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Abstract. Dislocation dynamics in a two-dimensional Lennard-Jones solid is stud-
ied using an interactive simulation environment with on-line visualization. Move-
ment of a dislocation in a homogeneous system under the influence of external stress
and strain rate has been investigated. The results indicate that the simple model
is capturing some essential characteristics of real materials. Investigation of strain
relief in lattice-mismatched layer structures indicates that dislocation nucleation is
asymmetric with respect to the sign of misfit. Moreover, dislocation reactions are
observed that enhance the strain relief process.

3.1 Introduction

Dislocations play a central role in the theory of plasticity. Through their mo-
tion solids that display a ductile behaviour accommodate plastic deformation
and thus avoid the catastrophic failure that is characteristic of brittle fracture.
Therefore, the ease with which dislocations move in a solid, affects critically
the behaviour of the solid under deformation. The dynamics of dislocations
under different deformation processes has been the subject of a large number
of both theoretical [1–3] and experimental [4–11] investigations.

The importance of the relation between dislocation velocity and exter-
nally applied stress has long been recognized. Four decades ago, in what pos-
sibly were the first experiments attempting to directly measure the velocity
of dislocations, Johnston and Gilman [8] developed an experimental method
which combined calibrated stress pulses with etch pitting technique. In their
experiments dislocations were initially introduced by scratching the surface
of a polished sample of known orientation. The position of some of the dis-
locations, prior and after the application of the pulse, were then determined
through surface etching. Finally, the average velocity of the dislocations was
estimated by dividing the measured distance between etch pits of the same
dislocation by the time duration of the pulse. By varying the intensity of the
pulse they were able to relate the measured velocity with the peak of the
shear stress in the glide plane. Number of materials have been studied with
this technique, first LiF , and then Ti [9], Cu [10], and CuAl [11]. A further
developed torsional stress pulse technique has been used in the study of dis-
locations in Cu, Zn and Al [12,13]. In most materials, experiments of this
type yield a relation between dislocation velocity and shear stress in close
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agreement with the power law

v = Aτm , (3.1)

where A and m are material dependent constants. Small values of m are
usually asociated with brittle materials while in a ductile material it may be
very large.

The dislocation dynamics is also essential in strain relaxation processes
of lattice-mismatched hetero-structures [14–16], central in todays nanotech-
nology. When in a lattice-mismatched hetero-structure the thickness of the
overlayer is small enough, the mismatch is accommodated by elastic deforma-
tion of the overlayer. Such deformation keeps the overlayer in registry with
the structure of the substrate crystal. When the thickness increases, the elas-
tic energy of the overlayer becomes larger and at a certain critical thickness it
becomes favorable to relieve the strain by misfit dislocations at the interface.

Various mechanisms of dislocation migration and nucleation have been
found to affect the strain relaxation process [14,16]. These mechanisms in-
clude the migration of threading dislocation to the interface, nucleation of
dislocations at overlayer surface or at island edges and dislocation multiplica-
tion [17–20]. In all these mechanisms the underlying atomic level cause of the
misfit dislocation formation is the attractive force exerted by the interface on
dislocations with Burgers vector orientation appropriate for the relaxation
of misfit energy. Depending on the relative orientation of the interface with
respect to the gliding planes and Burgers vectors of the affected dislocations,
it could happen that the latter are not able to move to the interface. In this
situation, if the misfit energy is high enough, dislocation reactions may take
place prior to migration, with the re-orientation of the Burgers vectors of the
migrating dislocations.

So far the modelling of strain relief mechanisms have in most cases been
done within the framework of continuum elasticity theory. There are also
some atomic level studies but they deal mostly with the static properties
of misfit dislocations (see e.g. [21–25]). Furthermore, there are some studies
on the dynamics or nucleation of dislocations [26–33], but to the best of
our knowledge, no atomistic simulation studies on dislocation dynamics in
the presence of a misfit interface in a hetero-structure has hitherto been
carried out.

In the present work, we investigate the dynamics of dislocations in a
two-dimensional (2D) solid using molecular dynamics (MD) simulations. In
order to explore some qualitative features of dislocation dynamics and for
simplicity, inter-atomic interactions have been modelled by Lennard-Jones
(LJ) potentials. Sofar we have restricted our studies to 2D systems to avoid
some of the geometrical complexities involved in simulating three-dimensional
dislocations, while retaining some salient features of the problem under con-
sideration. We will study the movement of dislocations in a homogeneous
system under the influence of constant external stress and constant strain



14 K. Kaski et al.

rate. Moreover, the effect of the misfit interface on the nucleation and mi-
gration of dislocations will be investigated. By tuning the parameters of the
potentials for the substrate and the overlayer we may construct a model of a
hetero-interface with any desired value of lattice mismatch.

3.2 Dislocations in a 2D System

In this work, the interatomic interactions have been described with a Lennard-
Jones pair potential, which means that the constructed lattice has to be close-
packed, i.e. 2D hexagonal lattice. In this structure dislocations can be formed
by removing one half of a row of densely packed atoms, which can be done
in three orientations, as illustrated in Fig. 3.1a. This procedure introduces a
partial dislocations and a stacking fault into the system (Fig. 3.1b). Such a
configuration is unstable because a stacking fault in a 2D hexagonal lattice
has a structure ABAB |BABA with high potential energy. One should also
note that due to high stacking fault energy dislocations in 2D systems do not
dissociate into partials and a stacking fault ribbon as in 3D fcc lattice. By
removing two half rows of atoms a stable (perfect) dislocation with a Burgers
vector corresponding to the shortest lattice vector of the hexagonal structure
is formed. An example of a stable dislocation with a Burgers vector b = [01̄]
is shown Fig. 3.1c.

In the simulations pairs of dislocations were introduced into the system as
a short and thin crack, see Fig. 3.2. On the other hand single dislocations can
be introduced by making the crack so long that its other end is positioned
outside the simulation system.

sf
b

(a) (b) (c)
a1

a2

Fig. 3.1. Dislocations in the 2D hexagonal lattice. (a) Lattice contains three densely
packed rows of atoms. Also shown are the lattice vectors a1 and a2 (magnified by
4 for better visibility). (b) Part of a dense row of atoms is removed for forming
a partial dislocation and a stacking fault (sf). (c) By removing two dense rows a
perfect dislocation is formed. Burgers vector of the dislocation b is magnified 4
times for better visibility. The shading of the atoms is coded according to their
potential energy (light: high energy, dark: low energy)



3 Dynamics of Dislocations in a Two-dimensional System 15

(a) (b)

(c) (d)

Fig. 3.2. Introduction of two perfect dislocations into the model system. (a) A
part of a dense row of atoms is removed. (b) The vacancy loop collapses and forms
two partial dislocations with a stacking fault between them. (c,d) The stacking
fault heals by forming two perfect dislocations. The black lines denote the extra
atomic rows forming the dislocations and arrows denote the Burgers vectors of the
dislocations

3.3 Simulation Methods

3.3.1 Molecular Dynamics

In this study, the classical molecular dynamics (MD) simulation method is
used, in which the interatomic interaction is described with the following
Lennard-Jones pontential

V (r) = εαβ [(
σαβ

r
)12 − (

σαβ

r
)6] , (3.2)

where r is the interatomic distance. Potential parameters εαβ and σαβ depend
on the species (α and β) of the interacting atoms. In the studies of dislocation
dynamics under external force we have used homogeneous systems with only
one type atomic species, i.e. εαα = εββ and σαα = σββ . In the studies of
the effect of misfit interface on dislocation we need to define the amount of
lattice mismatch between the overlayer film and the substrate. This is done
as follows

f =
af − as

as
, (3.3)

where af and as are the lattice constants in the film and the substrate, respec-
tively. This mismatch can be incorporated into the simulations by assigning
a different index for the atoms in the upper layers as compared to the atoms
in the rest of the system and changing the equilibrium distance parameter
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σ for these atoms accordingly. The cross-interactions between different types
of atoms are calculated by the following interpolation scheme [34]:

εαβ =
2(εααεββ)1/2σ3

αασ3
ββ

σ6
αα + σ6

ββ

(3.4)

σαβ =
(

σ6
αα + σ6

ββ

2

)1/6

. (3.5)

The values of parameters ε and σ, obtained by fitting to described copper
[35], were used for the substrate atoms, though we emphasize that in this
study our intention is not to describe any particular material. Instead our
study is qualitative in nature. In the same spirit, the range of the potential is
limited by the cut-off distance rc chosen here to be rc = 2.1×rNN, where rNN
is the nearest neighbour distance. Since the discontinuity in the potential at
the cut-off radius would cause a force anomaly, its effect is compensated by
subtracting a linear term of the form (r − rc)dV/dr|r=rc from the potential.

In the calculation of pairwise interaction the standard MD method of
linked lists was used [36]. The equations of motion were integrated by using
the leap-frog form of the Verlet integration algorithm [36]. To achieve the de-
sired temperature in the system both the simple velocity scaling and Berend-
sen scaling [37] were used. In cases where the atomic configuration with min-
imum potential energy was needed the following damping method was used:

if vi · Fi < 0 then vi ← αvi , (3.6)

where vi and Fi are the velocity and total force of atom i, respectively. A
suitable value for the damping constant α (< 1) was found to be 0.9. This
method was found to be more efficient in reaching equilibrium configuration
in systems with a misfit interface than the normal cooling scheme.

3.3.2 Interactive Simulation Environment

In order to get better insight to the dislocation dynamics we have constructed
a computational model that is based on an interactive simulation program
with a graphical visualization environment, described in detail in [35]. Be-
cause of the exploratory nature of this work on-line visualization of simulation
data is essential. The basic structure and an example of the main window of
the simulation program are shown in Fig. 3.3.

This on-line visualization scheme makes it also possible to track various
local defect configurations. For example when a 2D lattice is not externally
deformed or is deformed only a little with a low strain rate, the potential
energies of atoms show a clear change only near the core of a defect, i.e. of a
dislocation or of a crack. Hence, it is possible to extract the subsets of atoms
that belong to the defects of the system. Then by using a clustering algorithm
the number of defects present in the system can be found. Following this, a
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Fig. 3.3. The main window of the interactive simulation program. Positions of
atoms are drawn in the center part of the window while various controls for changing
simulation parameters are located on the edges of the window. Colors of the atoms
can be used to display potential energy, kinetic energy or different components of
the atomic level stress. On the left the main structure of the program is depicted

linked-list routine can be used to store efficiently the physical information of
the constituent particles. In this way the position of center of mass, kinetic
and potential energy, or even other geometrical properties, like the length of a
crack or a dislocation can be extracted and followed. Moreover, it is possible
to control the link-list routine during simulation through the control window
where the main parameters of the clustering algorithm can be customized
on-line. For the specific case of moving dislocations, the trajectory of the
center of mass of the atoms in the core describes quite well its movement. A
further analysis of the trajectories may be used to compute the instantaneous
velocity of each dislocation, which is essential for the study of its dynamics.

3.4 Dynamics of Single Dislocation
in a Homogeneous System

In this section we describe an application of the interactive simulation enviro-
ment to the study of the dynamics of a single dislocation moving in otherwise
homogeneous lattice. The discussion concentrates on two aspects of the prob-
lem: (a) the interaction with external constant stress, and (b) the response
to deformation with constant strain rate. Although these studies in 2D are
exploratory in nature, they are hoped to shed some light to dislocation dy-
namics in a 3D system.
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As mentioned above, by removing a portion of a line of atoms in the
crystal and letting the system to relax it is possible to create a dislocation
pair. By extending the removed line over the system border a single free
dislocation is placed in the bulk material. By selecting the line properly, it is
possible to introduce a dislocation at a desired position. All the experiments
in this section were prepared by placing a single dislocation in the center
of the sample. To guarantee that the dislocation is in a quasi-stable state,
at least for the time scales used in the simulation, special care was taken in
the selection of the sample size and in the choice of the thermal control for
reduction of fluctuations as much as possible.

3.4.1 Constant Stress Deformation

In the first simulation experiment we applied a constant compressive dis-
placement to the atoms of one of the side borders for a short period of time.
Then if the opposite borders of the system are kept fixed – as done in this ex-
periment – the system seems to stabilize rapidly to the condition of constant
external force as shown in Fig. 3.4.

These simulation studies were carried out in a lattice of 22141 atoms
arranged as a system of Lx×Ly = 120×80 (measured in terms of the lattice
parameter a0). The units used throughout this work are a0 = 3.6× 10−10 m,
mass m0 = 1.055×10−25 kg and time t0 = 10−12 s. No control of temperature
was selected.

Figure 3.5 shows the characteristic displacement of the dislocation vs.
time, for three force intensities. In each case a shock pulse is generated when
one of the borders is rapidly moved. The dislocation initially wanders about
its introduced position in a thermal-like motion until the pulse reaches it
at t � 20 ps. For small and moderate intensities of the external force, we
observe three distinct phases in the dislocation motion. First, after being hit
by the shock pulse the dislocation seems to be dragged by the stress wave and
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Fig. 3.4. External force profile after compressive displacement of the atoms of one
of the side borders by 0.95% in 1 ps and thereafter keeping it and its opposite border
fixed
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Fig. 3.5. Trajectory of one dislocation moving under constant stress at different
stress values. The transient region (first and second phase) is due to interaction
with the travelling shock wave
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Fig. 3.6. Velocity (V r) relative to the transverse speed of sound as a function of
the external shear stress

travel along the glide line with a uniform velocity in the x-direction. Direct
measurement of this dislocation velocity gives a value of about 14a0/ps, but
its x-component is always smaller than the velocity of the propagating shock
wave. The collision with the dislocation scatters the shock wave and thus
begins a thermalization process. Few picoseconds later, in the second phase,
the dislocation seems to be released from travelling with the wave and it stops
moving. The displacement pattern in this phase resembles the motion seen
before the interaction with the stress pulse.

Finally, in the third phase, the returning wave reflected from the opposite
border hits the dislocation. Due to the enforced boundary condition on the
y-borders, the reflected wave is also a compressive wave. As a result, the
dislocation starts moving again with a uniform speed in the same direction as
before, i.e. towards the upper border of the system. After this interaction the
remaining diminished shock wave scatters once again to quickly thermalize
the whole system to a new thermodynamic state. At this stage the dislocation
seems to move under a constant shear stress and thermally stable condition.
Therefore, we consider it possible to estimate the equilibrium velocity vs.
stress relation, and the results are depicted in Fig. 3.6. Here the velocity has
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been normalized by the transverse speed of sound estimated theoretically to
be 8.34a0/ps.

The relation between stress and velocity seems to follow (3.1) with a sensi-
tivity constant m = 0.25. This order of magnitude for the sensitivity constant
is found experimentally for brittle materials indicating that the system stud-
ied here is capturing some properties of such materials. However, another
possible explanation for this value is that the dislocation may be reaching
a limiting velocity characteristic to the system, but due to the limitation of
time and length scales of the simulations estimating the likelihood of this is
beyond the scope of this study.

3.4.2 Constant Strain-Rate Deformation

In the second experiment the system is put under the influence of a constant
strain-rate deformation, which is obtained by stretching the system from its
y-borders in the x-direction with a constant velocity. The advantage of this
set-up with respect to the constant force simulation is that it may be done
in a quasi-static way to avoid generating shock waves.

In this case we chose again the hexagonal lattice with 38979 atoms ar-
ranged in a square of 130a0, and placing a single dislocation in the middle
of the system. Here temperature control was applied by using Berendsen [37]
thermostat at 3 K to reduce the effect of phonons as much as possible. The
stability of the dislocation turned out to be quite good for a time period of
20 ps, which is the duration of the whole experiment. The constant strain
rate was realized by pulling the y-borders apart for 1− 6% of the system size
in 20 ps.

When the deformation begins a potential energy wave is emitted from
the borders. This causes, after some elapsed time, the dislocation movement.
As this wave is an expansion wave (in contrast to the compressive wave
in the constant stress experiment) the dislocation moves to the bottom of
the sample, with a trajectory along the glide line, as depicted in Fig. 3.7a.
From this curve we have computed the instantaneous velocity profile for the
dislocation motion, with results shown in Fig. 3.7b.

The velocity profile is very characteristic to a rigid body movement in
a continuous dissipative medium under the influence of a constant force. In
this situation the equation of motion should have the form

mv̇ + Bv = fe , (3.7)

where v the instantaneous velocity, m the effective mass of the dislocation, B
viscous drag coefficient and fe the external source force. Solving this equation
yields the following result

v = vt(1− e−t/t0) . (3.8)

where vt = fe/B is the terminal velocity and t0 = m/B is the relaxation time
for the dislocation motion. This behavior has been proposed to accurately
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Fig. 3.7. (a) Trajectory of single dislocation moving along the glide line under a
constant strain rate deformation (3% in 20 ps). (b) Instantaneous velocity for the
data set in (a). The continuous line represents the best fit to the equation 3.8 of
the velocity profile
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Fig. 3.8. Relative terminal velocity, V r = V/Vt, for different strain rates (Vt stands
for the transverse sound speed). The error bars were estimated by randomizing the
initial state with different random number seeds

describe dislocation movement in metals [12], when the external force is given
in terms the resolved shear stress and the magnitude of the Burgers vector,
as fe = bτ .

From the simulations we found, as expected, that the time variation of the
external force is compatible with the type II elastic – homogeneous plastic
response [38], showing strain-hardening coefficient dependent on the strain
rate. This coefficient is found to take value of 1.0 (Hooke’s law) for low strain
rates to decrease to 0.45 (characteristic for metals) for highest strain rates.

Although the external force (and hence the true stress) is known, the re-
solved shear stress affecting the dislocation is unclear, and its determination is
not simple. One possibility to determine it is trying to map the dislocation tra-
jectories to some constant stress experiments, done with the same simulation
parameters and assuming that the causes of the dislocation movement are the
same in both cases. This may be done through the strain-rate–velocity (see
Fig. 3.8) and stress–velocity relations. Such study is still under development.
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3.5 Interaction Between Dislocations
and a Misfit Interface

In the studies described above the stress affecting dislocation movement was
external. In lattice-mismatched structures the stress comes from the misfit
interface. In the following we describe simulation studies of the strain relief
process in a lattice-mismatched system via dislocation nucleation and dislo-
cation reactions and subsequent migration to the interface.

3.5.1 Dislocation Nucleation

Nucleation simulations were performed using a system consisting of a sub-
strate of size 722 Å×361 Å. The overlayer placed on the substrate had a size
of 361 Å×361 Å, i.e. half of the width of the substrate. The total number of
substrate and overlayer atoms was 23076 and 11590, respectively.

Simulations were performed for misfits −2.0–−4.0% and +2.0–+4.0% at
temperatures 10–160 K. The initial states of the simulations were obtained
by applying the quenching method of 3.6. The simulation time was 130 ps.
Results are shown in Fig. 3.9. In the region of low misfit and low temperature
no dislocations were seen. In this region, the strain was relieved by elastic
deformation of the overlayer and substrate. By increasing the temperature
dislocations were seen to nucleate from the overlayer edges. In all other cases
except the −2.0%, +2.0%, and +2.5% misfits the highest temperature of
160 K was enough to reach the equilibrium configuration (number of dislo-
cations of 4, 4, 3, 2, and 1 for the misfits ±4.0%, ±3.5%, ±3.0%, ±2.5%,
and ±2.0%, respectively). In the case of misfit of ±4.0%, dislocations were
observed even in simulations with zero initial temperature, indicating that
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Fig. 3.9. Results of nucleation simulations. The number of dislocations nucleated
from the overlayer edges during the 130 ps simulations is plotted for different nega-
tive (left) and positive (right) misfit values and simulation temperatures. The size
of the circles denotes the number of dislocations. Open triangles designate runs
where no dislocations were observed. The thin line separates pseudomorphic and
relaxed regions
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the activation barrier for nucleation disappears. The results also show that
the situation is not symmetric with respect to changing the sign of the misfit:
negative misfit is considerably more efficient in causing dislocation nucleation
on the overlayer edges. One possible explanation is that strain caused by the
negative mismatch lowers the dislocation nucleation barrier by pulling the
overlayer corners away from the substrate surface. This same asymmetry has
been observed in dislocation nucleation from the overlayer surface [30].

3.5.2 Dislocation Reactions

In the simulations described below we studied a system, which in most cases
consisted of 30 rows of substrate atoms and 19 rows of overlayer atoms, in
total 3442 atoms. The bottom layer of the substrate atoms is fixed in the
vertical direction while the other boundaries of the system are free to move
in any direction. We also investigated the effect of system size by performing
simulation runs with a four times larger system (of 13712 atoms) where the
width and the height of the system were doubled but the overlayer thickness

sf

sf

(a) (b) (c)

(d) (e) (f)

Fig. 3.10. Reaction between dislocations and the misfit interface. The lattice mis-
match between the overlayer and the substrate is f = −4% (a) [Elapsed time from
the beginning of the simulation t = 12.1 ps] Two dislocations with horizontal Burg-
ers vectors are introduced to the system. (b,c) [t = 15.1, 16.1 ps] These interact
with each other forming first a stacking fault (sf) between them and then disloca-
tions with Burgers vectors oriented 60◦ relative to the x-axis. (d) [t = 18.8 ps] The
upper dislocation migrates to the interface. (e,f) [t = 33.5, 34.2 ps] The dislocations
interact once again and turn their Burgers vectors horizontally. The small arrows
show the position of the interface
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was kept the same as in the smaller system. In this case we saw similar
dislocation reactions as in the smaller system but with a slightly different
set of simulation parameters, thus indicating that although the details of
dislocation dynamics may depend on the system size the reaction behaviour
remains unchanged.

Figure 3.10 depicts an example of the effect of an interface on dislocations,
when the lattice mismatch is set f = −4%. In order to introduce a pair of
dislocations into the system a short initial crack was introduced first. Then
the system was let to heal for 10 ps during which the temperature was scaled
to 15 K at every time step followed by switching off the scaling and letting
the simulation continue by keeping the total energy constant. The upper
dislocation – having two extra planes in the positive y-direction – has the
maximum capability to relieve stress formed at the interface (see Fig. 3.10a).
However, this dislocation cannot glide to the interface because its Burgers
vector is horizontal.

Figure 3.10b shows how the interaction between the dislocations induces
a reaction that results in changes in their Burgers vectors. The fact that the
sum of Burgers vector does not change in this reaction can be easily veri-
fied. After the reaction the upper dislocation is able to glide to the interface.
However, its Burgers vector is not ideal in relieving stress at the interface.
In Fig. 3.10d–e a further reaction can be seen which gives rise to dislocations
with horizontal Burgers vectors (Fig. 3.10f). The upper dislocation is now
located at the interface and it has the optimum orientation – i.e. parallel to
the interface – as regards to the stress relief. The lower dislocation finally
glides to the free boundary of the system, where a step is created. Reactions
between dislocations proceed through creation of two partial dislocations and
a stacking fault between them, and thus a slip of two adjacent atomic rows

b1

b2 b2
’

b1
’

(a) (b) (c)

p1

p2

sf

Fig. 3.11. Two dislocations before (a) and after (c) the reaction depicted in
Fig. 3.10a–c. The reaction proceeds through a configuration with two partial dislo-
cations (p1 and p2) and a stacking fault (sf) between them. The slip of two atom
rows between the dislocation cores causes the Burgers vectors of the dislocation to
turn 60◦ clockwise. Thin lines show the orientation of extra half rows of atoms
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with respect to each other, as can be seen in Fig. 3.11. The reaction could also
be viewed as an exchange of one complete dislocation between the partici-
pating dislocations. However, because the distance between the dislocations
is so small this third dislocation can not be distinguished. For the reaction to
take place the dislocation cores have to lie at the same densely packed row of
atoms. Similar reactions were also observed in the cases where the mismatch
was positive, i.e. f = +4%.

3.6 Conclusions

The main goal of these exploratory studies has been to use a simplistic model
that may be analyzed interactively and captures essential information about
dislocation dynamics in homogeneous and strained-layer systems. The ques-
tions of the resolved shear stress in the constant strain rate experiments
and the presence of a dislocation dragging are beyond the possiblities of the
continuum theory. Also, the strain relief in lattice-mismatched systems via
dislocation nucleation, migration and interaction are hard to study in detail
using continuum theories. Simple atomic scale simulations may give more
information for new theoretical approaches and modelling.
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