qquad \alpha_{32} = \frac{1}{\beta_{22}}(a_{32} - \alpha_{31}\beta_{12}) = \frac{1}{1.111}\left(1 - \frac{2}{9}\right) = 0.7000$$

$$j = 3 \quad i = 1 \qquad \beta_{13} = a_{13} = 3$$
$$i = 2 \qquad \beta_{23} = a_{23} - \alpha_{21}\beta_{13} = 4 - \frac{4}{9}3 = 2.6667$$
$$i = 3 \qquad \beta_{33} = a_{33} - \alpha_{31}\beta_{13} - \alpha_{32}\beta_{23} = \dots = 6.8000$$

- The final results is:

$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0.4444 & 1 & 0 \\ 0.1111 & 0.7000 & 1 \end{bmatrix} \qquad \mathbf{U} = \begin{bmatrix} 9 & 2 & 3 \\ 0 & 1.1111 & 2.6667 \\ 0 & 0 & 6.8000 \end{bmatrix} \qquad \mathbf{A} =$	923 424 119	
--	-------------------	--

- Check by Matlab:

>> L=[1 0 0; L =	0.4444 1	0; 0.1111	0.7 1.0]	•		u-function:
ц –				>> A=[9 2 3	; 4 2 4; 1	1 9]
1.0000	0	0		A =		
0.4444	1.0000	0		9	2 3	
0.1111	0.7000	1.0000		4	2 4	
>> U=[9 2 3;	0 1.1111	2.6667; 0	0 6.81	1	19	
U =				>> [L,U]= lu	(A);	
-				>> L,U		
9.0000	2.0000	3.0000		L =		
0	1.1111	2.6667		1.0000	0	0
0	0	6.8000		0.4444	1.0000	0
>> L*U				0.1111	0.7000	1.0000
 				U =		
ans =				9.0000	2.0000	3.0000
9.0000	2.0000	3.0000		0	1.1111	2.6667
3.9996	1.9999	3.9999		0	0	6.8000
0.9999	1.0000	9.0000		0	0	0.0000

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

- How about pivoting?
 - Normally partial pivoting (row interchange) is enough.
 - Row interchange can be formally written in the form

A = PLU, where P is the permutation matrix.

as
$$\mathbf{P'A} = \mathbf{LU}.$$

Sometimes the above is written

It easy to see that

$$\mathbf{P}' = \mathbf{P}^{-1} = \mathbf{P}^{\mathrm{T}}.$$

- Permutation matrix has the form $\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$, i.e. unit matrix with rows shuffled.

- This particular example gives a matrix with the order of rows as [2, 4, 1, 3] (instead of [1, 2, 3, 4]):

$$\mathbf{PA} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} = \begin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24} \\ a_{41} & a_{42} & a_{43} & a_{44} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

- Later we give examples how to use LAPACK routines to LU factorize matrices and to use the factorization in solving linear equations.

- Matlab lu-function:

>> X=rand(4)				LU LU f	actorization		
X =					[L.U] =	LU(X) stores	an upper trian	qular matrix in U and a
0.2679	0.2126	0.2071	0.5751				~ ~	atrix" (i.e. a product
0.4399	0.8392	0.6072	0.4514		~ ~		5	matrices) in L, so
0.9334	0.6288	0.6299	0.0439			-	be rectangular.	
0.6833	0.1338	0.3705	0.0272		that x =	L"U. A Can	be rectangular.	
>> [L,U]=lu	(X);					III(X) rotur	ng unit lower t	riangular matrix L, upper
>> L*U	. ,							n matrix P so that
ans =					P*X = L*1		and permutatio	Mi Matrix P SO that
0.2679	0.2126	0.2071	0.5751		P.Y = T.	0.		
0.4399	0.8392	0.6072	0.4514					
0.9334	0.6288	0.6299	0.0439	>> L*U				
0.6833	0.1338	0.3705	0.0272	ans =				
>> L.U	0.1330	0.5705	0.0272	0.9334	0.6288	0.6299	0.0439	
L =				0.4399	0.8392	0.6072	0.4514	
	0 0500	0 0000	1 0000	0.6833	0.1338	0.3705	0.0272	
0.2871	0.0590	0.0832	1.0000	0.2679	0.2126	0.2071	0.5751	
0.4713	1.0000	0	0	>> L,U,P				
1.0000	0	0	0	L =				
0.7321	-0.6015	1.0000	0	1.0000	0	0	0	
U =				0.4713	1.0000	0	0	
0.9334	0.6288	0.6299	0.0439	0.7321	-0.6015	1.0000	0	
0	0.5429	0.3103	0.4307	0.2871	0.0590	0.0832	1.0000	
0	0	0.0960	0.2542	U =	0.0590	0.0052	1.0000	
0	0	0	0.5160	0.9334	0.6288	0.6299	0.0439	
>> [L,U,P]=	Lu(X);			0.9334	0.5429	0.3103	0.4307	
>> P*X				-		0.0960	0.2542	
ans =				0	0			
0.9334	0.6288	0.6299	0.0439	0	0	0	0.5160	
0.4399	0.8392	0.6072	0.4514	P =				
0.6833	0.1338	0.3705	0.0272		0 1	0		
0.2679	0.2126	0.2071	0.5751		1 0	0		
					0 0	1		
				1	0 0	0		

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LU factorization

- Calculating the inverse \mathbf{A}^{-1} using LU decomposition
 - Let's take an example with N = 3: $\mathbf{A}^{-1} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$
 - Definition of the inverse $LUA^{-1} = 1$

- This corresponds to equations:

 $\mathbf{LU}\begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \mathbf{LU}\begin{bmatrix} b_{12} \\ b_{22} \\ b_{32} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{LU}\begin{bmatrix} b_{13} \\ b_{23} \\ b_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

- When we have computed the LU factorization we only need to do *N* forward and backsubstitution steps to get the inverse; in Fortran using LAPACK

Systems of linear equations: error estimation, condition number

- How do inaccuracies (due to finite precision and roundoff errors) in matrix A show up in the results?
 - Assume a perturbation δA in A \rightarrow error δx in x:

$$\begin{split} (\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) &= \mathbf{b} \\ \delta \mathbf{x} &= -\mathbf{A}^{-1} \delta \mathbf{A}(\mathbf{x} + \delta \mathbf{x}) \\ \text{(to 1st order in perturbation)} \\ \|\delta \mathbf{x}\| &\leq \|\mathbf{A}^{-1}\| \|\delta \mathbf{A}\| \|\mathbf{x}\| \\ \frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} &\leq \|\mathbf{A}^{-1}\| \|\delta \mathbf{A}\| \end{split}$$

- Define *condition number* of matrix \mathbf{A} : $\kappa(\mathbf{A}) = \|\mathbf{A}^{-1}\| \|\mathbf{A}\|$

$$\rightarrow \qquad \frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \kappa(\mathbf{A}) \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}$$

	Vector	Matrix
one-norm	$\ x\ _1 = \sum_i x_i $	$\ A\ _1 = \max_j \sum_i a_{ij} $
two-norm	$ x _2 = (\sum_i x_i ^2)^{1/2}$	$\ A\ _2 = \max_{x \neq 0} \ Ax\ _2 / \ x\ _2$
Frobenius norm	$ \mathbf{x} _F = \mathbf{x} _2$	$ A _F = (\sum_{ij} a_{ij} ^2)^{1/2}$
infinity-norm	$\ x\ _{\infty} = \max_i x_i $	$\ A\ _{\infty} = \max_i \sum_j a_{ij} $

- $\mathbf{4)} \|\mathbf{A} + \mathbf{B}\| \leq \|\mathbf{A}\| + \|\mathbf{B}\|$
- $\mathbf{5)} \|\mathbf{A}\mathbf{B}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: error estimation, condition number

- This can be interpreted as:

$$\frac{\|\delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\delta A\|}{\|A\|}$$

 $(relative error in results) \leq (maximum amplification factor)(relative error in matrix)$

- Condition number measures the sensitivity of the results on perturbations in the matrix A.

- For ill-conditioned matrices the condition number is much larger than one.

- LAPACK routines XYYCON (see below) calculate the reciprocal of the condition number:

anorm=dlange(norm,n,n,a,n,work)	! Compute A
call dgetrf(n,n,a,n,ipiv,infol)	! Get LU factorization
<pre>call dgecon(norm,n,a,n,anorm,rcond,work,iwork,info2)</pre>	! Compute condition number

- Function **RCOND(A)** gives the same in Matlab.

- For well-conditioned matrices **RCOND(A)** ~ 1 and for ill-conditioned **RCOND(A)** ~ ε (ε is the machine epsilon).

- For perturbations in RHS vector \mathbf{b} : $\mathbf{A}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b} \rightarrow \delta \mathbf{x} = \mathbf{A}^{-1} \delta \mathbf{b} \rightarrow \|\delta \mathbf{x}\| \le \|\mathbf{A}^{-1}\| \|\mathbf{b}\| \rightarrow \delta \mathbf{x}$

$$\frac{\|\delta x\|}{\|x\|} \leq \kappa(A) \frac{\|\delta b\|}{\|b\|} \, .$$

Systems of linear equations: error estimation, condition number

- Examples with Matlab:

-										
>> a=rand(5)					>> s1	,s2,s3				
a =					s1 =					
0.6418	0.0582	0.0748	0.9885	0.1288		2.5858	0	0	0	0
0.1785	0.5876	0.3100	0.6916	0.6868		0	0.93008	0	0	0
0.5294	0.4161	0.9441	0.2417	0.2972		0	0	0.62295	0	0
0.2187	0.1864	0.9807	0.8098	0.6472		0	0	0	0.44952	0
0.5481	0.0639	0.5551	0.9345	0.4638		0	0	0	0	0.087944
>> [u1,s1,v1]=svd(a);				s2 =					
>> rl=rcond(a);					2.4969	0	0	0	0
>> a(:,1)=a(:,2);					0	0.93435	0	0	0
>> [u2,s2,v2						0	0	0.67109	0	0
>> r2=rcond(a);					0	0	0	0.28254	0
>> a(1,1)=1.	001*a(1,1)	;				0	0	0	0	2.492e-17
>> [u3,s3,v3					s3 =					
>> r3=rcond(2.4969	0	0	0	0
>> r1,r2,r3						0	0.93434	0	0	0
	0.01469643	38747443				0	0	0.67109	0	0
	1.87409830					0	0	0	0.28255	0
	3.10393327					0	0	0	0	1.2098e-05
10	5.100000027	21000				0	0	0	0	1.20000 00
<pre>>> help rcond RCOND LAPACK reciprocal condition estimator. RCOND(X) is an estimate for the reciprocal of the condition of X in the 1-norm obtained by the LAPACK condition estimator. If X is well conditioned, RCOND(X) is near 1.0. If X is badly conditioned, RCOND(X) is near EPS.</pre>					[U,S,V] dimens	ngular value = SVD(X) prod ion as X and sing order, a	duces a diagor with nonnegat	al matrix S	l elements in	

- Here we have used the singular value decomposition of a matrix. Zero elements in the diagonal matrix S tell that the matrix is singular.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LAPACK

• A package of subroutines performing the most common linear algebra task.



- BLAS (Basic Linear Algebra Subroutines) performs the low-level matrix operations - Often hardware vendors provide highly optimized BLAS routines for their platform.
- Source can be downloaded from e.g. NETLIB: http://www.netlib.org/lapack/
 - Many Linux distributions have precompiled packages.
 - You can also compile it yourself.
- User's quide in HTML in http://www.netlib.org/lapack/lug/
- An easily installable LAPACK package on the course web page: http://www.physics.helsinki.fi/courses/s/tl3/progs/lapack/lapackf90.tgz

- Naming scheme of the routines

- All driver and computational routines have names of the form xxxzzz

- x indicates the data type:
 - s real
 - D double (precision)
 - c complex
 - z double complex

- YY indicates the type of matrix

BD	bidiagonal	PO	symmetric or Hermitian positive definite
DI	diagonal	PP	symmetric or Hermitian positive definite, packed storage
GB	general band	PT	symmetric or Hermitian positive definite tridiagonal
GE	general (i.e., unsymmetric, in some cases rectangular)	SB	(real) symmetric band
GG	general matrices, generalized problem	SP	symmetric, packed storage
GT	general tridiagonal	ST	(real) symmetric tridiagonal
HB	(complex) Hermitian band	SY	symmetric
HE	(complex) Hermitian	TB	triangular band
HG	upper Hessenberg matrix, generalized problem	TG	triangular matrices, generalized problem
HP	(complex) Hermitian, packed storage	TP	triangular, packed storage
HS	upper Hessenberg	TR	triangular (or in some cases quasi-triangular)
OP	(real) orthogonal, packed storage	TZ	trapezoidal
OR	(real) orthogonal	UN	(complex) unitary
PB	symmetric or Hermitian positive definite band	UP	(complex) unitary, packed storage

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LAPACK

- zzz indicates the computation performed; for example:
 - sv solve linear equation
 - solve linear equation (*expert* version)
 - TRF factorize
 - TRS use the factorization to solve linear equations
 - **CON** estimate the reciprocal of the condition number
 - **TRI** use the factorization to compute inverse of a matrix
 - **EV** determine eigenvalues

- For example:

DGESV	compute the solution to a double system of linear equations for general matrices
ZGEEV	compute for an N -by- N complex nonsymmetric matrix the eigenvalues
DGETRF	compute an LU factorization of a general <i>M</i> -by- <i>N</i> matrix

```
    Using LAPACK in Kumpula Linux (punk, mutteri, etc.) system:
gfortran test.f90 -llapack
gcc test.c -llapack -lm
    All routines have individual man pages on punk and mutteri:
```

```
# man dgesv
DGESV(1)
                                                                                 DGESV(1)
NAME
       DGESV - compute the solution to a real system of linear equations A * X = B,
SYNOPSIS
       SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO )
                         INFO, LDA, LDB, N, NRHS
           INTEGER
           INTEGER
                         IPIV( * )
           DOUBLE
                         PRECISION A( LDA, * ), B( LDB, * )
PURPOSE
       DGESV computes the solution to a real system of linear equations A * X = B,
     where A is an N-by-N matrix and X and B
 . .
```

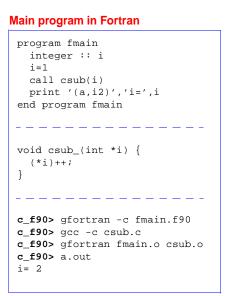
Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: LAPACK

- A typical subroutine interface (Fortran90):

```
SUBROUTINE DGETRF( M, N, A, LDA, PIV, INFO )
                   INFO, LDA, M, N
     INTEGER
                    PIV( * )
                                                              A typical subroutine call when
     INTEGER
                                                              dealing with square matrices:
                    PRECISION A( LDA, * )
     DOUBLE
                                                              real :: a(n,n)
PURPOSE
                                                              integer :: pivot(n),ok
DGETRF computes an LU factorization of a general
    M-by-N matrix A using partial pivoting with
    row interchanges.
                                                              . . .
ARGUMENTS
    (input) INTEGER
Μ
                                                              call dgetrf(n,n,a,n,pivot,ok)
     The number of rows of the matrix A. M \ge 0.
     (input) INTEGER
Ν
     The number of columns of the matrix A. N \ge 0.
     (input/output) DOUBLE PRECISION array,
А
     dimension (LDA,N)
     On entry, the M-by-N matrix to be factored.
     On exit, the factors L
     and U from the factorization A = P*L*U;
     the unit diagonal elements of L are not stored.
LDA (input) INTEGER
     The leading dimension of the array A. LDA >= max(1,M).
PIV (output) INTEGER array, dimension (min(M,N))
     The pivot indices; for 1 \le i \le \min(M,N), row i of the matrix was
     interchanged with row IPIV(i).
INFO (output) INTEGER
     = 0: successful exit
     < 0: if INFO = -i, the i-th argument had an illegal value
     > 0: if INFO = i, U(i,i) is exactly zero. The factorization has
     been completed, but the factor U is exactly singular, and division
     by zero will occur if it is used to solve a system of equations.
```

- Calling LAPACK routines from C
 - LAPACK written in Fortran 77 :-(
 - Things to remember when using both Fortran and C in the same program:
 - 1. Fortran routine names have usually and underscore appended: in Fortran subr, in C subr_
 - 2. In Fortran all subroutine parameters passed by reference. This means that in C they have to be pointers.



Main program in C

```
#include <stdio.h>
int main() {
  int i;
  i=1;
 fsub (&i);
 printf("i=%d\n",i);
  return 0;
}
 _ _ _ _ _ _
subroutine fsub(i)
  integer :: i
  i=i+1
 return
end subroutine fsub
c_f90> gcc -c cmain.c
c_f90> gfortran -c fsub.f90
c_f90> gcc cmain.o fsub.o
c_f90> a.out
i=2
```

Scientific computing III 2013: 3. Systems of linear equations

- C-Fortran continued

3. The order of multidimensional array elements in memory is different in Fortran and C.

E.g. a 3×3 matrix:

double A[3][3] or real(kind=8) :: A(3,3).

In C the last index changes fastest, in Fortran the first:

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ order of elements in memory: Fortran: $\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{21} & a_{22} & a_{23} & a_{31} & a_{32} & a_{33} \end{bmatrix}$

Consequently, you have to transpose the matrix before calling the Fortran routine. (Or in C use one-dimensional arrays and take care of index arithmetics yourself.)

- Example for calling LAPACK routines from C

```
Fortran:
                                                   C:
  integer,parameter :: rk=8
                                                     int n,i,j,c1,c2,*pivot,ok;
  real(rk),allocatable :: a(:,:),b(:),x(:)
                                                     double *A,*b;
  integer :: n,ok
  integer,allocatable :: pivot(:)
                                                     A=(double*)malloc((size_t)n*n*sizeof(double));
                                                     b=(double *)malloc((size_t)n*sizeof(double));
  . . .
  allocate(a(n,n),b(n),pivot(n))
                                                     pivot=(int *)malloc((size_t)n*sizeof(int));
  do i=1,n
                                                     for (i=0;i<n;i++)</pre>
     read(5,*) (a(i,j),j=1,n)
                                                       for (j=0;j<n;j++)</pre>
  enddo
                                                          scanf("%lg",&A[j*n+i]); 🚤
                                                       . .
  call dgesv(n, 1, a, n, pivot, b, n, ok)
                                                     c1=n;c2=1;
                                                     dgesv_(&c1, &c2, A, &c1, pivot, b, &c1, &ok);
                                                                Note that we use a 1D array instead of a 2D
                                                                one and store (actually read in) it in the right
                                                                (Fortran-like) order.
```

Awkward? Yes!!

- Now a few practical examples¹.

Scientific computing III 2013: 3. Systems of linear equations

63

Systems of linear equations: GSL

- Gnu Scientific Library (GSL) also includes linear algebra routines.
 - However, they are recommended to be used only with small systems.
 - Below is an simple example¹ from the GSL info page²:

```
#include <stdio.h>
                                                                   linearalgebra> gcc lusolve_gsl.c -lgsl -lgslcblas -lm
#include <gsl/gsl_linalg.h>
                                                                   linearalgebra> a.out
                                                                   x =
                                                                   -4.05205
int main (void)
                                                                   -12.6056
{
  double a_data[] = { 0.18, 0.60, 0.57, 0.96,
                                                                   1.66091
             0.41, 0.24, 0.99, 0.58,
                                                                   8.69377
             0.14, 0.30, 0.97, 0.66,
             0.51, 0.13, 0.19, 0.85 };
  double b_data[] = { 1.0, 2.0, 3.0, 4.0 };
                                                                        Note that GSL uses its own data types to present vec-
                                                                        tors and matrices. These are essentially structs but
  gsl_matrix_view m=gsl_matrix_view_array(a_data, 4, 4);
  gsl_vector_view b=gsl_vector_view_array(b_data, 4);
                                                                        should be accesses by using the functions provided
  gsl_vector *x=gsl_vector_alloc (4);
                                                                        by the library.
  int s;
  gsl permutation *p=gsl permutation alloc(4);
  gsl_linalg_LU_decomp(&m.matrix, p, &s);
  gsl_linalg_LU_solve(&m.matrix, p, &b.vector, x);
  printf ("x = \n");
  gsl_vector_fprintf(stdout, x, "%g");
  gsl_permutation_free(p);
  return 0;
}
```

^{1.} See http://www.physics.helsinki.fi/courses/s/tl3/progs/lapack/

^{1.} http://www.physics.helsinki.fi/courses/s/tl3/progs/gsl/linearalgebra/

^{2.} To access the info help system on punk or mutteri give the command info gsl or use the info pages in GNU Emacs or Xemacs.

- LU factorization assumes nothing about the matrix
 - If A has some special properties (e.g. symmetries) there are faster¹ and more stable factorizations
 - Symmetric matrices: LDL^T factorization:

 $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^{\mathrm{T}}$, where \mathbf{L} is a lower triangular matrix with unit diagonal and \mathbf{D} is a diagonal matrix

- Positive definite matrices ($\mathbf{x}^{T} \mathbf{A} \mathbf{x} > 0$, $\forall \mathbf{x}$, or equivalently all eigenvalues² are positive): Cholesky factorization: $\mathbf{A} = \mathbf{L} \mathbf{L}^{T}$, where \mathbf{L} is a lower triangular matrix
 - LAPACK uses Cholesky factorization for positive definite matrices in routines XPOSV, XPOTRF, ...
 - Matlab has the function chol:

```
>> help chol
CHOL Cholesky factorization.
CHOL(X) uses only the diagonal and upper triangle of X.
The lower triangular is assumed to be the (complex conjugate)
transpose of the upper. If X is positive definite, then
R = CHOL(X) produces an upper triangular R so that R'*R = X.
If X is not positive definite, an error message is printed.
```

1. Though they still behave as $O(N^3)$.

2. We will talk about eigenvalues and eigenvectors later.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: other factorizations

- Permutation matrix

 $\mathbf{P} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ is a unit matrix with rows interchanged.

- In practice stored as a vector: $\mathbf{p} = [2, 4, 1, 3]$

- Shuffle rows: $A \leftarrow PA$
- Shuffle columns: $A \leftarrow AP$
- To preserve symmetry use $\mathbf{A} \leftarrow \mathbf{P} \mathbf{A} \mathbf{P}^T$

Systems of linear equations: iterative methods

- In the case of very large systems of linear equations roundoff errors sometimes prevent using the direct methods described above.
 - One has to resort to iterative metods.
- Let x be the solution of the equation

Ax = b

- We don't know its exact value but an approximation $\mathbf{x} + \delta \mathbf{x}$ where $\delta \mathbf{x}$ is an unknown error.

- Insert it to the equation:

$$\mathbf{A}(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b} \tag{1}$$

- Subtract the two equations:

 $\mathbf{A}\delta\mathbf{x} = \delta\mathbf{b} \tag{2}$

- Solving δb from (1) and substituting it in (2) we get

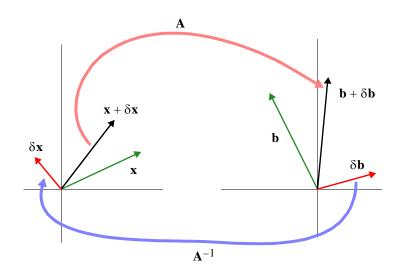
$$\mathbf{A}\delta\mathbf{x} = \mathbf{A}(\mathbf{x} + \delta\mathbf{x}) - \mathbf{b}$$
(3)

- Because RHS of (3) is known we can solve $\delta \mathbf{x}$ from it
 - \rightarrow subtract the obtained δx from the current solution \rightarrow a better approximation to the true solution.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: iterative methods

- Graphically:



- One way of using these methods is to first find a solution by direct methods and then improve the approximation by a few iterations.

Systems of linear equations: iterative methods

- We assumed solution has error $\delta \boldsymbol{x}$
- However, also \mathbf{A}^{-1} has errors: let \mathbf{B}_0 be its approximation, and residual matrix \mathbf{R}

$$\mathbf{R} \equiv \mathbf{1} - \mathbf{B}_0 \mathbf{A} \qquad \rightarrow \qquad \mathbf{B}_0 \mathbf{A} = \mathbf{1} - \mathbf{R}$$

- Now a few steps of matrix algebra gives:

$$\mathbf{A}^{-1} = \mathbf{A}^{-1}(\mathbf{B}_0^{-1}\mathbf{B}_0) = (\mathbf{A}^{-1}\mathbf{B}_0^{-1})\mathbf{B}_0 = (\mathbf{B}_0\mathbf{A})^{-1}\mathbf{B}_0 = (1-\mathbf{R})^{-1}\mathbf{B}_0 = (1+\mathbf{R}+\mathbf{R}^2+\mathbf{R}^3+\dots)\mathbf{B}_0$$

- Let's denote the truncated sum of the previous expression as

$$\mathbf{B}_{n} = (1 + \mathbf{R} + \mathbf{R}^{2} + \mathbf{R}^{3} + \dots + \mathbf{R}^{n})\mathbf{B}_{0}$$
(4)
$$\lim_{n \to \infty} \mathbf{B}_{n} = \mathbf{A}^{-1}$$

- Further define

$$\mathbf{x}_n \equiv \mathbf{B}_n \mathbf{b}$$

- Based on all this it is easy to show that (4) satisfies the following recurrence relation

$$\mathbf{x}_{n+1} = \mathbf{x}_n + \mathbf{B}_0(\mathbf{b} - \mathbf{A}\mathbf{x}_n)$$

- This is exactly equation (3) when we write $-\delta \mathbf{x} = \mathbf{x}_{n+1} \mathbf{x}_n$ and \mathbf{A}^{-1} as $\mathbf{B}_0 (\rightarrow -\delta \mathbf{x} = \mathbf{A}^{-1}(\mathbf{b} \mathbf{A}\mathbf{x}_n)$).
- This means that the LU factorization of A need not be exact but only the residual has to be 'small'; i.e. $\|\mathbf{R}\| < 1$.

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: iterative methods

- Let's take a simple example: the Gauss-Jacobi method
 - Equation Ax = b can be written as

$$x_i = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1, (j \neq i)}^N a_{ij} x_j \right], \quad i = 1, 2, ..., N.$$

- Now, assuming $a_{ii} \neq 0 \quad \forall i$ we can solve vector **x** by iteration

$$x_i^{(m+1)} = \frac{1}{a_{ii}} \left[b_i - \sum_{j=1, (j \neq i)}^N a_{ij} x_j^{(m)} \right], \quad i = 1, 2, ..., N.$$

- How about convergence of the iteration? One can show that¹ if

$$r_{\sigma}(\mathbf{M}) < 1, \text{ where } \mathbf{M} = \begin{bmatrix} 0 & a_{12}/a_{11} & \dots & a_{1N}/a_{11} \\ a_{21}/a_{22} & 0 & \dots & a_{2N}/a_{22} \\ \dots & \dots & \dots & \dots \\ a_{N1}/a_{NN} & \dots & \dots & 0 \end{bmatrix} \text{ and } r_{\sigma}(\mathbf{M}) = \max_{\lambda \in \sigma(\mathbf{M})} |\lambda|, \sigma(\mathbf{M}) \text{ is the set of } \mathbf{M} \text{ 's eigen-}$$

values and if A is strictly diagonally dominant: $\sum |a_{ij}| < |a_{ij}|$, i = 1, 2, ..., N

$$j = 1, (j \neq i)$$

then $\lim_{m \to \infty} \mathbf{x}^{(m)} = \mathbf{x}$.

^{1.} K.E.Atkinson: An Introduction to Numerical Analysis, paragraph 8.6

Systems of linear equations: iterative methods

- Generally in an iterative method to solve Ax = b the matrix is split A = N P, so that the equation can be written as Nx = b + Px
 - Matrix N is chosen such that equation Ny = c is easy to solve I.e. N is diagonal, triangular, etc.
 - The iteration to solve the original equation is now $Nx^{(m+1)} = b + Px^{(m)}, m \ge 0$, with $x^{(0)}$ given (guessed).
 - One can show that the method converges for any $\mathbf{x}^{(0)}$ if

 $r_{\sigma}(\mathbf{M}) < 1$, where $\mathbf{M} = \mathbf{N}^{-1}\mathbf{P}$.

- A variation of the Gauss-Jacobi method is Gauss-Seidel:

$$x_{i}^{(m+1)} = \frac{1}{a_{ii}} \left[b_{i} - \sum_{j=1}^{i-1} a_{ij} x_{j}^{(m+1)} - \sum_{j=i+1}^{N} a_{ij} x_{j}^{(m)} \right], i = 1, 2, ..., N$$

- This can be cast into matrix form as

$$\mathbf{N} = \begin{bmatrix} a_{11} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ a_{N1} & \dots & \dots & \dots & a_{NN} \end{bmatrix}$$

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: iterative methods

- Some iterative methods are based on optimization methods.
 - Conjugate gradient (CG) method finds a minimum of a scalar function $f(\mathbf{x})$; $\mathbf{x} = [x_1, x_2, ..., x_N]^T$
 - CG is exact (minimum found in N steps) for quadratic functions
 - The method is derived by approximating $f(\mathbf{x})$ by a quadratic form

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathrm{T}}\mathbf{x} + \mathbf{c} ,$$

where A is so called Hessian matrix (positive definite: $\mathbf{x}^{T} \mathbf{A} \mathbf{x} > 0$, $\forall \mathbf{x}$)

- The minimum is found when the gradient is zero:

$$\nabla f(\mathbf{x}) = 0 \rightarrow \nabla \left(\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} - \mathbf{b}^{\mathrm{T}}\mathbf{x} + \mathbf{c}\right) = 0 \rightarrow \mathbf{A}\mathbf{x} - \mathbf{b} = 0$$

- So by minimizing the function $f(\mathbf{x})$ we find the solution to the group of linear equations $A\mathbf{x} = \mathbf{b}$.
- The principle of the CG methods is to start with some initial value of x and iterate so that the new 'direction' is found so that it minimizes the function in that direction but does not spoil the minimizations of previous iterated directions:

 $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$, where α_k is chosen so that $f(\mathbf{x}_{k+1})$ is minimized, and $\mathbf{p}_i^{\mathrm{T}} \mathbf{A} \mathbf{p}_i = 0$, when $i \neq j$.

(We will talk more about CG when dealing with function minimization.)

- There is a wide variety of iterative methods and in many cases the methods are specific to the problem at hand.

Systems of linear equations: sparse matrices

- In many application the matrix A is large but has only few non-zero elements; it is sparse.
 - In these cases abovementioned direct methods are inefficient
 - Most arithmetic operations are performed on zeroes.
 - Memory is wasted in storing zeroes.
 - However, in some cases LU factorization is straightforward for sparse matrices: - LU factorization of a *tridiagonal* system is trivial

$$\begin{bmatrix} b_{1} c_{1} 0 \dots & & \\ a_{2} b_{2} c_{2} \dots & & \\ & \dots & & \\ & \dots & & \\ & \dots & a_{N-1} b_{N-1} c_{N-1} \\ & & 0 & a_{N} & b_{N} \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ u_{2} \\ \dots \\ u_{N-1} \\ u_{N} \end{bmatrix} = \begin{bmatrix} r_{1} \\ r_{2} \\ \dots \\ r_{N-1} \\ r_{N} \end{bmatrix}, \quad i.e$$

i.e. if
$$|i-j| > 1 \to a_{ij} = 0$$
.

void tridag(double a[], double b[], double c[], double r[], double u[], unsigned long n)

```
unsigned long j;
double bet,*gam;
gam=malloc(sizeof(double)*n);
bet=b[0];
u[0]=r[0]/b[0];
for (j=1;j<n;j++) {
    gam[j]=c[j-1]/bet;
    bet=b[j]-a[j]*gam[j];
    u[j]=(r[j]-a[j]*u[j-1])/bet;
}
for (j=n-2;j>1;j--)
    u[j] -= gam[j+1]*u[j+1];
free(gam);
```

Matrix elements a_i , b_i , c_i stored in arrays a[], b[], c[].

Scientific computing III 2013: 3. Systems of linear equations

Systems of linear equations: sparse matrices

• Many kinds of sparsity:

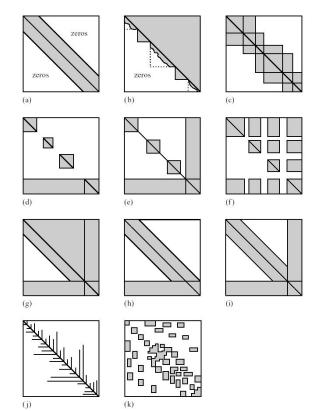
{

}

- During the computation there is the possibility that the number of nonzero elements increases: fill-in
- This may be minimized by clever enumeration of variables.
- Moreover, it may be wise to enumarate the variables initially in such a way that the resulting matrix has a band structure:

 $a_{ii} > 0$ if |i - j| < a positive constant

- For sparse matrix operation there are libraries (NAG, IMSL) and Matlab has a toolbox for sparse matrices.
- Iterative methods are commonly used with large sparse matrices.
- Subroutine library for solving large sparse matrices by iterative methods: ITPACK www.netlib.org/itpack



W.H. Press et al., Numerical Recipes, Fig. 2.7.1