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- For all physics subfields
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-  Atomic, materials and molecular physics
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Monte Carlo simulations in physics
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 53363 Introduction to atomistic simulations 2008

• Lecturer: university lecturer Antti Kuronen (antti.kuronen@helsinki.fi, tel. 19150083)

• Exercise assistant: the same.

• Lectures: Wed 12-14 room D116

• Exercises: Fri 12-14 room D116

• The idea of the course is to teach the students the basics of atom-level computer simulations, 

which are widely used in materials and atomic physics, chemistry and biology.

• The course deals with 2 basic simulation types: molecular dynamics (MD) and structural optimization (by 

using conjugate gradients (CG) and genetic algorithm (GA) methods).

• During the first part of the course a basic MD code is written under guidance in several steps during the 

exercises. 

• After this the MD code is used in applications. 

• Course home page: http://www.physics.helsinki.fi/courses/s/atomistiset/
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Course evaluation:

• Exercises 50 % of the points

• Exam 50 %

Exercises

• Returned by email to the lecturer no later than the Wednesday before the exercise

• Many of the exercises involve writing subroutines or full computer programs. 
• These will be compiled, and if they do not compile, the exercise return automatically gives 0 points.

• The programs are to be returned either in Fortran90 or C.
• Unix is the preferable environment.

• Return also sample input and output (text or figures). 

• Explanations on what you have done preferably in PDF.
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Computer environment

• For exercises you need an computer environment with C or Fortran compiler.

• Good non-commercial (i.e. free) alternatives are the GNU compilers. 
• They can be easily installed in any Linux distribution. 

• Cluster computer mill.physics.helsinki.fi can also be used. 

• If you want to have a user account on mill contact the lecturer. 

• mill is a 64-processor (32-node) Linux cluster. (A bit old now.)
• GNU compilers for C (gcc) and Fortran (gfortran) are installed there.

• You can run your exercises on the frontend node.

• Of course, you may use the batch job system to use the computing nodes.

• For instructions, see http://beam.acclab.helsinki.fi/mill/ . (Note, however, that some of the information on the page is 

outdated; e.g. there is no Intel Fortran compiler installed.)
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Contents (might change a bit)

1. Introduction: Atomistic visulization

2. Basics of MD: Initialization

3. Neighbour lists: mdmorse code

4. Algorithms to solve equations of motion

5. Force calculation: Basics of potentials

6. Theory: P and T control

7. Quantum mechanical methods (very briefly)

8. Metal interaction models

9. Semiconductor interaction models

10. Molecular interaction models

11 a. Ionic interactions

11 b. How to choose and test a potential ?

12. Conjugate gradients, genetic algorithms, minimum energy paths

13. Comparison to experiments

14. Summary and end
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Literature

• Lecture notes
• Will appear on the web a bit before the lecture 

(http://www.physics.helsinki.fi/courses/s/atomistiset/lecturenotes/).

• The web page also has links to similar courses elsewhere in the world.

• As background information you can use e.g.: 
• M. P. Allen, D. Tildesley: Computer simulation of Liquids (Oxford University Press, Oxford,1989)

• The classical simulation textbook everybody refers to.

• Statistical mechanics approach.

• J. von Boehm: Molekyylidynamiikkamenetelmä (in Finnish )(Otatieto, Espoo, 2000) 
• Some material on interatomic potentials.

• Overlaps the Allen-Tildesley book.

• D. Frenkel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications,  

2nd edition (Academic Press, 2001) 
• Statistical mechanics approach.

• Note that the 1st edition has quite a few printing errors.

• Book home page (http://molsim.chem.uva.nl/frenkel_smit/) has exercises and case studies.

• R. Phillips: Crystals, defects and microstructure : modeling across scales (Cambridge University Press, 

2001)
• A nice textbook on computational methods in materials research in general; from atomistics to elastic continuum.

• Includes a chapter on interaction models.

• A. R. Leach: Molecular modelling: Principles and applications, 2nd edition (Prentice Hall, 2001)
• In addition to simulation methods includes also nice chapters on interaction models (classical and quantum mechani-

cal).

• Molecular mechanics and force fields.
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Computer simulations in physics

Basic theory
Nature

Result

Experiment Simulation
Analytical

Simulated Analytical
prediction prediction

Comparison

of nature! Theory wrong

theory

Understanding

Comparison

right
Theory

wrong
Theory

OK OKnot OK not OK

    (model)

• Simulation can bridge the 

gap between theory and 

experiment. 

• Sometimes only choice 

(theory too complicated). 

• Sometimes simulation 

impossible: not enough 

computer capacity. 

• Also comparison between 

analytical theory and simu-

lation: if both are based on 

the same basic theory 

(e.g. Newtons laws), but 

analytical theory uses 

approximations, simula-

tion can be a perfect way 

to test the approximation.
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Atomistic simulation: What is it?

• Model where the basic object is (roughly) a spherical object.

• This object can be an
• atom 

• molecule

• nanocluster

• a particle in a fluid

• a planet or a part of a galaxy

• On this course, we almost always talk about “atoms”, but in many cases the algorithms are such that the 

“atom” could be almost any of the above.

• Application areas:
• atom movement in equilibrium: thermodynamics

• nonequilibrium phenomena: irradiation, material heat or pressure processing, phase transitions, nucle-

ation, surface growth (thin film deposition)

• properties of lattice defects

• nanostructures: Natoms ~ 104 - 109: can be simulated!

• interactions inside a molecule: vibration, rotation, protein folding

• intermolecular interactions

• chemical reactions
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And what is it not?

• Continuum modelling (e.g. Finite Element Modelling, FEM)

• Fixed lattice or grid model 
• Although here the limit is sometimes hard to draw.

• Modeling of amorphous materials using continuous random networks: bond-switch simulations.

• Particle physics

• Electronic structure calculation (for fixed positions of nuclei)
• But these are often used as basis for atomistic simulation: ab initio MD.

 

• Since the basic object is an atom, and a computer memory is limited, atomistic simulations are 

always somehow size limited.
• Hence usually simulating macroscopic (mm size and up) objects is usually out of the question.

• E.g. silicon: volume/atom    v
5.43Å! "

3

8 at.
---------------------- 20.0

Å
3

at.
-------= =          

                                                      V 10
8
atoms! " 2.0

9
#10 Å

3
=                                                

                                                     cube edge 2.0
9

#103 Å 1260Å 0.126$m= = =   

• Time scale of normal MD limited to tens of nanoseconds (but more about that later).
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Important types of atomistic simulations

• Molecular dynamics (MD)
• Simulate the dynamic atom motion based on some interaction model.

• Monte Carlo (MC) 
• MC is in the broadest sense any simulation which uses random numbers.

• Even most MD simulations do use random numbers, but they are still conventionally not considered true 

MC simulations.

• There are a few varieties of MC which are often used for atomistic simulations. The most important are 

maybe:
• Metropolis MC (MMC)

• Simulate a thermodynamic ensemble, energy minimization by simulated annealing.

• Kinetic MC (KMC)

• Simulation of activated processes (e.g. diffusion)

• The MC courses deal with all this. (http://beam.acclab.helsinki.fi/~eholmstr/mc/)

• Structural optimization
• Find the equilibrium state of of an atomistic system 

based on some interaction model: energy minimization. • Binary collision approximation (BCA) 
• In nuclear and ion beam physics (and 

almost nowhere else)

• Event-driven simulations in general (e.g. 

interaction of electron and photon radiation 

with matter)

• Global vs. local minimum: simulated annealing.

• Conjugate Gradient (CG) method
• An efficient way to find a local minimum.

• Can also be used for atoms.

• Genetic algorithms (GA)
• Sometimes an efficient way to find a global minimum.

• Can also be used for atoms.

• Minimum energy path determination
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How to present atomistic data From program babel:
alc -- Alchemy file 

bgf -- BGF file 

bmin -- Batchmin Command file 

box -- DOCK 3.5 box file 

bs -- Ball and Stick file 

c3d1 -- Chem3D Cartesian 1 file 

c3d2 -- Chem3D Cartesian 2 file 

caccrt -- Cacao Cartesian file 

cache -- CAChe MolStruct file 

cacint -- Cacao Internal file 

cdct -- ChemDraw Conn. Table file 

contmp -- Conjure Template file 

csr -- MSI Quanta CSR file 

cssr -- CSD CSSR file 

diag -- DIAGNOTICS file 

dock -- Dock Database file 

dpdb -- Dock PDB file 

feat -- Feature file 

fhz -- Fenske-Hall ZMatrix file 

gamin -- Gamess Input file 

gcart -- Gaussian Cartesian file 

gotmp -- Gaussian Z-matrix tmplt

gr96A -- GROMOS96 (A) file 

gr96N -- GROMOS96 (nm) file 

gzmat -- Gaussian Z-matrix file 

hin -- Hyperchem HIN file 

icon -- Icon 8 file 

idatm -- IDATM file 

m3d -- M3D file 

maccs -- MDL Maccs file 

macmod -- Macromodel file 

macmol -- Mac Molecule file 

mdl -- MDL Molfile file 

micro -- Micro World file 

miv -- MolInventor file 

mm2in -- MM2 Input file 

mm2out -- MM2 Ouput file 

mm3 -- MM3 file 

mmads -- MMADS file 

mol -- Sybyl Mol file 

mol2 -- Sybyl Mol2 file 

mopcrt -- Mopac Cartesian file 

mopint -- Mopac Internal file 

pcmod -- PC Model file 

pdb -- PDB file 

psc -- PS-GVB Cartesian file 

psz -- PS-GVB Z-Matrix file 

report -- Report file 

sdf -- MDL Isis SDF file 

smiles -- SMILES file 

spar -- Spartan file 

tinker -- Tinker XYZ file 

torlist -- Torsion List file 

unixyz -- UniChem XYZ file 

wiz -- Wizard file 

xed -- XED file 

xyz -- XYZ file 

• There exist about a zillion different file formats for presenting 

atom positions.
• An example: how should we present the coordinates?

• For 8 Cu atoms in the corners of the unit cube

• Trivial format 1 “x y z”:

0.0 0.0 0.0 

1.0 0.0 0.0 

0.0 1.0 0.0 

0.0 0.0 1.0 

1.0 1.0 0.0 

1.0 0.0 1.0 

0.0 1.0 1.0 

1.0 1.0 1.0 

• No information about time (for a dynamic system)

• Trivial format 2: “x y z t”

0.0 0.0 0.0 3.0

1.0 0.0 0.0 3.0

0.0 1.0 0.0 3.0

0.0 0.0 1.0 3.0

1.0 1.0 0.0 3.0

1.0 0.0 1.0 3.0

0.0 1.0 1.0 3.0

1.0 1.0 1.0 3.0

• Downside of both formats: All file has to be read in before we know how many 

atoms there are.
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How to present atomistic data

• In this course we use the XYZ standard format.
• First line has number of atoms at this time

• Second line is comment

• Then come the coordinates of the atoms with the element symbol as the 1st column.

 8

Molecule name or comment or whatever (Might, however, be used by some applications.)

Cu 0.0 0.0 0.0 320.0

Cu 1.0 0.0 0.0 310.0

Cu 0.0 1.0 0.0 305.0

Cu 0.0 0.0 1.0 280.0

Cu 1.0 1.0 0.0 290.0

Cu 1.0 0.0 1.0 320.0

Cu 0.0 1.0 1.0 310.0

Cu 1.0 1.0 1.0 320.0

• The fifth column can also hold other information, or be empty.

• It is a very good idea to include useful information on the second line (a non-standard feature), e.g. 

 8

Frame number 1 3.0 fs boxsize 3.0 3.0 3.0

Cu 0.0 0.0 0.0 320.0

Cu 1.0 0.0 0.0 310.0

...
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How to present atomistic data

• For dynamic information, the info for each time can simply be put after each other in the same file:

 2

Frame number 1 0.0 fs boxsize 3.0 3.0 3.0

Cu 0.0 0.0 0.0 320.0

Cu 1.0 0.0 0.0 310.0

 2

Frame number 1 2.0 fs boxsize 3.0 3.0 3.0

Cu 0.1 0.0 0.0 330.0

Cu 1.1 0.1 0.0 300.0

 2

Frame number 1 4.0 fs boxsize 3.0 3.0 3.0

Cu 0.2 0.1 0.0 340.0

Cu 1.2 0.1 0.0 290.0

...

 

 

• For very large simulation systems this text format may become too inefficient (both from the 

point of view of space and time).
• Binary format: standards?
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Visualization of atomic data

• Visualization is fun but also useful. 

• Plot each atom as a sphere, either statically or dynamically. 

• Plot bonds between atoms: ball-and-stick model. 

• As with file formats, there are about a zillion programs which can do that. 

• One much used visualization program is RasMol. It is

+ free and open source (easy to modify for your needs)

+ works at least in Linux, Unix, Windows, and Mac

+ fast 

+ supports many of the most common chemistry formats, including XYZ

+ can produce publication-quality output

- poor at adding text to the graphics

- can not draw much else than atoms, bonds and protein backbones

- no perspective transformation

• Home page: http://rasmol.org/

• rasmol is installed on the computing cluster mill.physics.helsinki.fi. 
• Run it by command: rasmol

• Program is located at /usr/local/bin and this should be on your $PATH. 
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Visualization of atomic data

• Useful Rasmol commands (see also http://www.physics.helsinki.fi/courses/s/atomistiset/refcardUS.pdf):

load xyz file Read in a file

When started, rasmol reads the 

file ~/.rasmolrc for initial set-

tings.

write gif image.gif Store an image in the gif format
write ppm image.ppm Store an image in the ppm format
write ps image.ps Store an image in the ps format
zap Remove all data, needed before new load command
quit

wireframe <on/off/value> Adjust bond width
spacefill <on/off/value> Adjust atom size
spacefill temperature Get atom size from column 5 in XYZ file
zoom 150 Zoom display, default=100
set ambient <value> Ambient light strength
set specular on Use a nice 3D shade on atoms
set specpower <value> Remove the 3D shade
set shadows on/off Use/don’t use atom shadowing (slow)
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“Quick and dirty”-animations

• A simple way to make animations is to use program dpc1.

• It reads XYZ files that have many frames concatenated.

• dpc is also installed on the computing cluster mill.physics.helsinki.fi. 
• Run it by command: dpc

• It is also located at /usr/local/bin

• Basic usage for XYZ files:  
dpc xyz erase sort 2 3 4 5 moviefile.xyz

• “2 3 4” tells that the x, y- and z- info is taken from columns 2, 3 and 4.

• “5” does not mean anything for XYZ, but must still be there.

• All options are between “dpc” and “2 3 4 5”  

• The program is not as flexible as rasmol, but it is reasonably fast (it is written under plain 

Xlib) 

• Help is given by command dpc with no options. 

• Most important options
s 600 800 Window size
sd 600 600 Draw area size
x 0 83 x limits
y 0 65 y limits
z 37.8 43.6 Color (z) limits
m 1 Form of atoms: 0 rect, 1-4 circle
d 4 Dot size 

gifdump Make gif file dump of each window frame

1. By K. Nordlund
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Making presentation animations

• To make animations for the web or a presentation:

• Use rasmol or dpc to make a separate a bitmap image of every single time step.
• Each image should be stored with a name having the frame number encoded;  

e.g. frame001.png, frame002.png, ... 

• Make an animation from these separate frames by using any animation program (many of them available 

freely; e.g. ffmpeg).
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“Quick and dirty” data-analysis: awk

• Swiss army knife of Unix: awk (or gawk)
• A lot can be done using simple ‘one-liners’.

• Example: we have a XYZ file:
2632

Time (fs)       74500

C       3.14286         5.13682         9.99465         -7.30347 

C       3.54844         3.00536         11.1538         -4.55679 

C       4.20179         5.13682         12.1936         -7.30347 

C       5.07013         3.00536         13.0619         -4.55679 

C       6.10993         5.13682         13.7152         -7.30347 

C       7.26903         3.00536         14.1208         -4.55679 

C       8.48933         5.13682         14.2583         -7.30347 

C       9.70963         3.00536         14.1208         -4.55679 

• And want to check the potential energy (5th column or so-called temperature column) distribution:
cat file.xyz | 

gawk ’$1=="C" {i=int(10*$5+0.5); e[i]++} END {for (i in e) print i/10,e[i]}’|

sort -n | xgraph

• Quick and dirty plotting: xgraph
• This is also installed on mill at /usr/local/bin. 

• These tools reduce the need to build C or F90 programs or to launch Matlab for every small 

task.
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Other visualization programs

• OpenDX 

• A commercial IBM program package which was later made open source

• Philosophy
• build a network of modules through which data flows

• data analysis and visualization in the same program package

• Home page: http://www.opendx.org/
 

• VMD 

• More features than in RasMol. 

• Slows down for large systems. 

• Home page: http://www.ks.uiuc.edu/Research/vmd/ 

 

• And many many more...
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On-line visualization

• Visualize the simulation run in realtime

• It possibly change the simulation settings during the run.

• A simple 2D Lennard-Jones system: J. Merimaa, L.F. Perondi, K. Kaski, An interactive simulation pro-

gram for visualizing complex phenomena in solids, Computer Physics Communications 124 (2000) 60-75.

• For example see: http://www.acclab.helsinki.fi/~aakurone/boundary2d/
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Basics of molecular dynamics

• The basic idea of molecular dynamics (MD) simulations is to calculate how a system of particles 
evolves in time.
• The method was first used by Alder and Wainwright in 1957 to calculate properties of many-body sys-
tems. They called the particles molecules.
• There is an interesting parallel to classical mechanics here. The two-body motion problem was solved by Newton way 

back then. The three-body problem was solved by a Finnish guy, Sundman, in the early part of the last century - but 

the solution is utterly impractical (108000000 terms needed in a series expansion). 

• The N -body problem, N 3! , can not be solved analytically. MD can also described to be a 
numerical way of solving the N -body problem. The solution is of course never exact, but if done 
properly it can be done arbitrarily accurately.

• Consider a set of atoms at positions r
i
 and some interaction model which gives us the potential 

energy of the system V r
i

" #$ %

• In Newtonian mechanics we then get: 

                  
dr

i

dt
------- v

i
=  ,      d

dt
----- m

i
v
i

$ % F
i

Vi&– V2 r
i

r
j

'$ % V3 r
i

r
j

r
k

' '$ % (+

j k'

)+

j

)i&–= = =

• By solving the above set of equations numerically we can derive dr  over some short time inter-
val dt .
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Basic MD algorithm (slightly simplified)

Set the initial conditions , r
i

t0$ % v
i

t0$ %

Get new forces F
i

r
i

$ %

Solve the equations of motion numerically over time step : 
        

*t
r
i

t
n

$ % r
i

t
n 1+$ %+ v

i
t
n

$ % v
i

t
n 1+$ %+

t t *t++

Get desired physical quantities

t tmax ?! Calculate results 
and finish



Introduction to atomistic simulations 2008                2. Basics of molecular dynamics                                                                                                                                                      3

 r v t
1
2
---a t

2
+! a

F

m
----="

An alternative view

• MD-simulation of thermal motion over 100 time steps

1

23

45

• Zoom in on 2 time steps (5 
atoms):
• At time   the distances  and 

hence forces  between nearby 

atoms are calculated
• From these forces we can solve 

the equations of motion, and 
hence get new positions and 
velocities.

t r
ij

F
ij

• The displace-
ment over a 
time step  is 

denoted .

•  has to be 
much smaller 
than the dis-
tance between 
nearby atoms.

 t

 r

 r

= position at t t
i

=
= position at t t

i 1+=

r13 F13"

r12 F12"

r14 F14"
r15 F15"
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General considerations

• The above was the simplest possible example, the so called microcanonical or NVE ensemble. 
This means that the approach preserves the number of atoms N , the volume of the cell V  and 
the energy E . Other ensembles will be dealt with later on in the course. But the NVE ensemble 
is the most natural one in that it is the true solution of the N -body problem, and corresponds to 
the real atom motion.

• First MD simulations:
• Hard spheres: B. J. Alder, T. E. Wainwright: Phase transition for a Hard Sphere-System, J. Chem. Phys. 
27 (1957) 1208

• Continuous potentials: J. B. Gibson, A. N. Goland, M. Milgram, G. H. Vineyard: Dynamics of Radiation 

Damage, Phys. Rev. 120 (1960) 1229.

• State-of-the-art (2008):
• Of the order of 1 000 000 000 atoms
• In Finland: CSC Cray XT4 (louhi.csc.fi): some 100 000 000 atoms with a realistic potential easily possible 
for thousands of time steps.

• If all N  atoms interact with all atoms, one has to in principle calculate N2  interactions. This is 
prohibitively expensive for millions of atoms.
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General considerations

• Fortunately, in practice most atomic interactions decrease rapidly in strength as r  ! . In that 
case it is enough to calculate only interactions to nearby atoms.
• E.g. in diamond-structured semiconductors (Si, Ge, GaAs...) atoms have 4 covalent bonds, so the calcu-
lation can be reduced to 4 neighbours => 4 N  interactions.

• In metals atoms more than ~ 5 Å far can usually be neglected => about 80 N  interactions

• In ionic systems the interaction V 1 r"# , i.e. decreases very slowly. It can not be cut off, but there are 
smart workarounds.
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Early MD simulations



cohesion: inward force 
on border atoms

500 atoms on IBM 704:
1 minute/time step

V r( ) V0e
 r–

=

Early MD simulations
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Simulation cell

• In practice in most cases the atoms are arranged in a 
orthogonal simulation cell which has a size S

x
S
y

! S
z

! .

• It is also perfectly possible to use a simulation cell with axes 
than are not orthogonal.

• Problem: what should we do with the atoms at the bor-
ders.

1. Nothing: “free” boundaries"

• This works fine if we want to deal with e.g. a molecule, nanocluster or 
nanotube in vacuum.

• If we want to describe a continuous medium, this does not work: the 
atoms are left “hanging” on the surface as if they would be on the sur-
face. 
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Simulation cell

2. Fix the boundary atoms:

• Completely unphysical, this should be avoided if possible. Sometimes it is needed 
and with a fairly large “sacrificial” region next to the fixed one can be perfectly OK.

3. Periodic boundary conditions

• To implement this very important boundary condition two things have to be done 

1. An atom which passes over the cell boundary comes back on the other side: 

                             

A A’
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Simulation cell

• In practice this can be implemented as follows (Fortran 90) (note that atomic coordinates are between S
x

2!–  and 

S
x

2! ) : 

!x           : particle coordinate

i

j’

j

kk’

l

l’

rcutoff

rij

rij’

S

!periodicx   : = true periodic, false free

!xsize       : MD cell size (S
x
)

  if (periodicx) then

      if (x <  -xsize/2.0) x = x + xsize

      if (x >=  xsize/2.0) x = x - xsize

  endif

• Similarly for y  and z

2. When distances between atoms are calculated, the periodic boundaries 
have to be taken into account:

• The solid box is the simulation cell, with atoms i , j , k  and l . Because of the 
periodic boundaries, all atoms have image atoms in the repeated cells, for 

instance j' , k' , l' .  

• When we want to get the distance between atom i  and j , which distance should we use?

• Because here r
ij

r
ij

'" , we use for the distance between atoms i  and j  the vector r
ij

' .
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Simulation cell

• As a pseudo-algorithm (Fortran 90) in the x dimension:

if (periodicx) then

    dx = x(j) - x(i)

    if (dx >   xsize/2.0)  dx = dx - xsize

    if (dx <= -xsize/2.0)  dx = dx + xsize

endif

and similarly for y  and z  

• Example in 1D

i jj'

S

2
---–

S

2
---0

x
j

x
i

– x
j' x

i
– S

2
--- x

j
–

! "
# $ S

2
--- x

i
+

! "
# $+– x

j
x
i

– S–= =

• Note that if the maximum distance by which atoms can interact rcutoff > xsize/2 the atom i should actually interact both 

with atom j and j’ . To prevent unphysical double interactions we need to have xsize > 2 rcutoff 
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Simulation cell

• Thus we get a system where the simulation cell has an infinite number of image cells in all directions, and 
a model of an infinite system.

• However, be careful! 

• Periodicity brings an artificial interaction over the simula-

tion cell borders.

• For instance, a strain field arising from a point source, 

which is infinite, will obviously be distorted at the periodic 

borders. Examples:

• A single vacancy (one missing atom) in Si: in quantum 

mechanical calculations at least some 200 atoms are 

required to get the energy reliably [Puska 1998 Phys. 

Rev. B]

• And for instance a 5 nm Co cluster in Cu: about 106 

atoms needed to get the strain energy reliably.

• Upper limit for the phonon wavelength.

• To test this: simulate with different N  and monitor the con-

vergence.
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Simulation cell

• Simulating surfaces: 

• periodic boundaries only in x - and y -directions

• free surface:

• the bottom either: 
a) free: simulation of a free-standing thin foil with two surfaces 
or b) fixed to model a bulk below:
• very bottommost atoms fixed

• a few atom layers above fixed layers damped with e.g. a temperature control algorithm

x

z
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Simulation cell

• Simulation of energetic processes: 

• In a simulation where a lot of energy is brought into 

the MD cell in a local region, the energy has to be 

scaled out from the system to model a much cooler 

‘heat bath’ in a realistic system.

• The energetic processes may also introduce a lot of 

momentum into the cell, which could cause the entire 

cell to move. 

• Solution: fix all boundary atoms except at the surface, 

and do T  scaling in a few atom layers above these, as 

above.

• Here also: watch out the finite-size effects! 
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Initial conditions: creating atoms

• For cubic lattices (FCC, BCC, SC, DIA) it is easy to create the lattice. For instance FCC:
basis(1,1)=0.0;    basis(1,2)=0.0;    basis(1,3)=0.0;

To refresh your memory:

FCC : face centered cubic

BCC : body centred cubic

SC: simple cubic

DIA: diamond

HCP: hexagonal close- 

packed

basis(2,1)=0.5;    basis(2,2)=0.5;    basis(2,3)=0.0;

basis(3,1)=0.5;    basis(3,2)=0.0;    basis(3,3)=0.5;

basis(4,1)=0.0;    basis(4,2)=0.5;    basis(4,3)=0.5;

offset(1)=0.25;    offset(2)=0.25;    offset(3)=0.25;

nbasis=4;

n=0;

do i=0,nx-1

   do j=0,ny-1

      do k=0,nz-1

         do m=1,nbasis

Coordinates between

 and  
S

2
---–

S

2
---

      n=n+1

            x(n)=-xsize/2+(i+offset(1)+basis(m,1))*a

            y(n)=-ysize/2+(j+offset(2)+basis(m,2))*a

            z(n)=-zsize/2+(k+offset(3)+basis(m,3))*a

         enddo

       enddo

    enddo

enddo

• The HCP lattice is also very common, but 

not orthogonal in the conventional repre-

sentation.

60o

a'a

b'

b

• Because in the HCP structure a b= , and 

because 60!cos 1 2"= , the HCP lattice can 

be transformed into an equivalent orthogonal 

representation. Now the new unit cell (shaded 

area) corresponds to two of the conventional 

HCP unit cells.
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Initial atom velocities

• How do we set the cell temperature to a desired value? 

• We have to generate initial atom velocities which correspond to the Maxwell-Boltzmann distribution 

(which is surprisingly well valid even in crystals):
 

 
                  # v

i$% &
m

i

2'k
B
T

-----------------
( )
* +
, - 1 2/

1

2
---m

i
v
i$
2– k

B
T"( )

, -exp= ;    $ x y z. .= . 
 

• This is just a Gaussian function with suitable scaling

• We usually also want to set the total 

momentum of the cell to zero to pre-

vent the entire cell from starting to 

move: 

 P m
i
v
i

i 1=

N

/=  

 

sigma2v=sqrt(kB*2*T/(m*u))/vunit

do i=1,n 

vx(i)=sigma2v*gaussrandom(iseed)     

vy(i)=sigma2v*gaussrandom(iseed)     

vz(i)=sigma2v*gaussrandom(iseed)     

vxtot=vxtot+vx(i)   ! If all atoms have the same mass,

vytot=vytot+vy(i)   ! it is enough to scale the total v

vztot=vztot+vz(i)   ! to zero

enddo

vxtot=vxtot/n  

vytot=vytot/n  

vztot=vztot/n  

do i=1,n 

vx(i)=vx(i)-vxtot

vy(i)=vy(i)-vytot

vz(i)=vz(i)-vztot

enddo

• So in practice all this can be achieved 

with the code fragment on the right:

      Note: 
v
i$
2

20
2

---------–
( )
* +
, -

exp , 0
2 k

B
T

m
i

----------=
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Initial atom velocities

• Note the factor of 2: if the 

simulation is started from 

perfect lattice sites, or bound 

equilibrium positions in a 

molecule, half of the initial 

kinetic energy will be 

changed to potential energy 

after a while.

r

V(r) r0

E

Ekin only

Ekin and Epot

 

• It is also possible to get real-

istic initial random displace-

ments.
• This can be derived from the Debye model: the thermal 

displacement in the direction of the axis i  is a Gaussian distribution of the form

w !
i

T"# $ 2%&' ( 1 2/– e
!i

2 2&2)–=  where 

&
20.89

3*D

---------------- T

A
---Å= , where   20.89 9h

2

k
B
u

---------Å K=
 

*D  = Debye temperature of the material,  A  = Atomic mass 

• The initial position can now be obtained with Gaussian-distributed random numbers as above.

• Note, however, that this does not account for quantum mechanical zero-point vibrations which give addi-

tional displacements near 0 K.
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Generating random numbers

(This topic is dealt with in much more detail on the MC simulation course)

• Almost all kinds of simuations in physics use random numbers somewhere. As we saw above, 

MD simulations need them at least for initial velocity generation.

• Computer-generated random numbers are of course not truly random, but if they have been 

generated with a good algorithm, they start to repeat each other only after a very large (e.g. 

1020 ) number of iterations. If the number of random numbers used in the entire simulation is 

much less than the repeat number, the algorithm probably is good enough for the application.

• Random numbers can be generated for different distributions. This means that if we generate a 

large number of numbers and make statistics out of them, they will eventually approach some 

distribution. 

• The most common is of course an even distribution in an interval, another very common is 

Gaussian-distributed numbers:

0 1

P
(x

)

P
(x

)

0 
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Generating random numbers

• Evenly distributed random numbers:

• Many programming languages offer their own random number generator (e.g. in ANSI-C rand()). A good 

rule-of-thumb regarding these is: 
 
         Never use them for anything serious !

• The reason is simply that the language standard only specifies that the generator has to be there, not that it works sen-

sibly. Since there are no guarantees it does (there are famous examples of the opposite) it should not be used 

• Most random number generators are based on modulo-arithmetics and iteration. In the simplest possible 

form:
I
j 1+ aI

j
mod m! "=

• Park and Miller ‘minimal standard’-generator: a 16807= , m 2
31

1–=

• In the beginning the number I0  i.e. the seed number is chosen randomly.

• This can be done e.g. by using the current system time.
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Generating random numbers

• One practical implementation (Fortran90):
real function uniformrand(seed)

  implicit none

  integer :: seed,IA,IM,IQ,IR,MASK

  real :: ran0,AM

  integer :: k

  

  parameter (IA=16807,IM=2147483647,AM=1.0/IM)

        parameter (IQ=127773,IR=2836,MASK=123459876)

  seed=ieor(seed,MASK)

  k=seed/IQ

  seed=IA*(seed-k*IQ)-IR*k

  if (seed < 0) seed=seed+IM

  uniformrand=AM*seed

  seed=ieor(seed,MASK)

  return

end function uniformrand

• The repeat interval for this routine ~ 

2.1•109

• This routine is easily good enough if for 

instance it is only needed for the choice of 

random numbers in the beginning of an 

MD simulation. 
 

• In a long Monte Carlo integration where 

random numbers are used all the time, 

the repeat interval may be reached after 

which continued running will not improve 

on the results (and for instance the error 

estimate of the result will be calculated 

outright wrong). 

• More on this topic for instance from the book: Press, Teukolsky, Vetterling, Flannery: Numerical Recipes 

in C/Fortran, 2nd. ed., chapter 7.

• The book is on-line in its entirety (see http://www.nr.com/).

• But see also: “Why not use Numerical Recipes?”, http://math.jpl.nasa.gov/nr/  

and the reply to this: http://www.nr.com/bug-rebutt.html
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Generating random numbers

• To generate Gaussian random velocities we need to be able to generate Gaussian-distributed 

random numbers. 

• How to do this is dealt with in great detail in Numerical Recipes ch. 7.2. Here we only present the most 

efficient accurate algorithm for this: 

1o Obtain two evenly distributed random numbers v1 and v2 between -1 and 1, then calculate w v1
2

v2
2

+=

2o If w 1!  return to step 1o 

3o Calculate r 2 wlog–=

4o Calculate x rv1 w"=  and y rv2 w"=

5o Return x  and on next step y
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Choosing the MD time step

• Depends on the integration algorithm used, but not too strongly.

r
V(r)

r0

E• The change in the atom position in the potential used should not 

be too strong.

• A practical, rough rule-of-thumb: the atoms should not move 

more than 1/20 of the nearest-neighbour distance.

• Thermal velocity of atoms (Maxwell-Boltzmann distribution): 

                Erms
3
2
---k

B
T

1
2
---mv

2
  vrms

3kT

m
---------=#= =

• But the distribution continues much beyond this.

• Rough estimate of the time step needed: 300 K Cu (m 63.55u= ): 

• 5vrms 0.017 Å/fs=

• Nearest-neighbour distance 2.55 Å=> $t
2.55 20"

0.017
-------------------- fs 7.5 fs= =

• In practice for stability $t 4 fs% .
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Choosing the MD time step

• In pure MD there is no way to increase the time step above ~ 10 fs in atom systems at ordinary 

temperatures (77 K and up).
 

• If we would want to simulate a process which, say, takes 1 s, we would need at least 1014 time steps!  

• This gives an easy way to estimate the order-of-magnitude of the upper limit for the time scale 

MD can handle in a given time: 

• Most realistic classical MD interatomic potentials require at least of the order of 100 flops/atom/time step.  

• Say our time step is 1 fs, and we want to simulate a 10000 atom system.

• Hence we need 106 flops/time step. To get to 1 ns = 109 fs we would need 1015 flops. Assuming 1 Gflop/

s processor, the simulation would thus require 1015/109 seconds = 106 s i.e. about 11 days. To get to 1 !s 

would require some 30 years on this processor.

• Hence we see that ordinary MD is restricted to " 100 ns processes in practical use.
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Choosing the MD step 

• In ordinary equilibrium MD #t is usually constant throughout simulation

• But if the maximum velocity of atoms changes a lot during the simulation, it is best to use a variable time 

step, which increases as the maximum velocity decreases.

• Simulations of energetic processes: 

 

#t
n 1+ min

k
t

vmax
-----------

E
t

Fmaxvmax
------------------------- c#t

#t
n

tmax,$ $( )=  

 

k
t

maximum movement distance/time step (e.g. 0.1Å ) 

E
t

maximum allowed energy change/time step (e.g. 300 eV) 

c#t
prevents too large sudden changes (e.g. c#t

1.1= ) 

vmax maximum atom speed in system 

Fmax maximum force on any atom in system 

tmax time step once heat bath T  has been reached 

• The example values above have been found to work well for binary collisions up to 1 GeV in 

many materials.
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Choosing the MD step 

• What happens if  t is too long?
• The energy is not conserved.

Change in total !

energy

Temperature
• For instance solid copper (FCC lat-

tice, a 3.615Å= , EAM potential, 

code parcas) NVE simulation at 300 

K:!

• Hence the real criterion for selecting 

the time step becomes energy con-

servation: for every:!

• new kind of system

• new kind of process simulated

• new material

• new interaction potential!

• One needs to check that energy is 

conserved ‘well enough’ by some test 

simulations, before starting the real 

production runs.
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Acceleration methods

• Speeding up MD

• This can be achieved at least in some cases where we are 

interested in transitions induced by thermally activated pro-

cesses, i.e. processes which follow a behaviour of the type!
!

                         " "0 e
E– A kBT#

= !

!

where "  is the rate of the process occurring.!

• System spends most of its time in local potential energy min-

ima B
i
 (basins). 

• Every once in a while it gets enough kinetic energy to go over 

the barrier EA : rare events.

• Acceleration: increase "  by increasing the probability for barrier crossing.

• Modify EA  or T  (??)
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Acceleration methods

• Art Voter has presented so called Hyperdynamics [A. F. Voter, J. Chem. Phys. 106 (1997) 4665; 

Phys. Rev. Lett. 78 (1997) 3908]. It can in some cases speed up MD by a factor of the order of 

100-1000, in others not at all. 

• In this method, !t  does not increase, but the potential well is made shallower so that the probability of 

processes with a large activation energy increases. The error which is thus formed is compensated by 

transition state theory (which is beyond the scope of this course).

• The method is well suited for cases where we have to overcome a high potential energy barrier in an 

ordered system, e.g. vacancy and adatom diffusion. But if the energy barrier is low (e.g. interstitial migra-

tion in metals) or if we have numerous local energy minima close to each other, like in most amorphous 

and liquid systems, the method is useless.

Epot

Eboost

Eboost

Introduction to atomistic simulations 2008                2. Basics of molecular dynamics                                                                                                                                                      28

Acceleration methods

• Temperature accelerated dynamics (TAD)

• There is of course always is the Arrhenius extrapolation method: if we know that in our system there is 

only one single activated process occurring, and nothing else, we can simulate at higher T  and then 

extrapolate the Arrhenius-like exponential EA– kBT"# $exp  to lower T  to know the rate or time scale at 

lower T .

• A smart extension to Arrhenius extrapolation is Art Voter’s TAD method [e.g. Sorensen, Phys. Rev. B 62 

(2000) 3658; a review of Voters methods is given in Ann. Rev. Mater. Res. 32 (2002) 321]

• To understand the idea in this, let us consider a system with exactly 2 activation energies (this is just a 

tutorial example, the method works in principle for any number of activation energies). We want to simu-

late what the system does at 300 K, but the processes are so slow nothing happens there. So we will use 

a higher T , say 800 K. 
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Acceleration methods

• Let us then assume that the Arrhenius plot of the system looks as follows: 
lo

g 
!

, r
at

e 
of

 e
ve

nt
 o

cc
ur

an
ce

0 1/800 1/300

EA,1

EA,2 EA,1 > EA,2

1 T" 1/K# $

% %0 e
E– A kBT"

= %log& %0log
EA

kBT
----------–=

 

• Now when we simulate at 800 K, event type 1 will occur much more frequently than type 2. But we want 

to know the behaviour at 300 K, so this is wrong. The idea in TAD is to recognize every transition that 

occurs, determine its activation energy, and then leave out the events that would not occur at the lower T . 

In our example, this means that (almost) only events of type 2 would be accepted.
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Acceleration methods

• In principle this is an excellent idea, but in practice one needs thousands of force evaluations to recognize 

a transition barrier. Hence the difference between the rates of occurrance needs to be very large for a sig-

nificant gain to be achieved. But the gain can be huge (Example: simulating growth of Cu (001) surface at 

77 K the speedup factor is 107 !)

• Like hyperdynamics, if there are lots of shallow minima TAD tends to get stuck and never really gets any-

where.

• TAD is developed rapidly towards wider applicability, so it will be interesting to follow the progress.
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Constructing a neighbour list

• In MD simulations (and actually many other applications) one of the central operations is the 
calculation of distances between atoms. 
• In MD this is needed in the energy and force calculation.

• Trivial calculation of distances between atoms:

do i=1,N

  do j=1,N

if (i==j) cycle

dx=x(j)-x(i);

dy=y(j)-y(i);

dz=z(j)-z(i);

rsq=dx*dx+dy*dy+dz*dz

r=sqrt(rsq)

  enddo

enddo

• This algorithm is O N
2

( ) , i.e. very slow when N  ! "

• But in practice we know the atoms move < 0.2 Å/time step. So a large fraction of the neighbours remain 
the same during one time step, and it seems wasteful to recalculate which they are every single time.
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Constructing a neighbour list

• Solution: Verlet1 neighbour list:#

rcut
rm

i

“Skin” region

• Make a list which contains for each atom i the indices 
of all atoms j which are closer to i than a given distance 
r
m

. r
m

r
cut

$ , the cutoff distance of the potential#

• The list is updated only every N
m

 time steps.

• r
m

 and N
m

 are chosen such that#

#

           r
m

r
cut

– N
m

v%t$ ,#

#

where v  is a typical atom velocity and %t  the time step

1. Loup Verlet, Phys. Rev. 159 (1967) 98.
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Constructing a neighbour list

• An even better way to choose when to update the interval: after the neighbour list has been 
updated, keep a list of the maximum displacement of all atoms:

• Make a separate table dxnei(i)
• When you move atoms, also calculate dxnei(i)=dxnei(i)+dx
• Calculate the two maximal displacements of all atoms:

drneimax=0.0; drneimax2=0.0

do i=1,N

drnei=sqrt(dxnei(i)*dxnei(i)+dynei(i)*dynei(i)+dznei(i)*dznei(i))

if (drnei > drneimax) then

drneimax2=drneimax

drneimax=drnei

else 

if (drnei > drneimax2) then

drneimax2=drnei

endif

endif

enddo   

• Now, when drneimax+drneimax2 ! r
m

r
cut

–"  the neighbour list has to be updated.

• When the update is done, do dxnei(i)=0.0

• This alternative has two major advantages: the simulation does not screw up if one atom suddenly starts 
to move much faster than the average, and if the system cools down, the neighbour list update interval 
keeps increasing.
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Constructing a neighbour list

• In practice the neighbour list can look e.g. like the following:#

neighbours of atom 1 neighbours of atom 2 neighbours of atom N

NNei1 j1 j2 j3 jNNei
1
NNei2 j1 j2 NNeiN j1 j2 j3 jNNei

N
jNNei

2

• Here NNeii is the number of neighbours of atom i.

• j1, j2, ... are the indices of neighbouring atoms (different for different atoms).

• So, if we would have a 64 atom system, where every atom has 4 neighbours, the neighbour list could look 
like this:

4 2 3 63 64 4 1 3 4 5

neighbours of atom 1

4 1 61 62 63

neighbours of atom 2 neighbours of atom 64
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Constructing a neighbour list

• A practical implementation of creating the list:
 

nlistbeg=1

do i=1,N

nnei=0
Periodic boundaries 
omitted for brevity.

do j=1,N

if (i==j) cycle

dx=x(j)-x(i)

dy=y(j)-y(i)

dz=z(j)-z(i)

rsq=dx*dx+dy*dy+dz*dz

if (rsq <= rskincutsq) then

nnei=nnei+1

nlist(nlistbeg+nnei)=j

endif

enddo

nlist(nlistbeg)=nnei ! Write in number of i’s neighbours into list

nlistbeg=nlistbeg+nnei+1 ! Set starting position for next atom

enddo

• With the neighbour list, we can achieve a savings of a factor N
m

 in calculating the distances to 

neighbours.

• But even using the neighbour list, our algorithm is still O N2! " .
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Constructing a neighbour list

• Remedy: linked list / cell method

• Using a linked list and cellular division of the simulation cell, we can make the algorithm truly 
O N! " :

• Let’s divide the MD cell into smaller subcells: M M# M#  cells 

• The size of one subcell l is chosen so that 

                    l
L

M
----- r

m
$= ,  

where L  = the size of the MD cell, and r
m  is as above. 

• Now when we look for neighbours of atom i  we only have to look through 

the subcell where i  is, and its neighbouring subcells, but not the whole sim-

ulation cell. For instance if atom i  is in cell 13: 
 

1 2 3 4 5

6 10

11 15

16 20

21 22 23 24 25

7 8 9

12 14

17 18 19

13

 

The average number of atoms in a subcell is N
c

N M3%= . 

 

& We have to go through  27NN
c
   atom pairs instead of  N N 1–! " .

• For some interaction potentials (symmetric ij  pairs) it is actually enough to 

calculate every second neighbour pair (e.g. i j$ ) whence the number of 
pairs is further reduced by a factor of 2.
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Constructing a neighbour list

• A practical implementation: 

HEAD

0 1 0 3 2 4 5 7 6 9LIST

8 10

1 2 3 4 5 6 7 8 9 10

• array HEAD: 

• size = M3

• contains pointers to the table LIST

• tells where the neighbours in subcell m  
start

• array LIST:

• size = N

• element j  tells where the next atom index of atoms in this cell is
 

• So the example below means that subcell 2 contains atoms 10, 9, 6, 4, and 3

• This representation is indeed enough to give all the atoms in all cells. 

• A two dimensional array would of course also work, but would require much more memory, or dynamic 
allocation, both of which are less efficient. 
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Constructing a neighbour list

• Building the list:
• assume a cubic case:

HEAD

0 1 0 3 2 4 5 7 6 9LIST

8  3

1 2 3 4 5 6 7 8 9 10

• MD cell size = size(3)
• size of subcell =size()/M
• MD cell centered on origin

do i=1,N

head(i) = 0

enddo

do i=1,N

icell = 1 +  int((x(i)+size(1)/2)/size(1)*M) &

 int((y(i)+size(2)/2)/size(2)*M) * M &

 int((z(i)+size(2)/2)/size(3)*M) * M * M

list(i) = head(icell)

head(icell) = i

enddo

• So the list LIST is filled in reverse order to the picture above. 

• The above algorithm requires periodic boundaries. If the boundaries are open, an atom may get outside the cell bor-
ders, and the icell may point to the wrong cell.
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Constructing a neighbour list

• To account for possibly open boundaries properly things get a bit trickier:

• MD Cell size size(3)
• MD cell centered on origin
• Number of cells in different dimensions Mx, My, Mz

• Cell range 0 — Mx-1 and same in y  and z

do i=1,N

dx=x(i)+size(1)/2

! Check that we are really inside boundaries

if (periodic(1) == 1 .and. dx < 0.0) dx=dx+size(1)

if (periodic(1) == 1 .and. dx > size(1)) dx=dx-size(1)

ix=int((dx/size(1))*Mx)

! If not periodic, let border cells continue to infinity

1 2 3 4 5

6 7 8 9 10

11 12 14 15

16 17 18 19 20

21 22 23 24 25

13

if (periodic(1) == 0) then

if (ix < 0) ix=0

if (ix >= Mx) ix=Mx-1

endif

(and same thing for y and z)

icell=(iz*My+iy)*Mx+ix

list(i)=head(icell)

head(icell)=i

enddo

• So the subcells at open boundaries continue out to infinity:
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Constructing a neighbour list

• Usually the linked list (LIST, HEAD) is used to generate a Verlet list

• Decoding a linked list into a Verlet-list, as pseudocode:
• Cell size size(3)
• Number of cells Mx, My, Mz

do i=1,N

do (Loop over 27 neighbouring cells: inx iny inz)

icell=(inz*My+iny)*Mx+inx

! Get first atom in cell

j=head(icell)

do 

if (j==0) exit ! exit from innermost loop

(get distance r between atoms i and j)

if (r <= rneicut) then

(accept neighbour)

endif

j=list(j)

enddo

enddo

enddo
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MD code mdmorse

• A simplified MD code mdmorse has been written for this course:

• mdmorse simulates atom motion in a variety of metals (but only one metal at a time) with a simple Morse 
pair potential model.  
 

                            V r! " D e
2# r r0–! "–

2e
# r r

0
–! "–

–$ %=

• The code has a Verlet neighbour list (but not a linked list) and the equations of motion are solved with the 
velocity Verlet method.

• The code is given in Fortran90 and C.

• The code can be downloaded from the course web page. (I’ll email the exact location later.)

• The code has the input parameter and output routines included.
• Physically interesting subroutines have been removed from the code, so it does not work. 

• During the next few exercise sessions, you get the task of writing the missing subroutines. 
• Solutions will be provided and explained during the exercise sessions. 
• You may either use your own or the provided solutions afterwards. 
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Structure of the mdmorse code

• Program files:

main.f90 Main program
inout.f90 Miscellaneous input and output stuff
modules.f90 Global variables
physical.f90* Calculating T  and E , and random number generators
neighbourlist.f90* Getting the neighbour list
solve.f90* Solving the equations of motion
forces.f90* Calculating the forces

Makefile Makefile 
(If you have used Unix or Linux systems you should know how to make programs.)

• Files marked with * contain the subroutines which will be filled up during the exercises

• C version: *.c                    & *.f90  
        modules.f90  & global.h

• Compiling the code:

make

• This has been tested to work at least on Linux systems with a GNU compilers (gfortran and gcc).
• You may have to change the compiler command in Makefile.
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Structure of the mdmorse code

• Input files (file names are hardcoded): 

mdmorse.in Miscellaneous parameters
atoms.in Atom coordinates in XYZ format

• Running the program: 

./mdmorse        (or if you don’t want to disturb other users nice ./mdmorse)

• Should be done in the same directory where the input files are.

• Output files: 

standard output T , E , P  and other interesting output
atoms.out Atom coordinates at regular intervals 

• Note also that during the program running, the code writes out a large number of atom coordinates to a 
file atoms.out, which may grow very large. 
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Structure of the mdmorse code

• Input file mdmorse.in 

Sample input file for mdmorse md program

File format: $identifier, then value. Rest is arbitrary comments

Lines which do not begin with "$" are all ignored

Identifier Value Comment

---------- ------------- ---------------------------------

$initialT 600.0 Initial temperature

$desiredT 0.0 Variables for temperature control

$btctau 300.0 If btctau=0 no effect

$bpctau 0.0 Variables for pressure control

$bpcbeta 7.0e-4 If bpctau=0 no effect

$desiredP 0.0

$mass 63.546          For Cu

$xsize 18.126900793 Box size in each dimension

$ysize 18.126900793

$zsize 18.126900793

$periodicx 1 1=periodic, 0=open

$periodicy 1

$periodicz 1

$morseDe 0.3429 Morse potential parameters

$morsealpha 1.3588 These values are for Cu

$morseRe 2.866

$rpotcut 5.0 Potential cutoff 

$rskincut 6.0             Neighbour list cutoff

$nupdate 5             Number of steps between n-list updates

$nmovieoutput 100 Interval between atom movie output

$deltat 2.0 Time step in simulation in fs

$tmax 10000.0 Total simulation time
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Structure of the mdmorse code

• Input file atoms.in 

• The file is a normal XYZ atom coordinate file:

500

FCC cell made by makeFCC with a= 3.615 n= 5 5 5

Cu     -8.13375     -8.13375     -8.13375 

Cu     -6.32625     -6.32625     -8.13375  

...and so forth the remaining 498 atom coordinates.... 

Cu      6.32625      8.13375      8.13375 

Cu      8.13375      6.32625      8.13375  

• Note that the cell is centered on the origin.
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Structure of the mdmorse code

• Standard output (for the working code; F90 version):
--------------- mdmorse06 1.0F --------------------

Read in parameter $initialT        value  300.000

Read in parameter $desiredT        value  300.000

Read in parameter $btctau          value  300.000

Read in parameter $bpctau          value  500.000

Read in parameter $bpcbeta         value 0.700000E-03

Read in parameter $desiredP        value  0.00000

Read in parameter $mass            value  63.5460

Read in parameter $xsize           value  18.1269

Read in parameter $ysize           value  18.1269

Read in parameter $zsize           value  18.1269

Read in parameter $periodicx       value  1.00000

Read in parameter $periodicy       value  1.00000

Read in parameter $periodicz       value  1.00000

Read in parameter $morseD          value 0.342900

Read in parameter $morsealpha      value  1.35880

Read in parameter $morser0         value  2.86600

Read in parameter $rpotcut         value  5.00000

Read in parameter $rskincut        value  6.00000

Read in parameter $nupdate         value  5.00000

Read in parameter $nmovieoutput    value  100.000

Read in parameter $deltat          value  2.00000

Read in parameter $tmax            value  10000.0

Read in parameter $seed            value 0.873440E+07

Using periodics (1=on, 0=off) 1 1 1

Morse potential parameters: D alpha r0    0.342900    1.358800    2.866000

Movie output selected every     100 steps

Doing Berendsen temperature control with tau T   300.000   300.000

Doing Berendsen pressure control with tau beta   500.000     0.001

Reading in     500 atoms described as FCC Cu; boxsize      18.1000     18.1000

 Initial atom temperature is    605.224802743929

Neighbour list update found    78.000     neighbours per atom

ec      2.000    605.225     0.07738    -3.03989    -2.96251   164.34551

Outputting atom movie at t =      2.000

ec      4.000    594.069     0.07538    -3.03868    -2.96330   163.82195

bpc      4.000 18.132452 18.132452 18.132452  5961.69346   163.82195     1.00015

ec      6.000    574.307     0.07233    -3.03638    -2.96405   163.49694

. . .
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Structure of the mdmorse code

• And so on. Here most things are self-explanatory. 
• The “ec” and “bpc” lines contain the physically most interesting stuff in the following format:

time(fs) T  (K) E
kin

/at. E
pot

/at. E
tot

/at. P (kbar)    (energies in eV)

ec 4.000 594.069 0.07538 -3.03868 -2.96330 163.82195

time(fs) b
x

(Å) b
y

(Å) b
z
(Å) V (Å3) P (kbar)  

Berendsen

bpc 4.000 18.132452 18.132452 18.132452 5961.69346 163.82195 1.00015!

• Output file atoms.out 
• This file is in the XYZ format, but with the exception that column 5 contains the atom potential energy:

500

mdmorse atom output at time       2.000 fs boxsize      18.1269     18.1269     18.1269

Cu    -9.053407   -9.061041   -9.048299  -3.085270

Cu    -7.236810   -7.239921   -9.048988  -3.033905

Cu    -7.241191   -9.049845   -7.246436  -3.035222

Cu    -9.038484   -7.238137   -7.241429  -3.031141

.

.

.
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Structure of the mdmorse code

• Testing the incomplete code:

• Even though the code is not complete, it should compile and run in the intermediate stages. 
• The output should look something like:

!

Reading in     500 atoms described as FCC Cu; boxsize      18.1000     18.1000

Initial atom temperature is   0.000000000000000

Neighbour list update found   0.26928E+06 neighbours per atom

ec      2.000      0.000     0.00000     0.00000     0.00000     0.00000

Outputting atom movie at t =      2.000

ec      4.000      0.000     0.00000     0.00000     0.00000     0.00000

• I.e. the number of neighbours is nonsense, and the temperature is 0. 

• When you start doing the exercises, this should change and interesting things will start to happen.

• Note: Old versions of mdmorse are not compatible with the new one.
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• Structure of the program

Main program

main.f90

ReadParams

inout.f90

ReadAtoms
WriteAtoms

SetTemperature

physical.f90

GetTemperature
GetEnergies

gaussianrand

uniformrand
UpdateNeighbourlist

neighbourlist.f90

GetForces

forces.f90

Solve1

solve.f90

Solve2

Routines printed in magenta 
are written in exercises.

Warning: Remember that although routine and 
variable names here have small and capital let-
ters, Fortran is case insensitive. I.e. symbols 
 
         SetTemperature
         settemperature

refer to same routine (or variable).
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Set the initial conditions , r
i

t
0

 ! v
i

t
0

 !

Get new forces F
i
r

i
 !

Solve the equations of motion numerically over time step : 

        

"t
r

i
t
n

 ! r
i

t
n 1+

 !# v
i

t
n

 ! v
i

t
n 1+

 !#

t t "t+#

Get desired physical quantities

t t
max

 ?$ Calculate results 

and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P
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Solving the equations of motion

[Main source: Allen-Tildesley]

• In MD, what we really want to do is solve the equations of motion of N  atoms (or particles in 

general) interacting via a potential V  %

• Lagrange equations of motion:%

td

d

q· i
&
&L

' (
) *
+ ,

qi
&
&L

– 0= ;%

L q q
·- ! K q q

·- ! V q q
·- !–= %

q  = generalized coordinate%

• By using the cartesian coordinates %
q

i
r
i

=   %

K r
· !

1

2
---m

i

i

. r·
i

2
= ,%

V V r != , %
we get the familiar (Newtonian) form%

m
i
r

i
··

f
i

= , %

where f
i

/
ri

L /
ri

V–= =  is the force acting in atom i  %
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Solving the equations of motion

• We can also start by considering the Hamiltonian equations of motion 

q·
i p

i
!

!H
= , p·

i q
i

!

!H
–= , 

where p
i q·

i
!

!L
=  is the generalized momentum 

and H q p"# $ q·
i
p

i

i

% L q q
·

"# $–=  the Hamiltonian function (we assume that q·
i
 can be 

given as a function of p )

• If V  does not depend on the velocities, we get quickly back to the familiar form 

H q p"# $ K p# $ V q# $+=  

and if we again use cartesian coordinates the equations of motion will be: 

r
·
i

p
i

m
i

------=  

p
·

i &
ri

V– f
i

= =  

• So we have two alternatives:
1. Solve a system of 3N  2nd order ODE’s  (m

i
r
··

i f
i

= ) derived from the Lagrangian or Newtonian formalism 

2. Solve a system of 6N  1st order ODE’s derived from the Hamiltonian formalism
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Numerical solution of equations of motion

• Finite difference method: from a system configuration (atom positions, velocities etc.) at time t  

we calculate the configuration at time t 't+

• 't  can be constant or variable

• initial conditions r 0# $ , v 0# $  have to be known (initial value problem) 

 

• As an example a predictor-corrector -algorithm:  

• Use a Taylor series to predict the system configuration at time t 't+  using the 

small deviation 't : 

 

r
p

t 't+# $ r t# $ 'tv t# $
1

2
---'t

2
a t# $

1

6
---'t

3
b t# $ (+ + + +=  

v
p

t 't+# $ v t# $ 'ta t# $
1

2
---'t

2
b t# $ (+ + +=  

a
p

t 't+# $ a t# $ 'tb t# $ (+ +=

Equations of motion 

not (yet) used.

 

b
p

t 't+# $ b t# $ (+=  

• v , a  and b  are higher time derivatives of r : 

v  = velocity, a  = acceleration and b  = the time derivative of acceleration. 
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Numerical solution of equations of motion

• We can instead of b  also use information from previous time steps: 

r t! " v t! " v t #t–! " v t 2#t–! "$ $ $% &  

 or r t! " v t! " a t! " a t #t–! "$ $ $ &

• Correction step: we now have r
p

, from which we can get the forces at 

t #t+   

' accurate corrected accelerations a
c

t #t+! "  

' error in accelerations  (a t #t+! " a
c

t #t+! " a
p

t #t+! "–=

Equations of motion 

now used.

 

• Using this known error, one can calculate corrected positions, velocities and so on 

r
c

t #t+! " r
p

t #t+! " c
0
(a t #t+! "+=  

v
c

t #t+! " v
p

t #t+! " c
1

(a t #t+! "+=  

a
c

t #t+! " a
p

t #t+! " c
2

(a t #t+! "+=  

b
c

t #t+! " b
p

t #t+! " c
3
(a t #t+! "+=  

• The constants c
i
 depend on how many derivatives of r  we include and the degree of the equation, etc.

• The correction can also be iterated

• But no in MD: calculating the forces expensive ' use an algorithm requiring only one evaluation of the 

force per time step (one correction)

• If the correction is not iterated, an obvious choice is c
2

1= .
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Numerical solution of equations of motion

• Thus we reach the following approach to solving the MD equations of motion: 

(a) predict r , v  and a  for the time t #t+  using the present values  

of the same variables 

(b) calculate forces and hence a f m)=  from the new r  

(c) correct the predicted r , v  and a  etc. using the new a  

• Requirements for a good MD algorithm 

 

(a) fast (not that important) 

(b) takes little memory (important) 

(b) allows a long time step #t  (important) 

(c) reproduces the correct path (see below) 

(d) conserves energy (and is reversible:  

#t #t–*  ' back to original state) (very important) 

(f) easy to implement (not that important) 

(g) only one force evaluation/time step (important for complex V ) 
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Numerical solution of equations of motion

• Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time. 

Since all computers have limited floating-point precision, a small round-off error will eventually grow to a 

large difference (Lennard-Jones system; in reduced units  * 0.6= , T* 1.05= ):

Source: Allen-Tildesley

     Initial
displacement

K
in

e
ti
c
 e

n
e
rg

y
 d

if
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n
c
e

P
h

a
s
e

 s
p
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c
e
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ta
n

c
e

 f
ro

m
 t

h
e

 r
e

fe
re

n
c
e

 t
ra

je
c
to

ry

• A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccura-

cies.!
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Common algorithms

• In the following we present some of the most common MD algorithms:

• Verlet
• Derived from the following two Taylor series:!

r t "t+# $ r t# $ "tv t# $
1

2
---"t

2
a t# $ %+ + += !

r t "t–# $ r t# $ "tv t# $–
1

2
---"t

2
a t# $ %+ +=

• Sum them up and rearrange: !

r t "t+# $ r t "t–# $+ 2r t# $ "t
2
a t# $+= !

&r t "t+# $ 2r t# $ r t "t–# $– "t
2
a t# $+= !

• So we have an algorithm which essentially does:!

r t# $ a t# $ r t "t–# $' '( ) r t "t+# $ a t "t+# $'( )* .!

• However, the velocities are missing; these can be calculated from!

v t# $
r t "t+# $ r t "t–# $–

2"t
-----------------------------------------------= .!

• The error per iteration O "t
4

# $ ; in the velocities O "t
2

# $ .

• Memory requirement: 9N .

• Numerical problems, fluctuates heavily
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Common algorithms

• Leap-frog
• Mathematically equivalent with Verlet (not numerically) 

r t! " a t! " v t
1

2
---#t–$ %

& '( (
) *
+ ,
- .

r t #t+! " a t #t+! " v t
1

2
---#t+$ %

& '( (
) *
+ ,
- .

/  

v t
1

2
---#t+$ %

& ' v t
1

2
---#t–$ %

& ' #ta t! "+=  

r t #t+! " r t! " #tv t
1

2
---#t+$ %

& '+=  

• Velocity  

v t! "
1

2
--- v t

1

2
---#t–$ %

& ' v t
1

2
---#t+$ %

& '+=   

for energies etc. 

• Advantage: explicit v . 

• Memory requirement 9N . 

• But still velocities at different time than the positions.
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Common algorithms

• Velocity Verlet
• Eliminates the half-step velocity problem 

 
r t! " v t! " a t! "( (0 1 r t #t+! " v t #t+! " a t #t+! "( (0 1/  

r t #t+! " r t! " #tv t! "
1

2
---#t

2
a t! "+ +=  

v t #t+! " v t! "
1

2
---#t a t! " a t #t+! "+2 3+=  

• If we would eliminate v  we would get back to normal Verlet

• This can also be considered to be a simple predictor-corrector-algorithm: 
(same as three stage Gear with r  correction 0= ): 
 
1. Predictor stage: 

r t #t+! " r t! " #tv t! "
1

2
---#t

2
a t! "+ +=  

v
p

t
1

2
---#t+$ %

& ' v t! "
1

2
---#ta t! "+=  

2. Corrector stage: 

v
c

t #t+! " v
p

t
1

2
---#t+$ %

& ' 1

2
---#ta t #t+! "+=  

• Memory requirement 9N .
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Common algorithms

• Schematic illustration of the progress of different Verlet algorithms: 

 

Source: Allen-Tildesley

Verlet

Leap-frog

Velocity-Verlet

 

• Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accu-

rate.
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Common algorithms

• Velocity Verlet as pseudocode:

do i=1,N

x(i)=x(i)+deltat*vx(i)+0.5*deltat**2*ax(i)

vx(i)=vx(i)+0.5*deltat*ax(i)

((and same for y and z))

enddo

((get new forces F and accelerations ax(i)))

do i=1,N

vx(i)=vx(i)+0.5*deltat*ax(i)

((and same for y and z))

enddo

 

 

 

• Comparison of performance 
• 500 Cu atoms at 300 K

• Euler: r t !t+" # r t" # !tv t" #+=   

v t !t+" # v t" # !ta t" #+=
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Common algorithms

• Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.) 

• Equivalent with Verlet if v  eliminated, but velocity more accurate 

 

r t! " v t! " a t! " a t #t–! "$ $ $% & r t #t+! " v t #t+! " a t #t+! "$ $% &'  :  

r t #t+! " r t! " #tv t! "
2

3
---#t

2
a t! "

1

6
---#t

2
a t #t–! "–+ +=  

v t #t+! " v t! "
1

3
---#ta t #t+! "

5

6
---#ta t! "

1

6
---#ta t #t–! "–+ +=  

• Memory requirement 12N  
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Common algorithms

• Ion irradiation physics

• Initially E
max

1 100 keV–(  ; 

• In the end E
max

k
B

T(  ) variable time step 

• Let us mark r
n

r t
n

! "= ; r
n 1+

r t
n

#t+! "=  

• Smith & Harrison (Computers in Physics 3 (1989) 68): 

 

r
n
v

n
a

n
a

n 1–
$ $ $% & r

n 1+
v

n 1+
a

n 1+
$ $% &'  : 

• Taylor : r
n 1+

r
n
v

n
#t

n
a

n

#t
n

2

2
---------- a'

n

#t
n

3

6
---------- O #t

n

4
! "+ + + +=

Time step ratio

 R
#t

n

#t
n 1–

---------------=

 

• Estimate a'
n

a
n
a

n 1–
–

#t
n 1–

------------------------- O #t
n 1–

! "+=  

 

) Predictor for positions: 

r
n 1+

r
n
v

n
#t

n
3 R+! "a

n
Ra

n 1–
–* +

#t
n

2

6
----------+ += (1) 

 

Velocity: 

v
n 1+

v
n
a

n
#t

n
a'

n

#t
n

2

2
---------- a''

n

#t
n

3

6
---------- O #t

n

4
! "+ + + +=
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Common algorithms

• Force calculation from r
n 1+

: 

! a'
n

a
n 1+

R
2
a

n 1–
R
2

1–" #a
n

+–

$t
n
1 R+" #

-------------------------------------------------------------------------=  

a''
n

2R
a

n 1+
Ra

n 1–
R 1+" #a

n
+–

$t
n

2
1 R+" #

--------------------------------------------------------------------=

• Let’s insert these into the Taylor series of v
n 1+

: 

! v
n 1+

v
n

3 2R+" #a
n 1+

1 R+
----------------------------------- 3 R+" #a

n

R
2
a

n 1–

1 R+
--------------------–+

$t
n

6
-------+=  (2) 

• Algorithm: 

(a) calculate new positions r
n 1+

 using equation (1) 

(b) calculate new accelerations a
n 1+

[(d) correct the positions using 

 

      

but this demands two force evaluations per time step]

rn 1+ rn vn$tn

2 R+" #an 1+

1 R+
------------------------------ 4 R+" #an

R
2
an 1–

1 R+
------------------–+

$tn

2

12
---------+ +=

 

(c) calculate velocities using equation (2) 

• Memory 12N , error O $t
n

4
" # .

• With a constant time step this reduces to the fairly simple form. 

!     r
n 1+

r
n
v

n
$t

n
4a

n
a

n 1–
–% &

$t
n

2

6
----------+ += ,        v

n 1+
v

n
5a

n 1+
8a

n
a

n 1–
–+% &

$t
n

12
-------+=
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Common algorithms

• Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD1.

• Using the notation: r
i

r
i" #

$t" #
i

i!
--------------------=  , where r

i" #

t
i

i

'

'
r=  

 

we get the predictor r
i

p
:    

r
0

P
t $t+" #

r
1

P
t $t+" #

r
2

P
t $t+" #

r
3

P
t $t+" #

r
4

P
t $t+" #

r
5

P
t $t+" #

1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1

r
0

t" #

r
1

t" #

r
2

t" #

r
3

t" #

r
4

t" #

r
5

t" #

=  

• Note that the triangle is simply a Pascal’s triangle matrix.

• For 2nd order (Newtonian) equations of motion, error term is $r
2

r
2
r
2

p
–= . 

 

1. G. W. Gear, Numerical initial value problems in ordinary differential equations, (Prentice-Hall, Englewook Cliffs, NJ, USA) 1971; Allen-Tildesley
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Common algorithms

• Corrector:r
n

c
r

n

P
 !r

2
+= ,  

3 16"

251 360"

1

11 18"

1 6"

1 60"

0.1875

0.6972

1.0000

0.6111

0.1667

0.0167

= = #

• Note that if the forces may depend on the velocities, we should have  
0

3 20"=  instead.
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Common algorithms

E
to

t

2
$

%1
2"

Source: Allen-Tildesley

!t

Velocity Verlet

Gear4

Gear5 Gear6

• The fluctuations in energy of different 

algorithms as a function of the time step 

is illustrated on the right#

(Lennard-Jones system; in reduced units 

&* 0.6= , T* 1.05= )

• So the ‘better’ algorithms have much less 

fluctuations for very short timesteps.#

#

#
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Common algorithms

• Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K.  

Potential = EAM

Curves are shifted in y direction in order 

to make the figures clearer.
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Newer algorithms

• Tuckerman, Berne and Martyna have recently developed new reversible MD-algorithms using a 

Trotter factorisation of Liouville propagators.

• The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms 

[Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]

• It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accu-

racy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

• New algorithms ! not much experience.

• So, what algorithm should one use? 

• A quick solution which works well with short time steps: velocity Verlet.

• If one wants minimal oscillations in the total energy: Gear5.

• If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.
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Set the initial conditions , r
i
t0 ! v

i
t0 !

Get new forces F
i
r
i

 !

Solve the equations of motion numerically over time step : 

        

"t
r
i
t
n

 ! r
i
t
n 1+ !# v

i
t
n

 ! v
i
t
n 1+ !#

t t "t+#

Get desired physical quantities

t tmax ?$
Calculate results 

and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P
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Calculating the forces between atoms

• The forces between atoms can be calculated in many different ways
• This lecture: 

• classical potentials. 

• pair potentials, many-body potentials

• Quantum mechanics

• A classical potential can be written in the form:%

V V1 ri !

i

& V2 ri rj' ! V3 ri rj rk' ' ! (+

i j k' '

&+

i j'

&+=

• V  is the total potential energy of an N  atom system. 

• In principle all sums loop from 1  to N  

• V1 : single particle potential: external forces

• V2 : pair potential which only depends on the distance between atoms r
ij

 

• direct dependence on the vectors r
i
, r
j
  => dependence on the choice of the origin

• V3 : three-body potential which may have an angular dependence

• depends only on three variables, i.e. V3 V3 rij rik )
ijk

' '( )= %

• Four-body potentials, even five-body terms: chemical and biological applications
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Calculating the forces between atoms 

• V2  and V3  enough to describe the basic mechanical and structural properties of most elements and sim-

ple compounds

• In order that things would not be too straightforward, in many cases a environment-dependence (i.e. 

implicit three-body term) is embedded into the two-body term V2 . We will give examples on these later. 

• All terms which are not pure single particle or pair potentials are called many-body terms.
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Calculating the forces between atoms

• Classification of empirical interatomic potentials [A. E. Carlsson, Solid State Physics: Advances 

in Research and Applications, 43 (1990) 1.]

• Pair Potential V VP rij! "

i j#

$=  

• Pair Functional Potential V VPF %
i

! "

i

$= ,      %
i

f r
ij

! "

j i&

$=
If  

' pair potential

f r! " ar=
  

• Cluster Potential  V VCP rij rik rjk# #! "

i j k& &

$= Only clusters of 

three atoms here
    

• Cluster Functional Potential  V VCF %
i

! "

i

$= ,       %
i

g r
ij
r
ik
r
jk

# #! "

j k#

i j k& &

$=  

• Real potentials combinations of these: e.g. EAM for metals V VPF %
i

! "

i

$ VP rij! "

i j#

$+=
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Force calculation for pair potentials

• Pure pair potential V r
ij

 ! . The force acting on atom i  from atom j   

j

i
rij

fij

-fij

"

"

f
ij

#–
ri
V r

ij
 ! #–

rij
V r

ij
 !

x
ij

$
$V

x
ˆ

y
ij

$
$V

y
ˆ

z
ij

$
$V

z
ˆ

+ +–= = =  ,"

      (xˆ , yˆ , zˆ  unit vectors)"
"

r
ij

r
i
r
j

–= ,  x
ij

x
i
x
j

–=  etc., 
x
ij

$
$V

rd

dV

x
ij

$

$r
ij

= ,  
x
ij

$

$r
ij

x
ij

r
ij

------=  "

"

%  f
ij rd

dV
r rij=

r
ij

r
ij

------&–= "

• To be precise #  operates on the position r
i
 of atom i :. (Makes a difference for many-body 

potentials.)

• Cut-off radius r
c
: atom pairs with r

ij
r
c

'  do not interact,  r
c

a few Å( . "
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Force calculation for pair potentials

• In case the potential extends to infinity, an analytical correction can be made to the energy, and 

other quantities of interest:"

V
tot

V
2
V
corr

+ E
c

2)N* r2V r ! rd

rc

+

,+= = "

where * "is the atom density of the system."

• This obviously assumes that when r r
c

'  the atom density is constant everywhere, and thus does not 

work when for example a surface is present.
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Force calculation for pair potentials

• Discontinuity at rc    jumps in energy

• Solution: take the potential to zero in  r
c
r
c
! "r+# $  

• potential and the force are continuous (3rd order polynomial) or

• displace the potential, as the zero point of V  is arbitrary but this changes the value of Vtot                                          

• Many modern potentials are in fact defined so that they have a well-defined cutoff rc  where V  and at least 

the first derivative are % 0.

rc

V(r)

r
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Force calculation for pair potentials

• Example: cut-off of Lennard-Jones potential

shift and tilt

polynomial

rc 2.3 Å= "rc 0.2 Å=

VLJ r& '

P r& '

(
(

VLJ r& ' 4)
*
r
---
+ ,
- .

12 *
r
---
+ ,
- .

6
–= (

• Shift and tilt the potential: V r& '  and V' r& '  continuous at 

rc :(

(

V r& ' VLJ r& ' r rc–& 'V'LJ rc& '– VLJ rc& '–=

• Problem: may change the potential at smaller r  values(

• Fit a polynomial P r& ' ar
3
br

2
cr d+ + +=  from 

rc rc "rc+!# $ :(

(

P rc& ' VLJ rc& '=

P' rc& ' V'LJ rc& '=

P rc "rc+& ' 0=

P' rc "rc+& ' 0=/
0
0
1
0
0
2

(
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Force calculation for pair potentials

• Problem: high forces may result (see below) 

• Brenner potential for carbon (Well, this is not a pair potential): 

• Potential quickly to zero; doesn’t look too bad 

• However: huge forces; effect seen in fracture simulations  

(see also M. Sammalkorpi et al., Phys. Rev. B 70 (2004) 245416.) 

T. Belytschko et al., Phys. Rev. B 65 (2002) 235430.

potential force
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Force calculation for pair potentials

• Force calculation without periodic boundaries or neighbour list:

do i=1,N 
   do j=1,N

if (i==j) cycle

rijx = rx(j)-rx(i)

rijy = ry(j)-ry(i)

rijz = rz(j)-rz(i) 
rijsq = rijx**2+rijy**2+rijz**2

rij = sqrt(rijsq) 
if (rij < rcut) then 
V = (Potential energy per atom)/2

dVdr = ...derivative of potential energy with respect to its only argument r...

a = -dVdr/m/2.0 ! Unit transformations may be needed. Note the factor 1/2!!

ax(i) = ax(i)-rijx/rij*a ! The application on both

ax(j) = ax(j)+rijx/rij*a ! i and j ensures that

ay(i) = ay(i)-rijy/rij*a ! Newton’s third law is

ay(j) = ay(j)+rijy/rij*a ! fulfilled

az(i) = az(i)-rijz/rij*a

az(j) = az(j)+rijz/rij*a

endif 
enddo 

enddo
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Force calculation for pair potentials

• Use of Verlet neighbour list (cf. lecture 3):

startofineighbourlist=1

do i=1,N

nneighboursi=neighbourlist(startofineighbourlist) 
do jj=1,nneighboursi

j=neighbourlist(startofineighbourlist+jj)

rijx = rx(j)-rx(i)

rijy = ry(j)-ry(i)

rijz = rz(j)-rz(i) 
rijsq = rijx**2+rijy**2+rijz**2

rij = sqrt(rijsq) 
if (rij < rcut) then 
V = (Potential energy per atom)/2

dVdr = ...derivative of potential energy with respect to its only argument r...

a = -dVdr/m/2.0 ! Plus unit transformations ! Note the factor 1/2!!

ax(i) = ax(i)-rijx/rij*a

ax(j) = ax(j)+rijx/rij*a

ay(i) = ay(i)-rijy/rij*a

ay(j) = ay(j)+rijy/rij*a

az(i) = az(i)-rijz/rij*a

az(j) = az(j)+rijz/rij*a

endif 
enddo

startofineighbourlist=startofineighbourlist+nneighboursi+1

enddo 
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Force calculation for pair potentials

• Note that in the sum above every interaction is counted twice:

do i=1,N 
   do j=1,N

if (i==j) cycle

...

• That is, e.g. interaction 1-3 is counted both as 1-3 and 3-1. Hence the factor 1/2 in front of the potential energy summa-

tion and forces (this actually depends on the exact definition of the potentials, some already have a factor of 1/2 in 

front).

• A straightforward solution:

do i=1,N-1 
   do j=i+1,N

...

(either in constructing the neighbour list or forces) reduces the calculation time to one half.  

• For some many-body potentials this does not work.

• V r! "  often is defined to give the total energy for a pair of atoms. When one wants the potential energy per 

atom one thus may have to include one more factor of 1/2. But this additional factor is not needed in the 

force calculation since the force always affects both atoms (Newton’s III law).

• Note that the sign conventions in defining r
ij

 in the literature may vary.
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Force calculation for pair potentials

• One practical way of checking that you have correctly derived the forces from the potential 

energy and that all signs and factors of ½ are OK in you potential implementation:

1. Calculate Epot  at 0 K and compare with an analytical prediction for some simple system, e.g. a dimer or 

perfect lattice.

2. Simulate a two-atom system starting from a very small distance, so that Epot  is very large, much larger 

than the equilibrium energy per atom (say 10000 eV). When you run the simulation with a very small time 

step the atoms should explode outwards from each other so that the final Ekin /atom is the same as the 

original Epot /atom. If you are uncertain what a ‘very small’ time step is, keep decreasing it until the 

answer doesn’t change.

3. Another good test: numerical derivation of potential energy: 
 

Move one atom in direction sˆ  amount !s .  

Directional derivative of the potential (assume sˆ 1= ): 
 

V r" #$

s
ˆ

$
--------------

V r hs
ˆ

+" # V r" #–

h
-----------------------------------------

h 0%
lim &V r" # s

ˆ
' F r" # s

ˆ
'–= = =

Computed from  
potential energy  
as !V !s(

Computed from  
forces as 

 Fxsx F
y
s
y
F
z
s
z

+ +

r

s F

F r" # s'
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Force calculation for a three-body potential

• For a pure pair potential for an interaction between atoms i  and j  V
ij

V
ji

=  because 

V r
ij

" # V r
ji

" #=  and hence also &
i
V
ij

&
i
V
ji

=  as described above. This symmetry simplifies the 

force calculation.

• For a three-body potential things get trickier because V
ij

 may not =  V
ji

. To get the force F
i
 act-

ing on an atom i  one instead has to calculate 

 

F
i

V
ij

V
ji

+" #

j

) V
jki

k

)
j

)+i&– Vi&
ij

V
jii&+" #

j

) Vi&
jki

k

)
j

)+–= =  

• Many practical three-body potentials have been written such that 
 

V
3
r
ij
r
ik

*
ijk

+ +( ) V
3
r
ij
r
ik

*
ijk

cos+ +( )=  

 

i.e. all angular information is in a cosine term. 
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Force calculation for a three-body potential

i

j
rij

krik

 ijk

!

 
ijk

cosi"
r
ij
r
ik

#

r
ij
r
ik

----------------
$ %
& '
( )

**
 ijkcos

r
ij

2
------------------ 1

r
ij
r
ik

------------– r
ij

 
ijk

cos

r
ik

2
------------------

1

r
ij
r
ik

------------– r
ik

+= =i"=

• In this case one can utilize the following equalities:!

 
ijk

cos
r
ij
r
ik

#

r
ij
r
ik

----------------= !

   !

that is, no need to evaluate cos function.

• In many-body potentials there are often symmetries which can be used to reduce the number of 
operations needed in the force calculation even more.
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The origin of interactions

• Qualitatively a two-atom interaction looks like the following:

r

V(r)

r0

• The minimum, i.e. equilibrium distance, is 
r
0
.!

• At small separations there is a strong 
repulsion. Just below r

0  this derives pri-

marily from the Pauli rule preventing elec-
trons being in states with the same 
quantum numbers, and from the electron-
electron repulsion, whereas when the 
nuclei are very close to each other, the 
Coulombic repulsion between the nuclei 
dominates completely.!

• At larger distances there may be an attraction, which can have different reasons: van der 
Waals attraction, Coulomb attraction, a covalent bond, (due to pairing of valence electrons) or 
metallic bonding!

• Potential may also be purely repulsive
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• A few examples (1 bohr = 0.53 Å)
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• Overview of bonding expected in different cases, and illustration of electron distributions
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• So for the pure elements we get the familiar division:
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Idealized potentials for theoretical and qualitative studies

Source: Allen-Tildesley

• Hard sphere:      V
HS

r !
" r #$%

0 r #&%'
(
)

= *

• First MD simulations were carried out with 
this potential.

• The equations of motion reduce to calcu-
lating where the next collision occurs: true 
billiard ball physics*

• Applications in packing problems*

• Square well:     

V
SW

r !

" r #1$%

+– #
1
r #

2
$,%

0 r #
2

&%'
-
(
-
)

= *

• soft sphere:      V
SS
r ! +

#
r
---

.
=
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“Realistic” pair potentials

• Lennard-Jones (LJ)  

                                V r! " 4#
$
r
---

% &
' (

12 $
r
---

% &
' (

6
–=

• The attractive 1 r
6

) - term can be derived from the dipole-dipole interaction, or as the interactions between 
two oscillators (QM)  [Kittel, Introduction to Solid State Physics, 7th edition, p. 62]. It is also known as the 
Van der Waals or London interaction.

• The repulsive term 1 r
12

)   chosen for convenience.

• Also other exponents used; notation for any two exponents A and B is LJ (A-B) potential.

• # and $ are usually chosen by fitting into experimental data. $ gives the equilibrium distance # the cohe-
sive energy.

• A few Lennard-Jones-parameters for gases [Ashcroft-Mermin s. 398]:
                                       Ne           Ar                 Kr          Xe

# (eV)  0.0031      0.0104          0.0140    0.0200
$ (Å)      2.74         3.40          3.65        3.98

• Very weak interaction: e.g. Vmin 3.1 meV–=  for Ne. 

• LJ (12-6) potentials have proven to be good for noble gases (filled electron shells * almost always neu-
tral) close to equilibrium. But they are obviously terrible for very small r  (r 1 Å+ ) since the true interaction 

is e
r–
r)  and not 1 r

12
) .
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“Realistic” pair potentials

• LJ potentials have been, and are used a lot, for instance in molecular modelling, in many cases even in 
systems where there is no physical motivation to using the LJ functional form. But if the fit is good for 
some purpose, using it may still be justified as long as the limitations are kept in mind.

• Reduced units 

• If a potential only has a couple of parameters, evaluating it can be really efficient in reduced units 

• Also, in reduced units the results are always the same, so the results can be transferred to different sys-
tems with straightforward scaling. 
 

• For instance for the Lennard-Jones-potential: 
 

V r! " 4#
$
r
---

% &
' (

12 $
r
---

% &
' (

6
–=     [or any V r! " #f r $)! "= )] 

 
* Natural length unit = $  

natural energy unit = #  
 

* V* x! " 4 x 12– x 6––, -=  
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“Realistic” pair potentials

• other units: 

t
*

t m!
2

" # $%& '
1 2%

%=  

(
*

(!
3

=  

T
*

kBT $%=  

P
*

P!
3

$%=  

f
*

f! $%=  

v
*

v $ m%& '
1 2%

%=  

• Reduced units were very popular when one had to save CPU time in every single multiplication, and 
when potentials were still as simple as LJ. 
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“Realistic” pair potentials

• Morse potential

• Simple metals (sp-metals, e.g. Na, Mg, Al; and metals with the 
fcc- or hcp-structure), are at least to some extent describable 
with a pair potential

Girifalco and Weizer, Phys. Rev. 114 (1959) 687.

 

• A popular choice: the Morse potential [P. M. Morse, Phys. Rev. 
34 (1930) 57.]:

 

                  V r" # De
2) r r0–" #– 2De ) r r0–" #––=  

• Designed originally to describe vibrations in molecules. 
• The Schrödinger equation happens to have an analytical solution for 

this functional form.  

• Efficient to evaluate, in the form above only one exponential 
function needs to be evaluated.  

• Decays faster at large r  than Lennard-Jones: less problems 
with cut-off.

• A fit for many metals [Girifalco and Weizer, Phys. Rev. 114 
(1959) 687.]

• Works decently for being a pair potential.
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“Realistic” pair potentials

• An ordinary pair potential has a close-packed structure as the ground state. (usually either 
“face-centered cubic”, FCC or “hexagonal close packed”, HCP).

HCP FCC
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“Realistic” pair potentials

• A pair potential can thus not describe well elements with other structures than FCC or HCP. But 

this doesn’t mean people haven’t tried:

• Diamond lattice: open structure, four nearest neighbours, very far from close packed.

• Still, it is actually possible to make diamond stable locally with a pair potential, but this will become rather 

pathological (Mazzone potential for Si, [Phys. Stat. Sol (b) 165 (1991) 395.]):

r

V(r)

r0

Morse harmonic well

• Does actually work close to perfect lattice.

• But what happens when atoms leave the har-

monic well due to e.g. a high temperature?

• A good example showing that even almost 

complete rubbish gets published. 

• Unfortunately this is not uncommon regarding 

interatomic potentials: one has to be very crit-

ical of any new potential! Even well-respected 

physicists have presented potentials which 

have some very pathological features...
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“Realistic” pair potentials

• Ionic compounds

• Different ions, between which the electron density is very 
small. The ions have filled electron shells, and are thus 
unlikely to change their electron configuration 

• An extreme examples: NaCl: 

• A pair potential approximation works quite well, and poten-
tials abound in the literature, as there is much experimental 
data available for the alkali halides which can be used in 
potential fitting. 

• Potentials typically contain a short-range (SR) term and the 
Coulomb interaction: 
 

V r
ij

! " VSR r
ij

! "
z1z2e

2

4#$0rij
------------------+= ; z

i
 = ion charges 

• VSR : repulsive force between electrons packed closely together and an attractive van der Waals (vdW) 

interaction 
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“Realistic” pair potentials

• Most common forms for the short range potential: 
 

Buckingham:  VSR r! " Ae r %/– C

r6
-----–=  

 

Born-Huggins-Mayer:  VSR r! " Ae B r &–! "– C

r6
----- D

r8
-----––=  

 

Morse: VSR r! " De
2' r r0–! "– 2De ' r r0–! "––=  

 

• 1 r
6

( -term comes from the dipole-dipole interaction (again) 
 

• The repulsion is usually significant only for nearest neighbours, and the vdW interaction for next-nearest neighbours. 
Frequently for instance in oxides the only interaction assumed between cations is their Coulombic repulsion. 
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Fitting of potential parameters

• In almost all classical potentials there is a number of free parameters, e.g. in Lennard-Jones 2 
(  and ! ), Morse 3 (D , " , r0 ) etc.

• An extreme example: the ReaxFF model for hydrocarbons:#
A.C.T. van Duin et al., J. Chem. Phys. A 105 (2001) 9396.
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Fitting of potential parameters

• Two main approaches to develop a potential exist:

1. Derivation from so called ab initio (quantum mechanical) calculations

2. Fit to empirical and/or ab initio data

• Although the previous approach is better motivated physically, in practice the latter approach, or a combi-
nation of the two, often works better.

• A good classical potential is one which with a small number of free parameters can describe a 
wide range of properties well (usually 5-20 % accuracy in condensed matter physics is consid-
ered to be “well”, since experiments seldom are much more accurate than this). #

• A related concept is that a good potential should be transferable, which means that it should 

be able to describe properties of other states of the material than those it was originally fitted to.
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Fitting of potential parameters

• Regarding fitting the parameters in a potential of type 2, there are two opposite extreme 
approaches:

1. “Blind fitting” : choose a functional form and a set of data to which the parameters are fit. Then use some fitting routine 

to obtain a best fit to all the data. 

2. “Parameter choice by hand”: use reliable experimental or ab initio data of crucial data to set as many potential pa-

rameters as possible exactly, then fit only the remaining (if any) parameters. For instance, the equilibrium separation, 

binding energy and vibration frequency for a dimer can be used to fix all the 3 Morse potential parameters.

• A pure approach 1 is dangerous in that quantities which are outside the original parameter set may obtain 

completely pathological values. 
• Example: some Si bulk potentials predict that the Si dimer is non-bonding. 

• Also, if some potential parameter happens to be insensitive to all quantities in the data set, the fit may 

give ridiculously small or large values for it, which may cause trouble elsewhere.

• To obtain transferable potentials, approach 2 is thus usually to be preferred. On the other hand, if optimal 

precision in a limited set of systems (say, elastic properties of a perfect bulk crystal) is desirable, 

approach 1 may still be the better way to go.

• Most authors use approaches somewhere between 1 and 2.
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Fitting of potential parameters

• A functional form can sometimes be derived from experimental equations of state P V ! . Exam-

ple: solid Ne and Ar:



Introduction to atomistic simulations 2008               5. Calculating the forces                                                                                                                                                     33

Fitting of potential parameters

• Here is a short list of macroscopic, physical, properties which can and often are used to derive 
or fit interatomic potentials:

Physical property Atom-level property

Crystal structure Balance of atomic forces.

Cohesive energy Potential energy at the equilibrium 
atom positions

Elastic constants Long-wavelength acoustic vibrations 
Elastic distortions of unit cell.

Equation of state Compression or expansion of material

Neutron scattering Phonon  in the Brillouin zone.

Dielectric constant Electronic polarizability

Dielectric constant 
Polarizarization of electrons and lat-
tice; long-wavelength optical vibration 
modes;

Infrared absorption Long-wavelength vibrations with a 
dipole moment.

Raman scattering Long-wavelength vibrations which 
change the polarizability.

c!"

P V# $

% k# $

&'

&0

m
e
ch
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a

l
e
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c

• Out of these, the first five depend purely on the mechanical properties of the material, and are relevant to 
almost all solids. The latter four involve electric properties and may or may not be relevant depending on 
what kind of materials and properties are studied.
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Fitting of potential parameters

• Crystal structure:
• The equilibrium crystal structure should be stable if one wants to describe any process where large atom 
displacements may occur (melting, surfaces, deposition, etc. etc.).

• In equilibrium the force acting on every atom in the unit cell i  should vanish:
 

                            f
ij

j

( 0=  

• Here the potential is only tested at a few r
ij

 values. (The smaller the crystal symmetry, the more values.) 

• Any potential has a minimum potential energy con-
figuration, or many configurations with the same 
energy.

• Example: Tersoff potential for Si [J. Tersoff, Phys. 

Rev. B 38 (1988) 9902.]
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Fitting of potential parameters

• Local stability is easy to achieve in a classical potential. But global stability (that is, that the real crystal 
structure is indeed the global minimum of the potential) may be surprisingly difficult.

• Even well-known authors make mistakes. For instance, the first Si potential of Tersoff [Tersoff, Phys. Rev. 

Lett. 56 (1986) 632.] was well motivated, well derived, and published in the best journal in physics. But the 
formation energy of the vacancy turned out to be negative, which means it did not have the right ground 
state structure...

• A good way to test the minimum energy: start from random atom positions, and quench the cell slowly 
enough so that it crystallizes. If the structure is the correct one, it probably is indeed the ground state. 
Unfortunately doing this may take forever.

• Another test: simulate a liquid and solid in equilibrium at the melting point, and check that the solid 
remains stable and the liquid recrystallizes to the same structure on slight cooling below Tmelt .
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Fitting of potential parameters 

• Cohesive energy (Ecoh  = energy difference between free atoms and the solid):

• Directly related to the potential minimum energy level
• Often easy to get right exactly. 

• Elastic constants1 c!"

• Related to deformation in the material 

R r# $ r' r– u1 r# $x
ˆ
u
2
r# $y
ˆ
u
3
r# $z
ˆ

+ += =   

 and to the external stress (pressure) " : 

"! c!"e"

"

%=

• Voigt notation for ! - and " -indexing: xx 1& , yy 2& , zz 3& , yz 4& , zx 5& , xy 6&

• Here the strain (crystal distortion) components e
ij

 are 

e
ii x

i
'

'u
i

=   ;  e
ij

1

2
---

x
j

'

'u
i

x
i

'

'u
j

+
( )
* +
, -

=

1. See e.g. Kittel, Introduction to solid state physics, 7th edition, ch. 3.
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Fitting of potential parameters

• The stress component  
ij

 is the force which acts on the plane with the normal x
j
 in the direction x

i

• In principle there are 36 stress and strain components, but their number reduces to much smaller num-
bers in practice.

• For instance in a cubic crystal there are only three independent !
elastic constants c11 c

xxxx
= , c12 c

xxyy
=  and c44 c

xyxy
= .

• Particularly important if there are deformations (compression, shear, melting) in the simulations. Also 
related to defect properties and the melting point " if we get the elastic constants about right we are 
already on a good way to a good potential.
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• An example of an (unusually) 
good fit: F. Ercolessi,  J. B. 
Adams, Europhys. Lett. 26 
(1994) 583.
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Weaknesses of pair potentials

• A pair potential can never describe well the directional properties of covalent bonds. For 
instance in the diamond/zincblende structure (C, Si, Ge,  -Sn, many compound semiconduc-

tors) the ideal angle between bonds = 109.47o
 . Similarly, in almost all molecules the directional 

properties of covalent bonds is of crucial importance.

• Also longer-range angular dependence is completely neglected. For instance in the structure of 
polymers torsional terms are important. Also, recent calculations of BCC metals have shown 
that 4-particle interactions are about 50 % of the bond.

• Pair potentials also do not account for the environmental dependence They predict that the 
strength of the two-atom bond is as strong in a dimer as inside a material, which almost never is 
true. 
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Weaknesses of pair potentials

• For instance the Ga-As interaction:



Introduction to atomistic simulations 2008               5. Calculating the forces                                                                                                                                                     41

Weaknesses of pair potentials

• Moreover, a pair potential always predicts 
that the elastic constants c12 c44=  for 

cubic crystals. but in reality:

Source: Ashcroft-Mermin

 

• Also, vacancy formation energies are often 
completely wrong in pair potentials (see 
below).

• Pair potentials also usually give bad sur-
face properties.

• Summa summarum: the pair potential 
approximation:
• may work well close to equilibrium structure in 
many materials

• is good for noble gases
• is rather good for ionic compounds such as 
alkali halides

• is rather bad for FCC and HCP metals
• is terrible for covalently bonded materials

• But for all these groups much better, and only slightly slower, models exist. These will be 
described later on this course.
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Weaknesses of pair potentials

• Simple estimate of vacancy formation energy using pair potentials: 

Evac
f

Etot vacancy N!" # Etot perfect N!" #–=

• nearest neighbor pair potential, energy/bond=V rnn" # $%

• no relaxation
• fcc structure & 12 neighbors 

Etot vacancy N!" #
1
2
--- N 12–" #12$ 12 12 1–" #$+' ( 6 N 1–" #$= =  

Etot perfect N!" #
1
2
---N12$ 6N$= =  

&  Evac
f

6$– Ecoh–= =  

• However, ab initio calculations1: 

Element  (eV)  (eV)

V 5.31 2.1 ) 0.2

Nb 7.57 2.6 ) 0.3

W 8.90 4.0 ) 0.2

Ecoh Evac
f

 

• Relaxation: only minor effect (far less than 1 eV).

1. A. E. Carlsson, Solid State Physics: Advances in Research and Applications, 43 (1990) 1.
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Set the initial conditions , r
i

t0 ! v
i

t0 !

Get new forces F
i
r

i
 !

Solve the equations of motion numerically over time step : 
        

"t
r

i
t
n

 ! r
i

t
n 1+ !# v

i
t
n

 ! v
i

t
n 1+ !#

t t "t+#

Get desired physical quantities

t tmax ?$ Calculate results 
and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Introduction to atomistic simulations 2008               6. Different ensembles                                                                                                                                                     2

Theory behind atomistic simulations

[main source: Allen-Tildesley]

• An atomistic simulation (MD or MC) gives atom positions and velocities qi
p

i
%& '

• q
i
p

i
%& '  (or in cartesian coordinates r

i
p

i
%& ' ) ( macroscopic quantities (This is what statistical 

physics is all about!)

• system Hamiltonian H q p% !

• equations of motion:q·
k p

k
)

)
H q p% != p·

k q
k

)

)
H–= 

• N  particles ( the system state at any given time is a point *  in a 6N -dimensional phase space. +

• The evolution of the system from one point *  to another is determined by the MD equations of motion or 
a Metropolis Monte Carlo simulation.
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Theory behind atomistic simulations

• One point in phase space q
i
p

i
 ! " #= $

• Measured (macroscopic) quantity Aobs  corresponding to (microscopic) physical quantity 

A A #% &=   from MD simulations as a time average:$
$

Aobs A' (
t

A # t% &% &' (
t

1
tobs
--------- A # t% &% & td

0

tobs

)
tobs *+

lim= = = $

• All practical simulations are of course over discrete steps, so the integral has to be rewritten$
$

Aobs A' (
t

1
,obs
----------= A # ,% &% &

, 1=

,obs

-= $

$
and because an MD simulation often fluctuates strongly in the beginning, we skip the first, say, 100 time 
steps:$
$

Aobs
1

,obs 100–
------------------------- A # ,% &% &

, 101=

,obs

-=
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Relation between simulations and statistical physics

• In MD a time average gives the experimental quantity A . 
• However: in statistical physics we use ensembles 

• a set of points #  in phase space

• the likelihood of system being in the d#  neigborhood of point #  is given by the probability distribution . #% &d#
• . #% &  depends on external conditions: (constant) NVE, NVT, NPT:$
e.g. with .

NVE
#% & $$

or generally, for any ensemble, .ens #% & .

• In statistical physics the time average is replaced by an ensemble average (why?) 
• go through all the points q

i
p

i
 ! "  in the ensemble phase space.

• In a Monte Carlo simulations the time average is replaced by going through a large set of 
points in phase space (using a Markov chain): $
$

Aobs A' (ens A #
i

% &.ens #
i

% &

i 1=

Nsim

-= =

• If .ens #% &  is independent of time (thermodynamic equilibrium), and the system is ergodic$

A' (
t

A' (ens=
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Ergodicity

• In an ergodic system a long enough simulation will go through all points in phase space q
i
p

i
 ! " .

• An example of a non-ergodic system (each hexagon represents one point phase space 
q

i
p

i
 ! " ):#

• 

A
lle

n
-T

ild
e

s
le

y

In the darker area, the simulation moves in a close 
path, and can never get out of this area $ the simu-
lation does not test all of phase space, i.e. is non-
ergodic. #

• In case there would be a single path which would go 
through the whole system, the system would be 
ergodic.

• Is it possible to prove that some system is 
ergodic? Not in the general case, and even for a 
given system it is usually very difficult in practice.

• In practice the system may not only have regions 
which are impossible to reach, but also regions 
which are surrounded by a high potential energy barrier so that reaching them in a finite simula-
tion may be very unlikely (such a barrier is illustrated by the grey thin regions in the figure). This 
may distort the simulation averages badly.
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Ergodicity

• A practical example:#

• Simulate diffusion in Cu at high temperature, around the melting point. In equilibrium the lattice has, say, 
10 vacancies which cause diffusion at a rate of e.g. 1 atom/1 ps. Hence in a 100 ps simulation one gets 
about 1000 atom jumps, which appears to give a good time average of the diffusion constant.#
#

But: about once in a ns a Frenkel pair, that is a pair of one vacancy and one atom at an interstitial posi-
tion, may be created. Because the interstitial moves very much faster than the vacancy, it can cause thou-
sands of atom jumps before it recombines with some vacancy. Because the interstitial causes a huge lot 
of diffusion, its presence can completely change the diffusion constant which would have been obtained in 
100 ps. #
#

So the system must be simulated for tens of ns’s to get a reliable estimate of the diffusion coefficient - and 

if one does not realize the possibility of Frenkel pair formation, one would probably never notice this in a 

single 100 ps simulation. [Nordlund and Averback, Phys. Rev. Lett. 80 (1998) 4201]

• To get reliable results one not only has to burn away computer time, but also understand the physics in 

the system well!
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Ergodicity

• Sometimes (in MC simulations) it is useful to use a weighting function wens  ! "  to weight the 

ensemble and speed up getting the desired results:#

$ens  ! "
wens  ! "

Qens
--------------------= #

Qens wens  ! "

 

%=       (partition function)#

A& 'ens

wens  ! "A  ! "

 

%

wens  ! "

 

%
----------------------------------------=

• MC integration: the flatter the function, the faster it is to obtain a precise average

• Qens  will depend on the macroscopic properties of the system.

• Connection to thermodynamics: (ens Qensln–=  = thermodynamic potential#

• In practice: set up the MC simulation Markov chain such that it generates points according to 

the desired weighting function. 

• A simple choice: w
ens

 ! " $
ens

 ! "=

• How this is achieved in practice will be dealt with in the MC course.
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Ergodicity

• So, to summarize the purpose of equilibrium simulations can be stated as:

• go through phase space as efficiently as possible to get averages which correspond to experimentally 

observable quantities A
obs

 

• molecular dynamics: A& '
t

• Monte Carlo: A& '
ens

 (importance sampling)

• In MD only the NVE ensemble is obtained by solving the ordinary Newton/Lagrange/Hamilto-

nian equations of motion. For the other ones, one has to generate equations of motion which 

behave according to the desired ensemble $
ens

 ! "
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The most important ensembles

[source: L.E. Reichl, A Modern Course in Statistical Physics]

• As in thermodynamics, the ensembles are denoted by letters which indicate which physical 

quantities are conserved. The names are also the same.

1. Microcanonical (NVE) 
2. Canonical (NVT) 
3. Isothermal-isobaric (NPT) 
4. Grand canonical (!VT)

• Here N  is the number of atoms, V  the system volume, T  the temperature, P  the pressure, and !  

the chemical potential [cf. e.g. Mandl “Statistical physics” chapters 2 and 11].

• Microcanonical: NVE constant (isolated) 
 

"
NVE

#$ % & H #$ % E–$ %=  

Q
NVE

& H #$ % E–$ %

#
'

1
N!
------

1

h
3N

--------- rd p& H r,p$ % E–$ %d(= =  

• Thermodynamical potential is the entropy: 
S

k
B

------ Q
NVE

ln= .

• The &  function selects the states #  where the total energy = E .

• Natural for MD in the sense that the total energy is conserved.
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The most important ensembles

• Canonical: NVT constant (closed but not heat-isolated)
heat bath

 
"

NVT
#$ % H #$ %– k

B
T)$ %exp*  

Q
NVT

H #$ %– k
B

T)$ %exp

#
'

1

N!
------

1

h
3N

--------- rd p H r,p$ %– k
B

T)$ %expd(= =  

 
- Thermodynamical potential is the Helmholtz free energy: 

A

k
B

T
---------- Q

NVT
ln–= ,    A E ST–=

• Isothermal-isobaric: NPT constant

heat bath

P = P0
 

"
NPT

#$ % H #$ %– PV+$ % kBT)$ %exp*  

Q
NPT

H #$ %– PV+$ % kBT)$ %exp

#
'

1
N!
------

1

h
3N

---------
1

V
0

------ rd p H r,p$ %– PV+$ % k
B

T)$ %expd(

= =

• Thermodynamical potential the Gibbs free energy:   
G

k
B

T
---------- Q

NPT
ln–= ,   G E TS– PV+=

• In MD the volume has also to be made variable.
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The most important ensembles

• Grand canonical:  VT constant
heat bath

“particle reservoir”

!
!
" VT

#$ % H #$ %–  N+$ % kBT&$ %exp' !

Q VT
H #$ %–  N+$ % kBT&$ %exp

# N(
)

1
N!
------

1

h
3N

---------  – N k
B

T&$ %exp rd p H r,p$ %– k
B

T&$ %expd*
N

)

= = !

• Thermodynamic potential is the grand potential:!
!

        
+–

k
B

T
---------- Q VT

ln–= ,   + E TS–  N– PV–= =

• Now the number of atoms is changing: we have to have an algorithm to add or remove particles [not trivial 

in most practical (condensed matter) systems].

• In the thermodynamic limit (system size N ,- ) all the ensembles are!
equivalent (but the fluctuations around the average may not be).
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Calculating thermodynamical quantities

• Internal energy, that is, total energy (in the mdmorse code Etot):!

E H. / K. / U. /+
pi

2

2m
i

----------

i

). / U q$ %. /+= = = !

• U q$ %  is obtained directly from the potential energy calculation.

• Temperature!

E
kin

K. /
3

2
---Nk

B
T= =       0      T 2K

3Nk
B

--------------
1

3Nk
B

--------------
p

i

2

m
i

----------

i 1=

N

)= =

• So, on the average there is k
B

T 2&  of energy per degree of freedom, as the classical equipartition theo-

rem predicts.
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Calculating thermodynamical quantities

• Pressure (refer to Hamiltonian equations of motion): 

• Generalized equipartition theorem for atom positions: 

q
k q

k
!

!H
" # kBT=     $    

1
3
---– r

i
Uri

%& '(

i 1=

N

)" #
1

3
--- r

i
f
i

tot
(

i 1=

N

)" # Nk
B

T–= = ; 

• Divide the force into two components: f
i

tot
f
i

ext
f
i

+=  

external pressure: 
1

3
--- r

i
f
i

ext
(

i 1=

N

)" # PV–=  

internal virial:        W
1

3
---– r

i
Uri

%& '(

i 1=

N

)
1

3
--- r

i
f
i

(

i 1=

N

)= =  

 

$    
1

3
--- r

i
f
i

(

i 1=

N

)" #
1

3
--- r

i
f
i

ext
(

i 1=

N

)" #+ Nk
B

T–=   which can be rewritten    W" # PV– Nk
B

T–=  

 

$ desired pressure PV Nk
B

T W" #+=
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Calculating thermodynamical quantities 

• Pair interaction V r& '  and periodic boundaries: 

W
1

3
---– w r

ij
& '

j i*

)
i

)= ;         w r& ' r
ij r

ij
d

d
V rij

& '= ;     

• Calculation in the force routine:

! dVdr is the derivative of V, i.e. the force

virial=virial+dVdr*(dx/r*dx+dy/r*dy+dz/r*dz)
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• Calculating thermodynamical quantities 

• Thermodynamic potentials (free energies)

• Quantities which depend on the entropy 

• Energy/potential differences can be ‘easily’ calculated by integrating over a reversible path: 

A

NkBT
--------------

! "
# $

2

A

NkBT
--------------

! "
# $

1
–

E

Nk
B

T
--------------

! "
# $ %d

%
------

%1

%2

&
E

Nk
B

T
--------------

! "
# $ Td

T
------

T1

T2

&–= =  

A

Nk
B

T
--------------

! "
# $

2

A

Nk
B

T
--------------

! "
# $

1

–
PV

Nk
B

T
--------------

! "
# $ 'd

'
------

'1

'2

&
PV

Nk
B

T
--------------

! "
# $ Vd

V
------

V1

V2

&–= =  

• So one has to calculate a thermodynamic average for a large number of intermediate steps, then inte-

grate over the path. 

• Calculating absolute values with the Frenkel-Ladd method:

• Construct a potential energy which is dependent on a parameter ( : U U r ()* +=  
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Calculating thermodynamical quantities 
 

      , 
(-

-A
k
B

T
(-

-
r U r,(* +– k

B
T.* +expd&ln–

r
(-

-V
U– k

B
T.* +expd&

r U– k
B

T.* +expd&
----------------------------------------------------

(-
-U

/ 0

=

=

=

• Construct U  so that for ( (
0

=  the absolute value of A  can be calculated analytically or numerically: e.g. an ideal 

gas or a harmonic lattice. 

• Then get the absolute value of A  for any (  using: 

         A (* + A (
0

* +–
(-

-U
/ 0 (d

(0

(

&=  
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Calculating thermodynamical quantities 

• Real potential function, for which we want A , is U0

• construct U U r !"# $=  to interpolate between U0  and a harmonic lattice (Einstein’s model) with 

 

         U r !"# $ U0 r# $ ! r
i
r

i0–# $
2

i 1=

N

%+=  

&      A ! 0=# $ A !# $
!'

'U
( ) !'d

0

!

*–=  

 
 

- At large values of !  we have harmonic lattice: e.g. Helmholtz free energy is: 
 

         A !# $ 3Nh+
2

--------------- 3Nk
B

T 1 e
h+ kBT,–

–# $ln O 1 !,# $+–=  

 

and hence the free energy for our ‘real’ system U
0  is A ! 0=# $  and can be calculated by integrating over U'# $ !'# $, . 

[Frenkel-Ladd, J. Chem. Phys. 81 (1984) 3188]
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Calculating thermodynamical quantities

• Response functions

• How does the system react to a change in some thermodynamic variable?

• Some of the most important response functions: 
 

constant volume heat capacity C
V T'

'E
- .
/ 0

V
=  

constant pressure heat capacity C
P T'

'H
- .
/ 0

P
=  

thermal expansion coefficient 1
P

V
1–

T'
'V

- .
/ 0

P
=  

isothermal compressibility 2
T

V–
1–

P'
'V

- .
/ 0

T
=  

bulk modulus B 1 2
T

,=  

thermal pressure coefficient 3
V T'

'P
- .
/ 0

V
=

• Because 1
P

2
T

3
V

=  it is enough to get one of these three coefficients
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Calculating thermodynamical quantities

• How can one get these from simulations?  

• Direct simulation 

• E.g. heat capacity C
V

 can be obtained by doing simulations at different temperatures, thus obtaining E T! "  # 

C
V

T! "
T$

$E
% &
' (

V
=  

• From the fluctuations in the system.

• E. g.  C
V

 from a single simulation in the canonical ensemble: 

)H
2

* +NVT kBT
2
C

V
=   (H  is the momentaneous enthalpy) 

 

• Because )K)U* +
NVT

0= , C
V

 can be separated into a kinetic and potential energy part: 

 

)H
2

* +NVT )U
2

* +NVT )K
2

* +NVT+=  

• Kinetic energy part: )K
2

* +NVT
3N

2
------- kBT! "

2 3N

2,
2

---------= =    #  ideal-gas heat capacity   C
V

id 3
2
---NkB= . 
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Calculating thermodynamical quantities

• By combining these we get  
 

)U
2

* +NVT kBT
2

C
V

3
2
---NkB–% &

' (=

• So we can calculate C
V

 solely from the fluctuations of the potential energy. 

• Similar fluctuation identities can also be derived for many other response functions  
(see e.g. Allen-Tildesley chapter 2.5.) 

• These identities really depend on the ensemble used.  
E.g. in the microcanonical ensemble: 
 

)K
2

* +NVE )U
2

* += NVE
3

2
---Nk

B

2
T
2
1

3Nk
B

2C
V

--------------–
% &
- .
' (

=
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Calculating thermodynamical quantities

• Structural quantities 

• Pair correlation function 
 
g2 ri

r
j

!" # g2 r
ij

" # g r" #= =  

 
which tells at what distances atoms are from each 

other.  

• It can be calculated as 
 

g r" # $
2–

% r
i

" #% r
j
r–" #

j i&

'
i

'( )

N
2

V
2

------ % r r
ij

–" #

i j&

'
i

'( )

=

=

 

• g r" #  gives information on the structure of the mate-

rial. For instance melting: 
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Calculating thermodynamical quantities

• In practice it is of course not handy to use a delta function on a computer. So what is done instead is to 

collect statistics of what atom distances exist in some finite interval *r :

integer :: stat(0:10000)

do i=0,10000

    stat(i) = 0

enddo

binwidth=0.01

do i=1,N

   do j=1,N

if (i==j) cycle

dx=x(j)-x(i)

dy=y(j)-y(i)

dz=z(j)-z(i)

rsq=dx*dx+dy*dy+dz*dz

r=sqrt(rsq)

ir = int(r/binwidth+0.5)

if (ir > 10000) ir=10000

stat(ir) = stat(ir) + 1

   enddo

enddo

• Note: no boundary condition checks.

• The normalization factor 4+r
2
*r  can be added afterwards, when printing the statistics.

• In practice if N  is small (say 100 or less) the statistics will be poor , time averaging.
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Calculating thermodynamical quantities 

• g r! "  is also useful because the average of any pair function can be given in the form: 
 

a r
i
r

j
#! "$ %

1
V
--- r

i
r

i
g r

i
r

j
#! "a r

i
r

j
#! "dd&=  or  

A$ % a r
ij

! "

j i'
(

i

($ %
1
2
---N) a r! "g r! "4*r

2
rd

0

+

&= =

• E.g.  the energy (pair interaction V r! ")E
3
2
---NkBT 2*N) V r! "g r! "r

2
rd

0

+

&+=   

or the pressure PV NkBT
2
3
---*N) w r! "g r! "r

2
rd

0

+

&–=  
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Calculating thermodynamical quantities

• Structure factor in reciprocal k -space (Fourier transformation of positions): 
 

) k! " ik r,! "exp

i 1=

N

(=   

• The square of ) k! "  gives the structure factor S k! " : 
 

S k! " N
1–

) k! ") k–! "$ %= , 
 
which can be measured with x-ray or neutron scattering

• This quantity can be shown to be related to g r! "  through a 3-dimensional Fourier transform: 
 

S k! " 1 )ĝ k! "+ 1 4*)
krsin

kr
-------------g r! "r

2
rd

0

+

&+= =  

• Because g r! "  is a measurable quantity, it is often useful in testing how realistic a potential energy function 

is in describing some structure, especially a liquid or amorphous phase. 

• However, this test is actually not all that sensitive to the detailed structure.
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Calculating thermodynamical quantities

• Transport coefficients

• The correlation between any two quantities A  and B  is  
 

c
AB

!A!B" #
$ A% &$ B% &
-------------------------=  

$
2

A% & !A
2

" # A
2

" # A" #
2

–= =   ;     
!A A A" #–=  
0 c

AB
1' '

• The time dependent correlation function c
AB

t% & : A  and B  at different times, e.g. A t% &  and B 0% &

• Autocorrelation function c
AA

t% &

• Correlation time t
A

c
AA

t% & td

0

(

)=

• These give information on  
- the dynamics of the material 
- transport coefficients 
- can be related to experimental spectra by Fourier transformations
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Calculating thermodynamical quantities

• Transport coefficients: system response to an external disturbance * t% & *
ens

!* t% &+=  

• For instance diffusion coefficient: particle flux + concentration gradient. 

• * t% &  , time dependent averages. 

• Comparison to transport equations , transport coefficients. 

• Coefficients usually of the form - A
·

t% & A
·
0% &% &" # td

0

(

)=  

• For a large time there also always exists an Einstein relation 
 

2t- A t% & A 0% &–% &
2

" #=  
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Calculating thermodynamical quantities

• Some transport coefficients for the NVE-ensemble:

• Diffusion constant D
1
3
--- v

i
t ! v

i
0 !"# $ td

0

%

&=

• Simple form to evaluate:  2tD
1
3
--- r

i
t ! r

i
0 !– !

2
# $=

• Thermal conductivity '
T

V

k
B

T
2

------------ j
i

(
t !j

i

(
0 !# $ td

0

%

&= , )

2t'
T

V

k
B

T
2

------------ *(+ t ! *(+ 0 !– !
2

# $= , where )

*(+
1

V
--- r

i+ (
i

(
i

# $– !

i

,= ;  )

j
i

(

t-

-*(+
= ;  )

(
i

p
i

2

2m
i

---------
1

2
--- V r

ij
 !

i j.
,+=  
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Algorithms for simulating ensembles

[most material from Allen-Tildesley ch. 7.4]

• Pure NVE: see lectures 2-5)

• NVE-scaling or constraint methods:

• Often even in an NVE simulation one does some simple tricks to control temperature and/or pressure. 

This gives something of an NVT or NVP and NVE hybrid: T  and P  fluctuate, and the system does not 

behave as a true NVT or NVP ensemble in the thermodynamic sense. But on average T  and P  have the 

desired value. In true NVT or NPT algorithms it is possible to have T  and P  have exactly the desired 

value, and the simulation directly corresponds to the thermodynamic ensembles.

• Temperature scaling)

• Trivial scaling: force during every time step the system temperature to be exactly T . This may be a rather 

severe perturbation of the atom motion especially if there are only a few atoms. It suppresses normal T  

fluctuations, and does still not correspond to a true NVT ensemble. But the error in ensemble averages 

usually is O 1 N/ !  so with a large number of atoms one may get away with it.
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Algorithms for simulating ensembles

• The Berendsen method: essentially a direct scaling but softened with a time constant. [Berend-

sen et al. J. Chem. Phys. 81 (1984) 3684].  

• Coupling to heat bath, Langevin dynamics: mv· F m!v– R t" #+=

• Global coupling + local noise

• Replace the local noise by its average behvior in 
td

dE
k

   

              $ 
td

dT
% &
' (

bath
2! T

0
T–" #=   

              $ mv· F m!
T
0

T
------ 1–% &

' ( v+=

• Let T
0

 be the desired temperature, )t  the time step of the system and *
T

1 2!+=  the time constant of the control. 

In the Berendsen method in order to change the temperature in one timestep by 2!)t T
0

T–" #
)t

*
T

----- T
0

T–" #=  all 

atom velocities are scaled at every time step with a factor , , where 
 

       , 1
)t

*
T

-----
T
0

T
------ 1–% &

' (+=  (*) 

• Note: if *
T

100)t-  then the system has natural thermal fluctuations about the average.

Introduction to atomistic simulations 2008               6. Different ensembles                                                                                                                                                     30

Algorithms for simulating ensembles

• The derivation above lacks a factor 21. 

• Let’s write the temperature behavior as 
dT

dt
------

1

*
T

----- T
0

T–" #= . From this we can solve T t" #  as  

              T t" # T
0

T
i

T
0

–" #e
t *T+–

+= , where T
i

T 0" #=  is the initial temperature.

• On the other hand when we scale velocity v ,v.  the change in the internal energy is /E ,2 1–" #
3

2
---Nk

B
T= ,

• Now the heat capacity is C
V

/E

/T
------= . From this and from the differential equation of the temperature we get 

/T

/t
------

1

*
T

----- T
0

T–" #=  $ /T
/t

*
T

----- T
0

T–" #= 0 

• From the definition of heat capacity we obtain C
V

/E

/T
------

,2 1–" #
3

2
---Nk

B
T

/t

*
T

----- T
0

T–" #
--------------------------------------= = .

• By solving ,  from this we get ,2
2C

V
/t

3k
B

N*
T

--------------------
T
0

T
------ 1–% &

' ( 1+= .

• Let’s make the bold assumption that the heat capacity is given by the Dulong-Petit law: C
V

3Nk
B

=

1. Ideas for this derivation are from Kalevi Kokko’s lecture notes at http://vanha.physics.utu.fi/opiskelu/kurssit/XFYS4416/
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Algorithms for simulating ensembles

• Finally we obtain the expression for  :!
!

                        2 2"t

#
T

--------
T0

T
------ 1–$ %
& ' 1+= .  (**)

• As we shall see in exercise 7, this is the right expression in the sense that it reproduces the behavior dictated by the 

equation 
dT

dt
------

1

#
T

----- T
0

T–( )= .

• Effect of parameter #
T

 on time development of T

FCC copper

Morse potential
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Algorithms for simulating ensembles

• ... and on T  fluctuations

simulation 
time = 50ps!
!
first 10ps 
skipped

:   simulation for , i.e. no temperature control#
T

*=
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Algorithms for simulating ensembles

• Pressure scaling (Berendsen)

• Pressure is put to a desired value by changing the cell size. 

• If the desired pressure is P0  and  
P

 is the time constant, the scaling factor is !

!

                 " 1 #$t

 
P

---------– P
0

P–% &3= !

!

where #  is the isothermal compressibility of the system = 1/bulk modulus. !

• #  only occurs in the division over the time constant  
P

 it is just a factor which makes the typical time constant values 

roughly independent of the material.

• Scaling implemented by changing all atom positions x  and the system size S  every time step!

                 x t $t+% & "x t% &= !

                 S t $t+% & "S t% &= !

• Also the system volume V  changes:

                   V t $t+% & "
3
V t% &=

• Pressure scaling done after the solution of the equations of motion!

•  
P

100$t'
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Algorithms for simulating ensembles

• Another (better) way to derive " :!

• We want 
td

dP 1

 
P

------ P
0

P t% &–( )=    (*)

• Volume scaling V "3V* . Definition of compressibility: #
1

V
---

P+

+V
–=

V+

+P
,

1

V#
-------–= .

• Now 
td

dP

Vd

dP

td

dV 1

V#
-------

"3 1–% &V

$t
------------------------–

1 "3–

#$t
---------------= = = .!

• From this and (*) we get  
1 "3–

#$t
---------------

1

 
P

------ P
0

P t% &–( )= , from which we solve " :!

!

           "3 1
#$t

 
P

--------- P
0

P t% &–( )–=
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Algorithms for simulating ensembles

• Effect of parameter  
P
!

!

• The Berendsen scaling can be used to 

control T  and P . If the system is in 

equilibrium the total energy E  should 

still be conserved, but if phase transi-

tions, such as melting occur, E  does 

not necessarily stay conserved until 

equilibrium is reached again.

• In the Berendsen method P , T , V  and 

Epot  all fluctuate, and because the 

time constants   have to be fairly large 

it can take quite a while to reach a 

desired pressure or temperature.

• But in equilibrium and with large enough time constants, the method gives quite realistic fluctuations in T  

and P . And it is almost as trivial to implement as direct scaling. Hence it is much to be preferred over 

direct scaling.
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Algorithms for simulating ensembles

• True NVT algorithms!

• The Andersén method [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)].!

• Give the atom with some probability a new velocity which corresponds to a desired heat bath temperature 

T0

• Physical interpretation clear: connection to external heat bath

• Suitable for calculating thermodynamic averages, but not for looking at atomic processes in detail, since 

the random velocity is obviously an unphysical perturbation on the motion of a single atom.!

• Nosé-Hoover-method [W. Hoover, Phys. Rev. A 31, 1695-1697 (1985).]

• A fictional degree of freedom s  which has its own kinetic and potential energy is added to the system, and 

this degree of freedom controls the temperature. The system total energy, i.e. Hamiltonian:!

!

H
p

i

2m
i

---------

i

" V q
i

# $
Q

2
----p

s

2
qkT sln+ + += !

!

where p
s  is the momentum associated with the degree of freedom. !
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Algorithms for simulating ensembles

• Now the Hamiltonian equations of motion become: 
 
dq

i

dt
--------

p
i

m
i

------= ;       
dp

i

dt
-------- dV

dq
i

--------– p
s
p

i
–= ,     

dp
s

dt
--------

p
i

m
i

------

i

! gkT–
" #
$ %
& '

Q(=  

• These can be solved with some suitable algorithm.  

• Q  is a fictional mass related to the extra degree of freedom, which describes the rate at which the temper-

ature changed. 

• Nosé suggested Q gk
B

T)  where g  is the number of degrees of freedom in the system, typically 6N . For large Q  the 

connection to the heat bath weakens, and for small Q  the energy E  may oscillate too much.

 

• Nosé-Hoover chains [Tobias, Martyna, Klein, J. Phys. Chem. 97 (1993) 12959]

• Also control the new degree s  of freedom with another Nosé-Hoover-algorithm and so forth, i.e. form a 

chain of these.

• At least in simulations of proteins this can give a very good temperature control.

• “Massive” Nosé-Hoover-chain: add a Nosé-Hoover thermostat chain to every degree of freedom (!)
• Advantage: as Nosé-Hoover, but in addition very efficient in equipartitioning the energy and thus getting the system 

into equilibrium. Disadvantage: even more coding
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Algorithms for simulating ensembles

• True NPT algorithms

• Andersén pressure control [H. C. Andersén, J. Chem. Phys. 72, 2384 (1980)]

• The cell size V  a dynamic variable, but the system shape may not change. The size is controlled by a fic-

tional piston which has a mass Q  (in units of m/l4). The kinetic and potential energy of the piston are: 
 

E
kinV

1

2
---QV

· 2
=   and   E

potV
PV=   

 

and if the atom positions r  and velocities v  are written in reduced units s  such that r V
1 3(

s=  and 

v V
1 3(

s·=  we get the equations of motion 
 

s··
f

mV
1 3(

-----------------
2

3
---s·

V
·

V
---–=  

 
 

V
·· Pt

P–

Q
---------------=  

 

where f  are the forces acting on atoms, P
t
 is the momentaneous pressure and P  the desired pressure.
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Algorithms for simulating ensembles

• Parrinello-Rahman-pressure control [Parrinello and Rahman, J. Appl. Phys. 52 (1981) 7182]

• This method also allows a variable simulation cell shape, that is, the angles between the axes do not 

have to be 90o. 

• The cell size and shape is given by vectors a , b  and c . If we form a 3 3 -matrix h out of these the atom 

positions r  can be written in the form!

r hs= .!

!

where s  is an ordinary vector.!

• The equations of motion can be derived to be:!
!

s
i

·· dV

dr
------- 1

m
i
r
ij

------------ s
i
s
j

–" #
G
·

G
----s·–

j

$–= !

Wh
··

P pI–" #% h&–= !

!

where G h
T

h= , %  is a tensor which defines reciprocal space, and P  is the generalized 3 3  pressure 

tensor:!

P
1

V
--- m

i
v

i
v

i

i

$
1

r
ij

-----
r
ij

d

du
r

ij
r

ij

j i'

$
i

$–= .
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Algorithms for simulating ensembles

• The diagonal elements of P  are the pressures in x , yand z , the other elements are shear elements. !

• The hydrostatic “ordinary” pressure P trP" # 3( P
11

P
22

P
33

+ +" # 3(= = . !

• &  is a quantity which depends on the external pressure tensor S:!

!

& h0
1–

S p–" #h0
T 1–

)0= !

!

where h
0   and )

0  are the original (reference) shape and volume of the system. !

• W  is a fictional “mass” which is used to control the rate of change of the pressure (compare with Q  in the 

NVT algorithms above).!
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Algorithms for simulating ensembles

• This allows us to simulate a system which changes shape, for instance a cubic to hexagonal phase trans-

formation. 

 

Source: Allen-Tildesley

b
y 

H
a

n
n

u
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ä
kk
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en

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• An example of the effects of the mass 
parameter Q :A Lennard-Jones-system 
 (Ne); T=0.1 K; constant pressure-MD: 
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Algorithms for simulating ensembles

• !VT-methods

• Chemical potential !  stays constant, number of atoms fluctuates 

• Rarely used in MD, more often in MC simulations where it is more natural to add and remove atoms from 

the system.  

• An alternative to adding or removing atoms is to add or remove “control volume”. 

• In condensed matter simulations the problem is that just adding an atom on a random place can easily 

lead to completely unphysical configurations.  

• Also adding or removing control volume without distrorting the system state too much may be tricky. 

• If you need this, see e.g. [Lynch, Pettitt: J. Chem. Phys. 107 (1997) 8594] or [Heffelfinger, J. Chem. Phys. 

100 (1994) 7548]. 
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Algorithms for simulating ensembles

• What T  and P  control to use? 

• For T  or P  scaling: Berendsen is fast to implement, and does work well provided the time con-

stants are large enough. 

• If one wants accurate T  control or needs to do NVT thermodynamic averaging, one of the Nosé-

Hoover methods is probably best 

• For orthogonal box NPT simulations: Andersén 

• If one wants needs to deal with shear pressure or changes in crystal structure ! Parrinello-

Rahman
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Other types of MD simulations 

• Non-equilibrium MD (NEMD) 

• Any MD simulation of a system which is not in thermodynamic equilibrium. 

• Usually some perturbative term is added to the equations of motion.

• For instance for simulating viscosity, heat conductivity and atomic diffusion there are special NEMD algo-

rithms.

• At its simplest, the perturbation can be an external force acting on some of the atoms.

• The external force heats the system up, which can be compensated by temperature control. 

 

• Brownian dynamics or Langevin dynamics 

• Random forces are let to act on some atoms some of the time. This can be useful e.g. in speeding up 

infrequent events.

• This can also correspond to e.g. a large protein molecule in a liquid solvent. If the protein atoms do not 

react with the solvent atoms, and the solvent atoms are not interesting in themselves, their effect on the 

protein can be thought to reduce to random Langevin forces. 
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Other types of MD simulations

• Multiple time step methods

• In these methods the simulation is sped up by using different time steps for different atoms or parts of the 

system.

• A simple example of where this may be useful: a molecule which has light and much heavier particles. 

The light particles move much faster, so their motion can be simulated with a short time step  t1  and the 

heavy ones with a longer time step  t2 . 

• Another possibility: count near interactions acting on atom i with a short time step  t1  and those farther 

away with a longer one  t2 . In here, we assume the movement of the atoms far away is so small that they 

do not move significantly with respect to atom i  during the shorter time  t1 .

• MD far from equilibrium!

• Many processes of modern interest involve physical interactions which occur very far from thermody-

namic equilibrium. 

• E.g.  two nanoparticles colliding in vacuum, or an energetic ion from an accelerator hits a material. 
• In both cases very violent interactions occur over ps timescales, and the surrounding medium does not have time to 

equilibrate the system into anything close to thermodynamic equilibrium during the time when the interesting pro-

cesses occur.

• Simulating such a system is simple: simply use ordinary NVE with no T  or P  scaling. 
• But watch out for possible finite size effects!!
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Other types of MD simulations

• An example of NEMD: heat conduction in crystalline and amorphous Si [von Alfthan et al., MRS Sympo-

sium Proceedings, 703 (2002) V6.2.1]

• Straightforward way: impose a T  gradient "!heat flux J  "!k J
xd

dT
#–= $

• Problems: large fluctuations in J  "!large dT dx#  needed.!

!

hotcold cold
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Other types of MD simulations

• Another way [Müller-Plathe, J. 

Chem. Phys. 106 (1997) 

6082.]: impose heat flux by 

exchanging particle velocities 

between hot and cold parts of 

the system

a
m

o
rp

h
o

u
s

crystalline

• Results for c-Si size dependent, moreover experimental 

 !

• Phonon mean free path in c-Si ~ 1000 Å

• Results for  reasonable.

• No thermal boundary resistance observed.

kc 160 W/mK=

ka

• Flux ‘exact’, controlled by 
exchange interval

• dT dx ‘s for different simula-
tion system sizes: (a) 
Lc 296 Å= , La 100 Å= , 

d 32 Å= !

(b) Lc 187 Å= , La 38 Å= , 

d 16 Å= !

(c) Lc 187 Å= , La 38 Å= , 

d 32 Å=

System ka  (W/mk) kc  (W/mk)

(a) 0.93 13

(b) 0.85 9

(c) 0.80 15
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v
Set the initial conditions , r

i
t
0

 ! v
i

t
0

 !

Get new forces F
i
r

i
 !

Solve the equations of motion numerically over time step : 

        

"t
r

i
t
n

 ! r
i

t
n 1+

 !# v
i

t
n

 ! v
i

t
n 1+

 !#

t t "t+#

Get desired physical quantities

t t
max

 ?$
Calculate results 

and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Quantum

mechanical

models
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Atomistic interaction models

• The true interaction energy between N  nuclei and I  electrons could be obtained by solving the 

Schrödinger equation for the system comprising the N I+  bodies.%

• Assumes: interactions between the nucleons 

neglected
Almost always true

Not always true for heavy elements• This is also assuming relativistic effects can be 

ignored%

• Time-dependent Schrödinger 

equation: dynamics without MD 

alogrithm%

Model Type Scaling Nmax

Full solution of 
Schrödinger equation

quantum mechanical,%
ab initio

1

HF (Hartee-Fock) quantum mechanical,%
ab initio

50

DFT (density functional 
theory

quantum mechanical 1000

TB (Tight-binding) quantum mechanical%
(often semiempirical)

1000%
10000

MBP (Many-body poten-
tial)

classical, semiempirical 108

PP (Pair potential) classical, semiempirical 109

O e
N

 !

O N
4 8–

 !

O N !

O N
3

 !

O N !

O N
3

 !

O N !

O N !

O N !

• But solving the full equation is 

extremely expensive computa-

tionally, and hence one always 

has to resort to various levels of 

approximation
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Atomistic interaction models 

• O N! "  variants of all classes of methods

• The quantum mechanical O N! "  methods new  # work (so far) well only in a limited set of problems

• Prefactor in the efficiency, i.e. the factor A  in  speed =A N
x

$  for an O N
x

! "  method. 

• A rule-of-thumb: 

A
MBP

3 A
PP

$=  

A
TB

100 A
MBP

$=  

A
DF or HF

100 A
TB

$=  

• Quantum mechanical models (HF and DFT): ~ 100 atoms # e.g. small molecules, bulk proper-

ties of common phases, and point defect properties.  

• TB, a minimal quantum mechanical model works well in a few materials (e.g. C, Si, Ge) but is 

problematic in many others.  

• Classical models:  possible to simulate very large systems, such as large protein molecules, 2- 

and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc.
• No information on the electronic properties of the material. 
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Atomistic interaction models

• This chapter is a short overview on the methods; more information on the course Introduction 

to electronic structure simulation, that is currently lectured at HUT  

(http://www.fyslab.hut.fi/~asf/physics/lectures/) 

• Literature: 
• R. Phillips: Crystals, Defects and Microstructures, (Cambridge University Press, 2001), Chapter 4

• A. Sutton: Electronic Structure of Materials, (Oxford Science Publications, 1996)

• M. Finnis: Interatomic Forces in Condensed Matter, (Oxford Series in Materials Modelling, 2003)

• R. M. Martin: Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 

2004)
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Overview of quantum mechanical models

• A system of N  nuclei and I  electrons with coordinates r
n
 (n 1 N= ) and r

i
 (i 1 I= ):

• Schrödinger equation!

H" E"=

• Hamiltonian operator H   

H
h

2

2M
n

-----------

r
n

2

2

#

#

n 1=

N

$–
h
2

2m
-------

r
i

2

2

#

#

i 1=

I

$
1

2
--- e

2

r
ij

---------

j 1=

I

$
i 1=

I

$

Z
n
e
2

r
ni

------------

i 1=

I

$
n 1=

N

$
1

2
---

Z
n
Z

l
e
2

r
nl

-----------------

n 1=

N

$
l 1=

N

$

+

+ +

–

T
n

T
e

V
ee

V
ne

V
nn

+ + + +

=

=

     (7.1)

• Here:

• T
n

 and T
e

 are the kinetic energies of the nuclei and electrons, respectively.

• V
ee

, V
ne

 and V
nn

 are the electron-electron, electron-nucleus and nucleus-nucleus Coulomb  interactions %!

Schrödinger equation.!

T
n

T
e

V
ee

V
ne

V
nn

+ + + + &" E"=    (7.2)

• "  is the total wavefunction of the full nucleus-electron system.
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Born-Oppenheimer approximation

• For any given configuration of the nuclei one can assume that the electrons find their ground 

state before the atoms move significantly. 
• Classical simulations also based on the Born-Oppenheimer approximation: interatomic potentials do not 

depend on the atom motion.!

• Mathematically:  the wavefunction "  is separated into a product !

!

" ' n r
i
() &* n) &+ , !

• ' n r
i
() &  is the electron wave function, which is a function of the positions of the electrons r

i
 and the posi-

tions of the nuclei n

• * n) &  is the wave function of the nuclei. !

• ' n r
i
() &  fulfills the wave equation!

!

T
e

V
ee

+ V
ne

+, -' n r() & E
e

n) &' n r() &=       (7.3)!

!

where V
ne

 is the nucleus-electron potential of the original Hamilton operator. !

• Solution of this gives the electronic total energy of the system as a function of the positions of the nuclei.
• Can also be used to give the forces acting between atoms %!atom motion can be simulated using the classical MD 

algorithm (ab initio MD)
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Hartree-Fock methods

• In the Schrödinger equation (7.3) the most difficult part is the electron-electron interaction  

V
ee

e
2

r
ij

---------

j

!
i

!=  

• The basic solution in Hartree-Fock (as well as in DFT) is to create some sort of average elec-

tron density with which every electron interacts independently: 

 

V'
ee

V
i

av

i

!=  

• Pauli exclusion principle: a Slater determinant of one-electron wave functions 

" r
1
r
2

# r
N

$ $ $% &

'
1
r
1

% & '
1
r
2

% & # '
1
r

N
% &

'
2
r
1

% & '
2
r
2

% & # '
2
r

N
% &

. . . .

'
N
r
1

% & '
N
r
2

% & # '
N
r

N
% &

=
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Hartree-Fock methods

• Hence the Schrödinger eq. for electrons reduces to an equation to get a one-electron wave 

function '
i
: 

T
e i$ V

ne i$ V
i

av
+ +% &" x

1
x
2

# x
n

$ $ $% &

i

! E" x
1

x
2

# x
n

$ $ $% &=  

T
e i$ V

ne i$ V
i

av
+ +% &'

i
x
1

% & Fˆ '
i

x
1

% & (
i
'

i
x
1

% &= =  

where Fˆ  is the so called Fock-operator. The equation is the so called Hartree-Fock equation. 

• Thus the new central problem becomes to find a good form for the average potential V
i

av
. 

• Iteration: initial guess for the wave functions '
i
, plugged into the equation, solving to get a new '

i
 , and 

keeping on iterating until the solution does not change any more, i.e. until a self-consistent field has 

been found  (HF-SCF). 
 

• The eigenvalues of the energy have a clear physical interpretation: ionization energy of the 

electron 

• The SCF method fulfills the variational principle: 

• The eigenvalue of every inaccurate wave function is larger than that of the most accurate one. 

• So the smallest found energy is also the ‘most correct’ one.
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Hartree-Fock methods

• The molecular orbital (MO) of every electron  
i
!is written as a sum over atomic orbitals (LCAO - 

Linear Combination of Atomic Orbitals):!

 
i

C
i"#"

"
$= !

• In the most straightforward approach the basis functions #"  can be so called Slater type orbitals (STO)!

# R r% &Y
lm

'  (% &= , 
R
1s

N
1
e

)r–
=

R
2s

R
2p

N
2
re

)r–
= =

*
+
,
+
-

!

which somewhat resemble orbitals of the hydrogen atom: !

.
nlm

r '  ( (% & e /r 20– /r% &lL
n l– 1–
2l 1+ /r% &Y

l
m '  (% &1 ,    / 2Z na

0
0= ,    a

0
h2 me20= .!

!

• Integrating these STO orbitals is numerically difficult, however. !
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Hartree-Fock methods!

• Computationally it is much more favourable to use Gaussian-type orbitals (GTO) !

#
GTO

r% & e
/r

2
–

=  !
because a product of two gaussians is a gaussian:!

e
/ r RA–

2
–

e
2 r RB–

2
–

K
AB

e
3 r RC–

2
–

= ,!

3 / 2+= ,!

R
C

/R
A

2R
B

+

/ 2+
-----------------------------= ,!

K
AB

2/2
4 / 2+% &
---------------------

3 4/
e

/2
3
------- RA RB– 2–

= !

• But real electron wave functions are not Gaussian in shape 5!use a sum of GTO’s to describe the wave function:!

          #
STO

k
v
#

v

GTO

v

$=
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Hartree-Fock methods

• An example of an STO and how it can be approximated with one or more GTO’s. One GTO only 

is not very good, but 4 GTO’s already are quite close.

A
.R

.L
e

a
c
h

, 
M

o
le

c
u

la
r 

M
o

d
e

lli
n

g

• The most popular basis function sets  ! "  are the Gaussian functions developed by the group of 

J. A. Pople (Nobel prize in chemistry 1998):
• In the so called minimal basis set there is one orbital for two core electron orbitals, and one orbital for 

each valence electron. Every STO is replaced by a sum of N  GTO-functions (STO-nG). The most com-

mon minimal set is the STO-3G set.

• To improve on the results the basic approach is to increase the size of the basis sets. In the so called 

“Double Zeta” set there are twice as many orbitals as in the minimal set. If the doubling is made only with 

valence electrons (which are usually the most interesting ones) one obtains the “Split Valence” set of 

basis functions.

• In the so called 3-21G set the first row elements have 3 GTO’s for 1s electrons, 2 GTO’s for 2s, 2p and so 

forth electrons, and the extra valence electrons are described by one GTO. This set is quite popular now-

adays.

• Other even larger basis sets: 6-31G, sets which have polarization functions, etc. etc. 
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Hartree-Fock methods

• Limitations of the basic Hartree-Fock method

• The method does not at all account for electron correlation, that is, the correlation between the momenta-

neous motion between electrons. This energy is usually only of the order of 1 % of the total, but can 

sometimes be comparable to the total binding energy of the system and hence quite significant. Several 

methods have been developed to take this into account:#

• In the Configuration Interaction (CI) method a linear combination out of Slater determinants is formed. This is a very 

good approach, but unfortunately also very slow.#

• In Møller-Plesset perturbation theory a perturbation series is made out of the error in the correlation energy. The most 

popular approach is MP2, which takes into account the lowest-order correction.#

• In Multiconfiguration SCF (MCSCF) a small CI term is included in the HF iteration.
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Density functional theory

• Density functional theory (DFT) is one of the most widely spread method to calculate elec-

tronic structure in materials. 

• Because it is computationally more efficient than HF, it has become especially popular among solid state 

physicists who need many atoms to describe a solid. 
 

• Starts with the Schrödinger equation for electrons  

 

h
2

2m
-------

r
i

2

2

!

!

i 1=

I

"–
e
2

r
ij

2
-----------

j 1=

I

"
i 1=

I

" V
ne

+ +

# $
% %
& '
% %
( )

* n r+, - E
e

n, -* n r+, -=      or 

T
e

V
ee

V
ext

+ +, -*

i

" E*=  

 
where V

ext
 is the so called external potential acting on the electrons due to the nuclei. 

• The basic idea of DFT: instead of manybody wavefunction * r
i

. /, -  use electron density n r, -   

• Only need to calculate a scalar function of one vector variable not I  vectors
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Density functional theory

• DFT is based on the Hohenberg-Kohn theorems [Hohenberg and Kohn, Phys. Rev. 136 (1964) 

B864]: 
 
Theorem I: For any given set of electrons which are in an external potential V

ext
 , 

this potential is determined uniquely, except for a trivial additive constant, from 

the electron density n r, - .  
 
Corollary I: Because the system Hamiltonian is thus fully determined short of an 

energy shift, the electron density can be used to fully derive the many-particle 

wave function and thus all desired system properties. 
 
Theorem II: It is possible to define a universal functional for the energy E n0 1  

depending on the electron density n r, - . The true ground state energy is the global 

minimum of the energy functional, and the density n r, -  which minimizes the func-

tional is the exact ground state density. 
 
Corollary II: The functional E n0 1  is enough to determine the true ground state 

energy and electron density. Excited states must be determined by other means. 
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Density functional theory

• Kohn-Sham ansatz [W. Kohn and L. J. Sham, Phys Rev. 140 (1965) A1133] 
[see  http://www.fysik.dtu.dk/~bligaard/wwwdirectory/phdthesis/phdproject.pdf] 
 

• The idea of the ansatz is that the original, complicated Hamiltonian can be replaced by another Hamilto-

nian function which is easier to solve. This effective Hamiltonian describes non-interacting “electrons”   in 

a system which is assumed to have the same density as the true system with interacting electrons. 

• To put it in another way: We assume that there exists a system of non-interacting electrons that produce 

the same electron density n r! " . 

• The orbitals #
i
r! "  of the non-interacting electrons are called Kohn-Sham orbitals. 

• Apply Hohenberg-Kohn variational principle to the Kohn-

Sham orbitals $ the Kohn-Sham orbital equations 

E n% & T
0

n% &
1

2
---

n r! "n r'! "
r r'–

-----------------------d
3
rd

3
r''' V

ext
r! "n r! "d

3
r' E

xc
n% &+ + += , 

where T
0

n% &  in now the kinetic energy of non-interacting elec-

trons.

Note that the Hartree atomic units are 

used here: e m h 4()
0

1= = = =

• All the problematic terms are collected under E
xc

n% & :  

error in the kinetic energy:  T n% & T
0

n% &–  

error in the Coulomb interaction between electrons: E
ee

1

2
---

n r! "n r'! "
r r'–

-----------------------d
3
rd

3
r'''–  

correlation and exchange energies (quantum mechanical effects).
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Density functional theory

• What we have gained here is that the above terms in E
xc

  are (usually) small corrections and can be cal-

culated in an approximative way. 

• The variational principle gives then  

*E n% &
*n

--------------- 0= $
1

2
---+2– V

eff
r! "+, -

. / #
i
r! " )

i
#

i
r! "=  

 
where i  runs over all electrons, )

i
 is the Kohn-Sham eigenvalue of electron i , and the effective one-parti-

cle potential is: 

V
eff
r! " V

ext
r! " 0

e
r! "

*E
xc

n r! "% &

*n r! "
----------------------------+ +=

• Here V
ext

 is the external potential and  

0
e
r! " r'd

n r'! "
r r'–
---------------'= ,     n r! " #

i
r! " 2

i 1=

N

1=  
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Density functional theory

• Pictorially this can be presented as1 
 
 
 

V
ext
r! "

#
i
r$ %! " #

0
r$ %! "

n
0
r! "

HK
n
0
r! "

&
i 1 N'=

r! " &
i
r! "

V
eff
r! "

HK0KS

Real system Independent particle system

1. Adapted from R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 2004), Fig. 7.1
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Density functional theory

• If the exchange-correlation energy is known, these equations can be solved by self-consistent 

iteration 

• Note, however, that the Kohn-Sham orbitals and their eigenvalues (
i
 do not have a clear physical inter-

pretation. There is no guarantee that they have any relation to real electron energies and wave functions, 

but it appears that they are in fact a surprisingly good approximation of the real electron properties. 

• Local density approximation (LDA) 

• So far the DFT approach has not made any approximations. 

• To obtain the exchange-correlation functional E
xc

n) *  the local density approximation, (LDA) is used: 

 

E
xc

n) * rd n r! "(
xc

n) * r'! "+=    , 

 

where (
xc

n r! "! "  is the exchange and correlation energy of a homogeneous electron gas per one electron.  

• The exchange functional can be as simple as (Dirac LDA) 

E
x Dirac'
LDA 3

4
---

3

,
---

- .
/ 0

1 31
n r! "

4 31
dr+–=  
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Density functional theory

• Once an exchange and correlation energy for a homogeneous gas is introduced (several exist), 

the equations can be solved with an iteration process: 
1) Start with some V

eff
r! " . 

2) Calculate the one-electron wave functions #
i
 $ new density n r! "  

3) New n r! "  $ new V
eff
r! " . 

4) Repeat steps 2 and 3 until we have obtained a self-consistent solution. 

• Spin in the exchange and correlation term: local spin density approximation, LSDA.

• DFT-LDA results compared with experimental data: 
1) Generally too large cohesive energies for solids 
2) Too large total energies for atoms 
3) Too small energy gaps for many semiconductors (LDA actually predicts zero gap for Ge!). 
4) Unstable for negative ions and gives a too diffuse electron density.

• To improve on the accuracy of DFT people have introduced exchange-and-correlation function-

als which also depend on the variation of the electron density: 
E
xc

n r! " dn r! "%& ' .

• There are numerous of these so called Generalized Gradient Approximations (GGA). 
• In practice there are a large number of GGA’s around, and people choose one which for some reason has been found 

to work well in their system. 

• The DFT solution method does not restrict the way we express the Kohn-Sham wave functions.
• Below are given two nowadays common ways to build the basis sets used in DFT calculations: 

plane waves and atomic-type orbitals.
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Plane-wave methods

• In plane-wave methods the basic algorithms are as in DFT but: 

• The outer valence electrons are described as a sum 

of plane waves: 

# f
l

l

Nl

( K
l

! "e
iKl r)–

=  

Search for wave functions * search for coefficients

where the wave vectors K
l
 are chosen to that they have the same periodicity as the simulation cell.   

• Any shape of the electron wave functions can in principle be described with this sum provided the sum 

has enough terms N
l
.  

• Names of some common plane wave methods: 
- APW = Augmented Plane Wave 
- LAPW = Linear APW 
- FLAPW = Fully LAPW 
- SAPW = Spline APW 
- OPW = Orthogonal Plane Wave 

• The main measure of the accuracy of plane-wave methods is the number of plane waves used to 

describe the system.  
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Plane-wave methods

• Examples of results of DFT / plane-wave calculation results: 
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LCAO methods 

• In the LCAO (Linear Combination of Atomic Orbitals) method the basis set consists of orbitals 

localized around each atom in the system.   

• Compare with plane waves that are as non-localized as possible.  

• Orbitals can be obtained from quantum mechanical atomic calculations. (Or pseudo-atomic; see below) 

• The accuracy is not so straightforward to adjust as in the plane wave method. 
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Pseudopotentials 

• In most cases the filled inner electron shells of atoms do not 

have any effect on the behavior of the system. 

r

Ze

r
------

V
pseudo

!
AE

!
pseudo

r
c

• The idea is to remove the core electrons and the strong 

nuclear potential and replace them with a weaker pseudo-

potential.

• Outside some cut-off radius r
c
 the pseudo wavefunctions 

and the pseudopotential are indentical to those of the real 

atom.. 

• The counterpart to pseudopotential methods are the all 

electron methods. 

• Pseudopotentials are commonly used with DFT calculations 

both with planewaves and atomic type orbitals. 
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Pseudopotentials

• Results for the lattice constant a and bulk modulus B for C and Si: 

• So it is quite possible to obtain the quantities to an accuracy ~ 1 %. 

• Car-Parrinello MD

• The Car Parrinello method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] is a method where 

the electron and atom motion is updated at the same time. The method has become very popular 

because it is highly efficient and can also be parallelized well1. 
 
 

1. In Finland the FINGER (FINnish General Energy Relaxator) code, developed in Risto Nieminens group, is an efficient Car-Parrinello code which enables dynamic DFT simulations 

in ~ 200 atom systems in the Finnish Cray T3E.
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Example of scaling of a DFT calculation

• CPU time usage of a SIESTA1 calculation: 

• Si with simple SZ basis set. 

• CPU time for one energy calculation  
(~ time step). 

• Simulations by E. Holmström. 

1. Spanish Initiative for Electronic Simulations with Thousands of Atoms.
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Commercial HF and DFT programs 

• In practice, a large fraction of modern HF, DFT- and empirical simulations are carried out with 

commercial codes. 

• A large fraction of the most popular codes are available at the CSC (Center for Scientific Computing) 

computers, which can be used by any University research group for free. 

• In commercial codes, the algorithms are typically 5-15 years or old. This is a mixed blessing: the state-of-

the art methods may not be available, but on the other hand the algorithms in there are usually well 

tested. Roughly speaking especially the methods favoured by chemists have moved over to commercial 

codes, whereas physicists tend to stick to their own or non-commercial codes. 

• The commercial codes have flashy and easy-to-use graphical user interfaces. This is good in one sense, 

but also makes the risk to do garbage in–garbage out  kinds of simulations very large. So don’t blindly 

start using a commercial code, you should understand its inner workings and the physics in there first! 
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Commercial HF and DFT programs

• HF-codes:
• GaussianThe code deriving from Poples work. Very popular and versatile code.  

Nowadays also a DFT version is part of the package.

• TurboMole 

• DFT-codes
• CASTEP Plane-wave DFT code

• DMol3 DFT code based on numerical basis sets, rather than Gaussian Sets

• VASP Semi-commercial plane-wave DFT code developed in Vienna  
http://cms.mpi.univie.ac.at/vasp/

• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)  
- Home page: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/ 

- A fully self-consistent O N! "  DFT code.  Uses LCAO basis sets. 
- Source code available, can be used as a force routine in your MD code (parcas_siesta!) 
- Free for academic use.

• Other important stuff
• InsightII The graphical user interface of Accelrys Inc., from which most codes of Accelrys  

and some non-commercial codes such as DMol and Gaussian can be run. 
http://www.accelrys.com

• Cerius2 Another Accelrys user interface, can run many of the same codes as InsightII 

• See also http://electronicstructure.org/

Introduction to atomistic simulations 2008               7. Quantum mechanical potential models                                                                                                                                                     28

Tight-binding methods

[Main source: Foulkes et al., Phys. Rev. B 39 (1989) 12520.]

• Tight-binding (TB) models can be considered “minimal” quantum mechanical models. They 

are most often semi-empirical, and the quality of the results varies a lot. At best, one can 

achieve results comparable to DFT with a 100 times less computer capacity, at worst they are 

no better or even worse than semi-empirical models but a 100 times slower! 

• In semi-empirical TB one starts with the assumption that total electronic energy E  can be written 

as  

E #
i

i 1=

N

$
1

2
--- U r

ij
! "

j

$
i

$+=  

 

where U  is a repulsive classical pair potential acting between the atoms, and the #
i
 are eigen-

values of some self-consists Schrödinger-like equation, 

Hˆ %
i

r! "
1

2
---&

2
– V r! "+ %

i
r! " #

i
r! "= =  

• This resembles the DFT formalism, and can be derived with various approximations.  

• The eigenvalues #
i
 are negative, and the repulsive energy positive. U r! "  is either constructed 

by empirical fitting to give the desired total energy, or derived from DFT.
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Tight-binding methods

• Bonding of H2  

-|h|
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|h|• Wave function: !" # a
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• Schrödinger equation 
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Tight-binding methods

• The TB Schrödinger is solved with the variational principle for some set of basis functions $23 4  

which leads to a secular equation 
H 5S– 0=  

where 

H26 $2 Hˆ $6% " #=                                          

and 
S26 $2 $6% " #=

• Often one still assumes that the set of basis functions is orthogonal, in which case S  reduces to the unit 

matrix. 

• Usually the basis set is put to contain only the outermost electrons, with all others treated with 

the repulsive potential U r0 1 . The elements in the basis function set are usually also fit to experi-

mental data. 
• For instance, to treat a material where only the outer s and p electrons are important, one can get away 

with using only for basis functions (ss7, sp7, pp7 and pp8). If one want to also describe d electrons, one 

needs at least 10 basis functions.

• Roughly speaking it seems that TB methods usually works well in materials with only covalent bonding. 

Systems where much work has been done and which have been found to work well are at least C, Si and 

their hydrogen compounds. 

• See for example Foulkes et al., Phys. Rev. B 39 (1989) 12520, and Sutton et al., J. Phys. C: 

Solid State Phys. 21 (1988) 35. for the DFT foundations of the TB model 
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Tight-binding methods

• An example of a O N !  TBMD application [G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994) 3471]"

• A fullerene C60 colliding with a diamond surface with different kinetic ener-

gies Ek  (the surface is a reconstructed (111) surface with no dangling 

bonds):
120 eV

150 eV

300 eV

"

• When Ek # 120 eV no bonds are formed between the fullerene and the 

surface, and the fullerene simply bounces off it."

"

- When 120 eV < Ek < 240 eV a few bonds are formed between the fuller-

ene and the surface, and the fullerene may stick to the surface. The bonds 

may also be quickly broken again and the fullerene can bounce off again."
"

"

- When Ek $"240 eV several bonds are formed between the fullerene and 

the surface, the fullerene breaks down almost completely, and sticks to the 

surface.

Introduction to atomistic simulations 2008               7. Quantum mechanical potential models                                                                                                                                                     32

Very brief mention of a few other methods

• Quantum Monte Carlo (QMC) methods are a set of DFT-related methods where Monte Carlo 

simulation techniques are used to minimize the correlation term of DFT. "

• Computationally very expensive, but they can give very accurate results, especially for the correlation 

term which is difficult to treat otherwise."

• The most common varieties: Diffusion Monte Carlo (DMC) and Variational Monte Carlo (VMC)"

• Just an example on results [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870]:"

"

• DMC gives all energies correct within the uncertainties, and clearly outshines HF and plain LDA.
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Very brief mention of a few other methods
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Very brief mention of a few other methods

• What is the minimum-energy configuration of C20 [Grossman et al., Phys. Rev. Lett. 75 (1995) 

3870.]? 

 
• According to QMC:n it is the “bowl” shape

• Note the large differences between the supposedly reliable DFT and HF methods, and that none of the 

agrees with the QMC behaviour. 
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Very brief mention of a few other methods

• Path Integral Molecular Dynamics

• Path Integral MD (PIMD) is a DFT / Car-Parrinello type of method which uses a Feynman path integral 

representation of the density matrix. 

• Also hideously expensive computationally, but claimed to be the only really good method to describe 

water-related reactions. 

• A rough rule of thumb for both QMC and PIMD is that the number of atoms is limited to ~ 20 or so... 

• Time-dependent HF, DFT, TB 

• The methods described until now are all normally used to obtain the ground state. This means one 

assumes that the electron system has time to come to rest before the processes of interest happen. Since 

electronic relaxation times are typically of the order of femtoseconds, this is often a very good approxima-

tion.  

• However, if one is interested in e.g. electronic excitation, this approximation is not valid, and one has to 

actually solve the time-dependent Schrödinger equation. This can be done by iterating over time. 

• Time-dependent (TD)-methods are somewhat of a hot topic in electronic structure calculations now, and 

there are TD variations of all the main methods: HF, DFT and TB. 

• A rough rule of thumb is that a TD-method is at least a factor of 100 slower than the corresponding ordi-

nary method.
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Set the initial conditions , r
i

t
0

 ! v
i

t
0

 !

Get new forces F
i
r

i
 !

Solve the equations of motion numerically over time step : 

        

"t
r

i
t
n

 ! r
i

t
n 1+

 !# v
i

t
n

 ! v
i

t
n 1+

 !#

t t "t+#

Get desired physical quantities

t t
max

 ?$ Calculate results 

and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P

Potential 

models for

metals
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Classical potentials for metals

• About 80 % of all elements are metals. The crystal structures of the elements are distributed as 

follows:%
P

ro
g
ra

m
 g
e
l
e
m
e
n
t
a
l

%

  FCC 19 HCP 26 BCC 15  (quick counting from inside cover of Ashcroft&Mermin)%

• If we can describe the FCC, HCP- and BCC structures with interatomic potentials, already 

some 60 % of all stable elements are described well at least with respect to the structure.
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Classical potentials for metals

• The crystal structures are as follows:

FCC HCP BCC

• FCC Face-Centered Cubic (close packed) 
atoms at the corners of the cube and in the center of each side face 

HCP Hexagonal Close-Packed (close packed)  

Angle between x  and y  unit cell axes is 120o.  

One atom at each corner of the unit cell,  
one (atom E) above the middle of the triangle ABC. 

BCC Body-Centered Cubic (not close packed) 
Cubic unit cell, atoms at the corners of the cube and in the center of the cube 

FCC and HCP are close packed  ! can be stabilized with pair potentials (although getting the small HCP-

FCC energy difference right is a bit tricky).
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Effective medium theory

• The effective medium theory, EMT, is an approximation in which models based on density-func-

tional theory are used to describe the properties of solids, usually metals.
• Today there exist numerous many-body interatomic potentials which are based on EMT, in which the total 

energy is written in the form 

E
tot

F n
i
R

i
" #" #

i

$
1

2
--- % R

i
R

j
–" #

i j&

$+=    , 

where F  is a function of the electron density, and %  is a (usually purely repulsive) pair potential. 

• Sort of a generalization of DFT: local electron density can be used to deduce the energy.  

• EMT can be used to directly derive a potential but many potentials only obtain the motivation of their func-

tional form from EMT. 

• In EMT the real material is replaced by jellium which consists of  
1) a homogeneous electron gas, formed by the free electrons of the metal 
2) a constant positive background density (metal ions) 

• When an atom is ‘embedded’ into this medium in a position r , the change in energy is as a first approxi-

mation 

'E r" # E
atom+jellium

E
atom

E
jellium

+" #– 'Ehom n
0
r" #" #(=    , 

where 'Ehom n" #  is the embedding energy into a homogeneous electron gas with density n , and n
0
r" #  is 

the electron density at r .
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Effective medium theory 

• The embedding energy  Ehom n! "  is a universal function of the electron density. Below is a list of exam-

ples [Puska, Nieminen, Manninen Phys. Rev. B 24 (1981) 3037].#

#

#

#

• From the pictures we see that for noble gases  Ehom n! "  is linear for all values of n , i.e. the closed elec-

tron shell only causes a repulsive interaction. (Some noble gases do have bonds, but this interaction 

derives from van der Waals effects which are not included in DFT/EMT). #

• For other elements there is a minimum in the curves, which describes their propensity to form bonded 

materials.
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Effective medium theory 

• How do we get from this to the total energy of the whole system? [Manninen, Phys. Rev. B 34 

(1986) 8486.]#

• The total energy of this “atoms in jellium” N -atom system is#

E
tot
N E

R
N n$ %=   ,#

#

where n  is the electron density of the ground state of the system. #

• The energy difference when an atom i  is removed is#

 E
i

E
tot
N E

tot
N 1– E

atom
+! "–  E

i
n

i
$ %= =     ,#

#

where n
i
 is the electron density in the system after atom i  has been removed. #

• The idea of EMT (motivated by DFT): #

Both E
tot
N  and E

tot
N 1–  can be stated as a functional of the same electron density n

i
.#

• The energy of the whole atom system can be stated as#

#

E
tot

E
tot
N 1– n

i
$ %  E

i
n

i
$ % E

atom
+ +=   
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Effective medium theory 

• By removing more and more atoms, one at a time, we obtain for E
tot

 

E
tot

NE
atom

 E
i

n
123!i

" #

i 1=

N

$+=    .

• Here n
123!i

 is an electron density in the system after atoms 1 2 3 ! i% % % %  all have been removed.&

• By rearranging the terms in the electron density this can be written as&

E
tot

NE
atom

 E
i

n
i

" #

i

$

1

2
---  E

j
n

ij
" #  E

j
n

j
" #–' (

ij

$

1

6
---  E

k
n

ijk
" #  E

k
n

ik
" #–  E

k
n

jk
" #–  E

k
n

k
" #–' (

ijk

$

!

+

+

+

+

=  

In sums with many indices the 
terms with at least two same indi-
ces are left out.

&

• Terms with distant atom pairs is are small, so the sums converge rapidly.
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Effective medium theory 

• The electron density n
123!i

 is approximated as a superposition of atom (or pseudo-atom) electron den-

sities n
a
r' ( &

&

n
123!i

r' ( n
a
r

i
R

j
–' (

j i 1+=

N

$=   .&

• The atomic densities can be densities for free atoms or for atoms in the solid state where the surrounding compresses 

the electron shells.&

• As mentioned above, in the first approximation&

 E
i

n
i

" #  Ehom n
i
R

i
' (' (=   ,&

i.e. the functional is replaced by a function.&

• By superposition the density n
ij

 is now&

n
ij
R

j
' ( n

j
R

j
' ( n

a
R

j
R

i
–' (–=   .&

• The embedding energy  Ehom n
ij

' (  can be calculated from  Ehom n
j

' (  by developing it as a Taylor series&

 Ehom n
ij

' (  Ehom n
i

' ( n
a
R

i
R

j
–' (

) Ehom n
j

' (

)n
j

------------------------------– !+=    .&
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Effective medium theory 

• If the same is done with the other terms in the expression (*), we find that the total energy: 
 

E
tot

Fhom n
i
R

i
! "! "

i 1=

N

#=    , 

where 

Fhom n! " E
atom

$Ehom n! "
1

2
---n

%$Ehom n! "
%n

----------------------------–
1

6
---n2

%2$Ehom n! "

%n2
-------------------------------+ +=   . 

 

• Pair potential is completely missing! 

• Can be used to some extent, but it is not completely satisfactory as it e.g. tends to lead to wrong values 

for the elastic constants [Daw, Baskes, Phys. Rev. B 29 (1984) 6443.] 

• A better model is obtained by taking account of the electron density induced by an atom in the material 
 

$& r! " $n r! " Z' r! "–=   
 
and by considering the difference between the real external potential and the jellium external potential 

'vext r! "  .  
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Effective medium theory 

• By using perturbation theory one obtains 

$E(1) R
i

! " r$& r R
i

–! "'vext r! "d(=   , 

which can also be written as 

$E(1) R
i

! " r$& r R
i

–! ") r! "d(=   , 

 
where ) r! "  is the electrostatic potential of the system (without the potential of the embedded atom).  

• By the superposition principle this can be stated as a sum over single-atom potentials: 

$E(1) R
i

! " r r'd
$& r R

i
–! "$& r' R

j
–! "

r r'–
-------------------------------------------------------d(

i j*
#=  

• By using instead of the electron density at a point some average over the electron density in a region the 

model can also be improved. One suitable average is 

n
i
R

i
! "

1

+
--- rd r'd n

i
r! "

$&
i
r' R

i
–! "

r r'–
------------------------------(–=    , 

 
where 

+ rd r'
$&

i
r' R

i
–! "

r r'–
------------------------------d(–=   . 
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Effective medium theory 

• Now the total energy of the system is of the form 

E
tot

Fhom n R
i

! "! "

i

#
1

2
--- r r'd

$% r R
i

–! "$% r' R
j

–! "

r r'–
-------------------------------------------------------d&

i j'
#+=   . 

• A density-dependent term and a pair potential term!

• Changes in the single-electron states in the system ( correction term $E
1el

. 

• Affects things mostly in the case of transition metals (unfilled d shell) 

• As an example measured and simulated potentials for a few metals: 
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Effective medium theory 

• As an example of an application to metals the properties of Al and Cu studied by constant pres-

sure MD: 
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Embedded-Atom Method (EAM)

• The EAM method [Daw, Foiles and Baskes, Mat. Sci. Rep. 9 (1993) 251] is based on the same 

ideas as EMT.  

• The functional form has been deduced primarily semi-empirically and in part by fitting.  

• Despite its poorer physical motivation EAM usually works as well or better than EMT. 

• The EAM total energy is written in the form 
 

E
tot

F
i

!
i

" #

i

$
1

2
--- V

ij
r
ij

" #

ij

$+=   (EAM 1) 

where 

!
i

!
j
a r

ij
" #

j i%

$=   is the electron density at atom i , 

!
j
a r" #  is the electron density of atom j  and 

F
i
 is the embedding function. 
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Embedded-Atom Method (EAM)

• This resembles a lot the EMT total energy, the main difference being that the argument of F
i
 is the elec-

tron density in a given point. 

• Note that the embedding function F
i
 is universal in the sense that a same function can be used to embed the atom to 

different materials; material dependence only comes through the argument ! .  

• Daw, Baskes and Foiles obtained the functions F
i
 and V

ij
 by fitting experimental results (lattice parameter, elastic 

constants, cohesive energy, vacancy formation energy and difference between fcc- and bcc- structures).
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Embedded-Atom Method (EAM)

• Here is an example of all the terms in the original Foiles Cu EAM potential: 

Electron density                   Embedding energy              Pair potential

 

• Let’s compare the expression above with the general expression for a many-body potential 

given earlier: 

 

V V
1
r
i

! "

i

# V
2
r
i
r
j

$! " V
3
r
i
r
j
r
k

$ $! " %+

i j k$ $
#+

i j$
#+=  

• Vij is clearly a pair potential V2 . But what is the embedding term?

• The embedding term is easiest to understand as a pair potential whose strength is affected by the local 

environment: an environment-dependent pair potential.

• It can not be directly written in the form shown above. 

• Maybe, by Taylor expansion, it could be done. (Haven’t tried it.) In that case the series in the above-men-

tioned would be infinite.
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Embedded-Atom Method (EAM)

• The pair potential is further interpreted as  

V
ij

r! "
1

4&'
0

------------
Z

i

a
r! "Z

j

a
r! "

r
---------------------------=  

where the Z
i

a
r! "  are effective screened charges of the nuclei of atom type ( . 

• This has the advantage that if instead of V
ij  the Z

i

a
r! "  are used as the starting point in evaluating the potential, form-

ing the EAM potential for an alloy is straightforward: 

• The mixed V
ij  is given by the equation above, and since )

j
a r! "  only depends on the type of atom j  and F

i
 on the 

type of atom i , the embedding term can also be evaluated directly for the mixture. 

• The electron densities )
j
a r! "  are obtained from modified HF electron 

densities for the outermost electrons of the material. 

• In many cases the embedding function F )! "  is obtained by fitting to 

universal binding energy relation [Rose et al., Phys. Rev. B 29 (1984) 

2963.]: 
E a*! " E

coh
f a*! "–=  

f a*! " 1 a*+! "e
a*–

=  

a*
a

a
0

----- 1–* +
, -

E
coh

9B.
-----------

* +
, -

1 2/–

= , B  = bulk modulus, .  = atomic volume
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Embedded-Atom Method (EAM)

• So in practice the EAM potential has three 1-dimensional functions.  

•  In analytical form or a set of points to be used with spline interpolation 

• The standard “Universal 3” format for elemental EAM potentials of Daw, Baskes and Foiles looks like:
 

Arbitrary comment line
Z1 m a latticename 
nrho drho nr dr rcut
((nr points of F(rho) data))
((nr points of Z(r) data, V(r)=1/(4 pi epsilon_0) Z(r)2/r))
((nrho points of rho data))

where Z1 is the atomic number, m the mass and a the lattice constant.

• A real example (Foiles Cu potential):

Cu functions (universal 3)
29     63.550         3.6150    FCC
500 5.0100200400801306e-04 500 1.000000000000009e-02  4.9499999999999886e+00
0.                     
-3.1561636903424350e-01 
-5.2324876182494506e-01

and so on, with 1497 more data points. 

• The advantage of using a code which reads this format is that any potential which can be given in the 

functional form (EAM 1) can then be made into a set of spline points and read into the code without any 

modifications necessary in the code itself. 
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Embedded-Atom Method (EAM)

• Non-uniqueness of EAM-like potentials: Note that in EAM-like potentials the division of the 

energy into the pair potential and embedding term is not unique. 
• In the formalism (EAM 1) one obtains the same 

total potential energy for any configuration with the 

transformation  

V
ij

r! " V
ij

r! " 2#$
j

r
ij

! "+=

F $
i

! " F $
i

! " #$
i

–=%
&
'

 , where #  is an arbi-

trary real number. 

F
k

(
k

– F $
i

! "

i

) (
k

– F $ r
ij

! "

j i*
)+ ,

- .
/ 0

i

)

(
k

– F $ r
kj

! "

j k*
)+ ,

- .
/ 0

(
k

F $ r
ij

! "

j i*
)+ ,

- .
/ 0

i k*
)–

F ' $
k

! " $' r
kj

! "rˆkj

j k*
)– F ' $

i
! "$' r

ik
! "rˆki

i k*
)–

F ' $
k

! " F ' $
i

! "+1 2$' r
ik

! "rˆki

i k*
)–

= =

=

=

=

• Forces in EAM (embedding part; force on atom 

k ):
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Glue models

• Like EAM but physical interpretation of the functions more or less thrown away 

• For instance Ercolessi et al. gold potential: [Phys. Rev. Lett. 57 (1986) 719 , Phil.Mag. A 58 (1988) 213.]
• Nearest neighbors only

• Functions are usually polynomials 

• In here instead of an embedding function a ‘glue function’ U  is used, which depends on the atomic coor-

dination 

E
tot

1

2
--- ! r

ij
" #

i j$

% U n
i

" #

i

%+=   , 

where 

n
i

& r
ij

" #

i j$

%=   . 
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Glue models

• Example: glue model for Au 

 

 

• Note that here the pair potential is no longer purely repulsive (Non-uniqueness of EAM-like potentials!) 
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Glue models

• A few properties of the potential:                    
 

 

• Thermal expansion 

from MD simulations
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Glue models

• Phonon dispersion relation: 

            

points:          experiment 
solid line:     with glue function 
dashed line: without glue function

• Gold (100) surface reconstruction 
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Rosato group potentials

• The group of Rosato et al. (first ones by Cleri and Rosato) has formulated a large group of 

potentials based on the second-moment approximation of the tight-binding Hamiltonian (TB-

SMA). [Cleri and Rosato, Phys. Rev. B 48 (1993) 22]:  

• The method starts from the knowledge that a large set of properties of transition metals can be derived 

purely from the density of states of the outermost d electrons: 

• The second moment of the density of states is !
2

 , and experimentally it has been found that the cohe-

sive energy of metals is roughly proportional to the width of the density of states, which in the second-

moment approximation is simply !
2

.  

• When only the dd", dd# and dd$ orbitals are taken into account, the band-energy of atom i can according 

to the model be written as: 

E
B

i %
2

2q
r
ij

r
0

----- 1–
& '
( )
* +

–exp

j

,–=  

 
which only depends on the distance and which formally is exactly the same as the F -. /  part of the EAM 

potentials (with the square root operation being the embedding function F ). 
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Rosato group potentials

• In addition the model has a repulsive Born-Mayer-term: 

E
R

i
A p

r
ij

r
0

----- 1–
& '
( )
* +

–exp

j

,=  

 
so the total energy of the system becomes  
 

E
c

E
R

i
E

B

i
+. /

i

,=  

• Here r0 is the equilibrium distance between atoms, and A, %, p and q are fitted parameters. Despite its sim-

ple functional form, the model can be used to describe quite well elastic, defect and melting properties of 

a wide range of FCC- and HCP-metals. 

• Later work in the Rosato group has given also extensions to alloys, e.g. [Mazzone et al., Phys. 

Rev. B 55 (1997) 837].  

• One practical caveat about the Cleri-Rosato potentials: at least in some of their papers they 

have been sloppy with factors of 1/2 and minus signs, you may have to correct these yourself. 



Introduction to atomistic simulations 2008               8. Potential models   for metals                                                                                                                                                  25

Finnis-Sinclair potentials 

• One more important group of EAM-like potentials are the so called Finnis-Sinclair potentials 

[Phil.Mag. A 50 (1984) 45; for an improvement see Phil. Mag. A 56 (1987) 15]. They model tran-

sition metals based on ideas derived from the tight binding method. 

• The form of a Finnis-Sinclair-potential is 
 

E
tot

1

2
--- ! r

ij
" #

i j$

% A n
i

i

%–=   , 

where 

n
i

& r
ij

" #

i j$

%=   . 

 

i.e. this is the same functional form as in EAM where the embedding function is simply F n
i

" # A n
i

–= . 

The square root function can be motivated by the tight-binding model, as in the Rosato potentials. 

• The potential parameters are obtained purely by fitting to experimental data. 

Introduction to atomistic simulations 2008               8. Potential models   for metals                                                                                                                                                  26

Vacancy formation energy revisited                  See e.g. Rob Phillips, Crystals, De-

fects and Microstructures. 

• Definition of the formation energy: 
Remember pair potentials: 
 

 
 

 
 
' 

Etot vacancy N(" #
1

2
--- N 12–" #12! 12 12 1–" #!+) * 6 N 1–" #!= =

Etot perfect N(" #
1

2
---N12! 6N!= =

Evac

f
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Vacancy formation energy revisited 

• Note that now cohesion energy per atom is  

E
coh

E
tot

perfect N!( )

N
------------------------------------- F 12"

0
# $ 6%+= = 6%& E
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# $–=  

• Substitute 6%  in expression for  E
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Typically for metals 

 

Element  

(eV)

 (eV)

V 5.31 2.1 ' 0.2

Nb 7.57 2.6 ' 0.3

W 8.90 4.0 ' 0.2
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NOTE: Pure pair potential means that , i.e. 
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Vacancy formation energy revisited

• So now we at least have E
vac

f
E–
coh

+

• To have E
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f
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Vacancy formation energy revisited 
 

•   Glue model for Au                            Daw & Baskes for Ni, Pd                         Foiles et al. 
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Some EAM-like potentials

• Below are listed some EAM potentials. It is impossible to list all of them, so this is just a list of 

some common ones.  

• FCC metals

Foiles et al., Phys. Rev. B 33 (1986) 7983. 

• “Original” EAM-potentials [S. M. Foiles, 

Phys. Rev. B 32 (1985) 3409; ibid. 33 

(1986) 7983]:
• Good potentials for Ni, Cu, Pd, Ag, Pt, Au 

and all dilute alloys of these. Good in many 

ways, surfaces the most commonly men-

tioned shortcoming. But surfaces tend to be a 

problem for most EAM potentials

• Decent potential for Al.

• Very widely used and tested, and almost no 

fatal shortcomings have been reported, so 

these can be used with good confidence. 
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Some EAM-like potentials 

• Glue potentials: [Ercolessi, Adams: Europhys. Lett. 26 (1994) 583]: good potentials at least for 

Au and Al. 

• [Cai and Ye, Phys. Rev. B 54 (1996) 8398]: Alternative EAM potentials for Al, Ag, Au, Cu, Ni, Pd 

and Pt. May be better than original EAM in particular for alloys and surfaces. 

• [Johnson, Phys. Rev. B 37 (1988) 3924]: Analytical EAM model for most FCC metals  

• [Sabochick, Lam, Phys. Rev. B 43 (1991) 5243]: Potential for Cu, Ti and their compounds 
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Some EAM-like potentials

• The Cu part of this potential seems to be very good for 

point defects 

[Nordlund and Averback, Phys. Rev. Lett. 80 (1998) 

4201] (see on the right). 

• [Voter and Chen, Mat. Res. Soc. Symp. Proc. 82 (1989) 

175]: NiAl system potentials 

• Cleri-Rosato parameters (see above) for FCC metals 

exist at least for Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al and Pb. 

• [Ackland and Vitek, Phys. Rev. B 41 (1990) 10324]: EAM 

potentials for Cu, Ag, Au and alloys. Improvements in 

[Deng and Bacon, Phys. Rev. B 48 (1993) 10022]. 
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Some EAM-like potentials

• HCP-metals 

• Compared to both FCC and BCC metals, the HCP metals have been studied relatively little, 

both experimentally and with simulations.

• In fitting potentials for an HCP one should take care to ensure that the HCP phase is lower in 

energy than the FCC phase, and that one can obtain the required c a!  ratio (which experimen-

tally seldom equals exactly 8 3! , which is the “ideal” value calculated for close packing of hard 

spheres)

• In addition there are 5 elastic constants, rather than 3 as in cubic metals. 

• Pasianot and Savino [Phys. Rev. B 45 (1992) 12704] have made EAM-like potentials for HCP-

metals Hf, Ti, Mg and Co. But they also showed that an EAM-like model can not reproduce all 

elastic constants correctly for those HCP metals which have  

c
13

c
44

– 0"    or   
1

2
--- 3c

12
c
11

–# $ c
13

c
44

–"  

• Such metals are e.g. Be, Y, Zr, Cd and Zn.  

• Cleri and Rosato (see above) derive parameters for the HCP metals Ti, Zr, Co, Cd, Zn and Mg.  

• Oh and Johnson [J. Mater. Res. 3 (1988) 471] have also put their fingers here, for the HCP met-

als Mg, Ti and Zr.
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Some EAM-like potentials

• BCC-metals 

• When one constructs potentials for BCC metals, one has to take into account that the BCC 

structure is not closed packed. A pair potential would most likely make the BCC phase unstable 

compared to FCC and HCP, unless carefully constructed. Or one can attain unwanted effects 

such as a negative thermal expansion. 

• In BCC metals the Finnis-Sinclair potentials (see above) have been much used. Originally they 

were formulated at least for Fe, V, Nb, Ta, Mo and W. In the five latter ones serious problems 

were later found, which were corrected in [Ackland and Thetford, Phil. Mag. A 56 (1987) 15]. 

• Johnson and Oh [J. Mater. Res. 4 (1989) 1195] have been active in BCC as well. They derived 

potentials at least for Li, Na, K, V, Nb, Ta, Cr, Mo, W and Fe.  

• But in BCC metals one should take into account the recent theoretical work which showes that 

in them 4-body interactions can have an important role, and these can of course not be 

described well by EAM-like potentials [J. A. Moriarty, Phys. Rev. B 42 (1990) 1609].  

• Moriarty has developed 4-body potentials at least for a few metals [e.g. Phys. Rev. B 49 (1994) 12431]. 

These have shown for instance that the migration energies of the Finnis-Sinclair model are probably 3-15 

times too large [Phys. Rev. B 54 (1996) 6941]. 
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Some EAM-like potentials

• Metal-hydrogen potentials 

• Finally, we mention that it is possible to construct a somewhat sensible EAM-like potential for 

metal-hydrogen interactions. Of course these can not describe delocalized hydrogen in metals, 

but they can still reproduce well e.g. the cohesive and migration energy of hydrogen in solid 

metals and hydrogen on solid surfaces. 

• Just one example: [Rice et al., J. Chem. Phys. 92 (1990) 775]; EAM potential for Ni-H.
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Fitting a repulsive potential to EAM models. 

• When one wants to describe high-energy processes (Ekin > 10 

eV) one almost always has to modify the repulsive part of the 

potential. One can for instance use the so called ZBL universal 

potential for this, which describes the repulsive part with ~ 10 

% accuracy for all material combinations, or even better an 

accurate potential derived from ab initio - calculations. 

• A special feature for EAM-like potentials is that one still has to 

remember that the electron density has to be set to a constant 

value in the same r range where the high-energy repulsive 

potential is fit to the pair potential part. 

• Example: fitting the Foiles Pd-potential to the ZBL repulsive 

potential. With the same fit also the high-pressure properties 

and melting point of the potential was obtained almost exactly 

right, whereas the properties of the interstitial atom became 

worse. [Nordlund et al., Phys. Rev. B 57 (1998) 13965].
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Two-band EAM model

• EAM is often used to model 

transition metals:
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• Their bonding is characterized 

by the free-electron-like s  

orbital and the narrow d  

orbital. 

• In the original EAM potential 

the effect of these two orbitals 

was taken into account by 

assuming the electron density 

be a sum of contributions from 

s and d shells: 
 

!a r" # n
s
!

s
r" # n

d
!

d
r" #+= . 

• The ‘occupations’ n
s
 and n

d
 

were obtained by e.g. fitting to 

H heat of solution or such. 
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Two-band EAM model

• In the two-band EAM model the s  and d  orbitals (or bands) are explicitely taken into account. 

• Energy of atom i  is written as  

 

E
i

F
d

!
i d$" # F

s
!

i s$" #
1

2
--- V r

ij
" #

j

%+ += , 

 

where !
i b$ &

b
r
ij

" #

j

%=  is the electron density contribution from band b . 

• The original formulation of the EAM model in the form of fitting the s  band density  

• A two-band EAM potential has been developed for elemental caesium [G.J.Ackland et al., Phys. Rev. B 

67 (2003) 174108.] and for the binary alloy FeCr [P.Olsson et al., Phys. Rev. B 72 (2005) 214119.] 

• For many transition metals the cohesion is determined mainly by the d  band but the s  band affects the 

elastic properties by providing repulsion. 

• On the other hand for alkali and alkaline-earth metals are normally close-packed metals with bonding 

determined by the s  electrons. 

• However, at large pressures electrons are transferred to d  band which is — although higher in energy — more com-

pact, allowing lower atomic volumes.

• With these models the isostructural transition of Cs and the thermodynamical properties of Fe-Cr alloy 

were reasonably described.
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Set the initial conditions , r
i
t0 ! v

i
t0 !

Get new forces F
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 !

Solve the equations of motion numerically over time step : 

        

"t
r
i
t
n

 ! r
i
t
n 1+ !# v

i
t
n

 ! v
i
t
n 1+ !#

t t "t+#

Get desired physical quantities

t tmax ?$ Calculate results 

and finish

Update neighborlist 

Perform ,  scaling (ensembles)T P
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diamond and 
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Diamond and zincblende structure potentials%

• Only three elements have the diamond (DIA) structure: C, Si, Ge

• However, since almost the whole semiconductor industry and micromechanical engineering 

industry is based on Si technology, the interest in studying diamond-structured semiconductors 

is immense. 

• In addition, the most common compound semiconductors (GaAs, AlAs, InAs, etc.) have the 

zincblende structure, which is essentially the same as diamond except that there are 2 atom 

types. This further increases the interest in describing this crystal structure.

IVIII VGroups:
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Diamond and zincblende structure potentials

• The diamond structure is (2 ways of looking at the same thing) 

110

DIAMOND

DIAMOND, CONVENTIONAL UNIT CELL

110 a

 

• Essentially two FCC structures inside each other which have been displaced by 
a

4
--- a

4
--- a

4
---! !" #

$ % from each other.

• The unit cell has 8 atoms

• In terms of bonding the crucial feature is that every atom has exactly 4 neighbours. The bonds are 

covalent or predominantly covalent, and the nearest neighbours are distributed such that one atom is in 

the middle of a regular tetrahedron

• The angle between any two bonds of the same atom becomes 1 3&–' (cos 109.47)= . Chemically this cor-

responds to the sp3 hybridization of electrons.
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Diamond and zincblende structure potentials

• The zincblende structure is the same except that one FCC sublattice has atoms of one type, 

the other of the other type. One unit cell thus has 4 atoms of type A and 4 of type B. 
 

ZINCBLENDE, SUCH AS: 
Ga

As

 

• If the (111) stacking is ...ABAB... instead of ..ABCABC... we have wurtzite 

• Note the analogy:    fcc * hcp 
zincblende*wurtzite
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Diamond and zincblende structure potentials

• Covalent bonds

• In a covalent bonds atoms share electrons and thus in some 

sense achieve a filled electron shell.

• In solids covalent bonds typically form between elements which 

have a similar outer electron structure.
• Some elements: C, Si, Ge, S, Se, Te

• III-V-componds (GaAs, InP, ...)

• II-VI-compounds (ZnSe, CdTe, ...)

• various compounds such as SiC 

• molecular crystals (e.g. oxygen where the basic element is the O2 

molecule, H2O etc. etc.) 

• The electrons extend to the space between the atoms. 
• The electron structure of the Si2 dimer is compared to the superpo-

sition of the density of two Si atoms:
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Diamond and zincblende structure potentials

• Because of the nature of the hybridization of the electron orbitals, the covalent bonds typically 

have a strong directional dependence, with some preferred angles between the bonds. For 

instance, the energy of three atoms will depend not only on the distances r
ij

, r
ik

 and r
jk

 but 

also on the angles between them !
kij

, !
ijk

 and!
ikj

: 

i

j

k

rij

rjk

rik

!ijk

!ikj
!kij

 

• Si has 4 outer electrons, and these can form 4 bonds with sp3 hybridization, i.e. the angle of 

109.47o . 

• From this directional dependence, it also follows that the crystal (or amorphous) structure of 

covalent solids is often fairly open:
• Number of nearest neighbours only 2-4, (12 in close-packed structures!). 

• Packing fraction in diamond is only 0.34, whereas it in FCC is 0.74.
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Diamond and zincblende structure potentials

• Dealing with covalent bonding: explicit angles vs. bond order

• Before we proceed with semiconductors, let us think quite generally about the angular proper-

ties of covalent bonds.

• Since we know for any given covalently bonded material that there is one or a few angles 

between the bonds which give a minimum in the energy, one can immediately see a purely 

geometrically motivated way of constructing a potential: simply put in an explicit angular term 

which gives a minimum at the equilibrium angle  0 . 

• For instance, consider a single water molecule H2O. We know that the angle between the two O-H bonds 

is about 105o. Thus if one wants to construct an interatomic potential to describe water, one could get the 

structure right simply by including an explicit angular energy term of the form!

Eangular K
 

 105"–# $
2

= !

into the potential. (Let’s call these potentials “explicit angular”.)!

• There is a problem: The minimum always at only one angle, and nowhere else. !

• However, for instance, consider the carbon allotropes graphite and diamond. In one the angle between 

bonds is 120o, in the other 109.47o. The energy difference between the two phases is vanishingly small. 
An explicit angular potential can not possibly describe carbon in both allotropes correctly.!

• Thus although it is easy to construct explicit angular potentials for a known geometry, they do not have a 
fundamental physical motivation.!
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Diamond and zincblende structure potentials

• The Keating potential!
!

   !

• Can be used when near to the equilibrium configuration and no bond breaking occurs.!

• Example of application: build amorphous Si and SiO2 using bond-switching MC
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Diamond and zincblende structure potentials

• An alternative, physically motivated approach to construct potentials for covalent systems is 
through the concept of “bond order”. 

• By bond order one means is that the strength of a single chemical bond is affected by the chemical neigh-

bourhood: the more neighbours an atom has, the weaker are the bonds which are formed to these atoms. 

This can be described in potentials of the form  
V Vrepulsive rij! " b

ij
Vattractive rij! "+=  

by constructing an environment-dependent term b
ij  

which weakens the pair interaction when the number 

of neighbours (coordination number) Z  of an atom is increased. 
•  

- For simplicity we here deal with cases where only bonds to nearest-neighbour atoms are considered.

• This idea is well motivated qualitatively from basic chemistry: if an atom has N  outer electrons, these can 

form (with other atoms of the same type in a symmetric configuration):

• a single (dimer) bond with N  pairs of electrons

• two bonds with N 2#  pairs of electrons

• three bonds with N 3#  pairs of electrons 

and so forth

• Since for every larger number of bonds one bond has less pairs of electrons, it is quite natural that the 

strength of a single bond tends to decrease. 

• However, the strength of the bond is not directly proportional to the number of electron pairs in it, and the 

behaviour of the energy/bond may vary quite a lot from one material to another.
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Diamond and zincblende structure potentials

• If the energy/bond decreases very rapidly with the coordination number, the most stable form of 

the atom is a dimer. If, on the other hand, the dependence is weak, the material wants to maxi-

mize its coordination number and will end up in a close-packed configuration. 

• In the limiting case of b
ij  

= constant we get a pure pair potential. 

• We can thus think that the strength of bond is a monotonously decreasing function of the coor-

dination number. The equilibrium structure is determined by the balance between the number of 

bonds and the single bond strength, since the total energy is the product of the two. 

• This formalism allows us to adjust how many numbers of neighbours an atom “wants to have”. This now 

gives a physical motivation to the preferred angles between bonds: if e.g. the ideal coordination is 4, and 

the bonds are arranged symmetrically about an atom, one automatically gets the tetrahedral bonding con-

figuration with an angle of 109.47o between the bonds. 

• The great advantage here is that now the angle needs not be fixed, because it is perfectly pos-

sible to construct potentials which give the same energy for 2 different configurations. Thus one 

can (and as we shall se people have) constructed potentials which e.g. give local energy min-

ima of equal depth for both the graphite and diamond configurations, thus solving the carbon 

problem! 
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Diamond and zincblende structure potentials

• Based on pseudopotential theory Abell [Phys. Rev. B 31 (1985) 6184.] has argued that the term 

b
ij  should be of the form  b

ij
Z

 –
!  where Z  is the coordination number and   some number. 

More specifically, in the so called second-moment approximation of tight binding one obtains  

b
ij

Z
1 2"–

! .

• Let us make all this concrete with an example:

For comparison: en-
ergy/atom for alu-
minium [Phillips, 
Fig. 4.5]. Curve is a 
fit of the form 

.

Note the different 
sign convention!

E E0 #Z
1 2"

$Z+ +=

 carbon. 

The table below shows the energy/bond and energy/

atom for a number of different coordinations of carbon. 

The values for Z 2 3 4% %=  are from experiment and the 

values for the hypothetical phases Z 4&  from a DFT cal-

culation which also reproduces the experimental values 

well [Furthmüller et al, Phys. Rev. B 50 (1994) 15606; 

data compiled in Albe et al, Phys. Rev. B 65, 195124].

Z Phase
Energy/atom

(eV)
Energy/bond

(eV)
Energy/bond 

bond order model

2 dimer 3.10 6.20 6.32

3 graphite 7.36 4.91 4.91

4 diamond 7.30 3.65 3.67

6 simple cubic 4.74 1.58 1.75

8 BCC 3.00 0.75 1.01

12 FCC 3.00 0.50 0.43
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Diamond and zincblende structure potentials'

• The last column shows a fit to the data obtained with a bond order model of the 1 Z"  form. As 

you can see, a quite good fit is obtained for all phases, and especially the most important ones 

are described very well. '

• Note also that the bond order model correctly predicts that graphite and diamond are almost 

equal in energy.'



Introduction to atomistic simulations 2008           9. Potential models  for diamond and zincblende structures                                                                                                                                              13

Diamond and zincblende structure potentials 

• The generality of this approach was shown by Brenner [Phys. Rev. Lett. 63 (1989) 1022.], who 
proved that this form is mathematically equivalent with the EAM formalism (after suitable trans-
formations), and specifically that if ! 1 2"–=  one can obtain exactly the Finnis-Sinclair / Cleri-
Rosato-like metal potentials: 
 

E E
i

i

#=  , E
i

1

2
--- V

i

pair
r
ij

( ) V
i

mb
+$ %

j i&
#=  

• Tersoff: V
i

mb 1

2
---– Bb

ij
e

'2rij–

j i&
#=  ,   b
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1 G (

ijk
) *e

'3 rij rik–) *–

k j+ i&
#+
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(or b
ij

1 G (
ijk

) *e
'3

3
rij rik–) *3–

k j+ i&
#- .

/ 0
1 2 n
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• EAM:  V
i
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F 3 r

ij
) *

j i&
#- .

/ 0
1 2

–= .  
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Diamond and zincblende structure potentials 

• Assuming Finnis-Sinclair form F 3) * A3
1 2"

–= , 3 r) * e
ar–

=  we get  
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A e
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=
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Thus if B 2A= , '

3
a 2'

2
= = , , 1 2"= , G () * 1=  we get the Tersoff potential!
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Classical Si potentials

[One important source: Balamane, Phys. Rev. B 46 (1992) 2250]

• Because of the directional dependence of the bonds, all decent Si potentials have some sort of 
an angular dependence, and hence they are at least 3-body potentials.

• Some potentials have an explicit 3-body form, i.e. the potential has the shape: 

V V2 ri rj!" # V3 ri rj rk! !" #

i j k! !
$+

i j!
$=

• These potentials are called by Balamane cluster-potentials. They typically also are explicit angular poten-
tials.

• In other potentials the angular dependence is hidden in the 2-body part so that there is no explicit V3  part. 

These are called by Balamane cluster functionals.

• The philosophy of the cluster functionals is similar to the EMT/EAM potentials: calculate a pair 
potential, but let its strength be affected by the environment. A common formulation is  

V Vrepulsive rij" # b
ij
Vattractive rij" #+=  

which is the same as for bond-order potentials.  

• Here the attractive and repulsive parts themselves are pure pair potentials, but there is a coefficient b
ij  

which has an environment-dependence. The main difference to EAM is that although they can be cast in 
the form above, in them b

ij
 has no angular dependence, whereas in the Si potential there must be one. 

• Hence in the Si potentials there also has to be a three-body loop  r
ij
r
ik

!" #

i j k! !
$  which gives the angles.
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Efficiency of semiconductor vs. metal potentials 

• Assume the number of atoms is N  and the average number of neighbours per atom is M
• A pair potential and an EAM potential is then O NM" #

• A three-body potential is O NM
2

" #

• So it would appear like the Si potentials are a factor of M  slower than EAM potentials. 

• But this is most of the time not true in reality. This is because for covalent bonding, long-range 
interactions are weak compared to the nearest neighbour-ones, so it is often enough to only 
include nearest-neighbour interactions. So for Si M 4= . But in metals long-range interactions 
are important (e.g. for surface properties and to get the difference between the FCC and HCP 
phases right), so often M 50%  in metals. 

• Because 42 < 50 the Si potentials with three-body terms may in fact be faster than EAM poten-
tials without one! 

• But there are additional funny effects. For some Si potentials the cutoff is set so that in the crys-

talline phase M 4= , but it increases strongly in a disordered (amorphous or liquid) phase. So 

the speed of the potential may be strongly affected by what phase of a material is simulated! 
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The Stillinger-Weber-potential

• Stillinger and Weber [Phys. Rev. B, 31 (1985) 5262] (SW) developed a potential, which 
describes fairly well both crystalline and liquid silicon - they in fact constructed it to give the 
melting temperature right. The potential has become quite popular over the years because it 
turned out to describe well several properties which it was not really designed to describe origi-
nally (such as point defect energies and surface properties).

• The potential is an explicit angular potential, and has the form 

V V2 ri rj!" # V3 ri rj rk! !" #

i j k! !
$+

i j!
$=  

V2 rij" # %f2 rij &'" #=  

V3 r
i

r
j

r
k

! !" # %f3 r
i

&' r
j

&' r
k

&'! !" #=   . 

where V2 is the pair potential and V3  the three-body part. The f
i
 are 
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r
i

r
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where /
jik

 is the angle, which the vectors r
ij

 and r
ik

 make at the atom i  and the function h  is 

h r
ij
r
ik

/
jik
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0exp 1 r

ij
a–" # 1– 1 r

ik
a–" # 1–+( ) /

jik
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The Stillinger-Weber-potential

• So, in practical calculation all atom triplets being within the cut-off radius from each other must 
be handled. 

• As a hypothetical example take the triangular lattice:

• Here the potential energy for one atom term takes the form: 

V 3V
2
r
nn

" # 6h r
nn
r
nn

60
o

! !" # 6h r
nn
r
nn

120
o

! !" # 3h r
nn
r
nn

180
o

! !" #+ + += .

• Note that in this case the Stillinger-Weber would not work! 

• However, in the diamond lattice all the bond pairs of a single atom have the same angle.
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The Stillinger-Weber-potential

• The constants A , B , p , a ,   and !  are all positive and were determined by demanding that the 
diamond structure is the most stable one and that the melting point, cohesive energy and lattice 
parameter are about right."

• According to rumours the potential was also fit to the elastic constants (which are reproduced 
fairly well), although the authors never stated this in the paper!"

• The actual parameter values are"

"

# 2.0951Å= ,$ 2.1672eV= ,"

A 7.0496= ,B 0.60222= ,"

p 4= , a 1.80= ,"

 21.0=  and  ! 1.20=   ."

• The melting point was fit to be almost exactly right with a rather dirty trick: the authors modified 

the cohesive energy to get the melting point close to the right value of 1685 K. The cohesive 

energy of the potential is 4.334 eV, when the right value is 4.63 eV. So this is a 7% mismatch. If 

this is corrected by direct scaling, the melting point will go wrong."
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The Stillinger-Weber-potential

• The authors examined the structure of molten Si by comparing the maxima and minima of the 

structure factor S k% &  to measured values:

MD measured

1. maximum 2.53 2.80

1. minimum 3.25 3.25

2. maximum 5.35 5.75

3. maximum 8.16 8.50

4. maximum 10.60 11.20

"

• The potential describes fairly well melting and liquid Si. However, it is important to realize that 

the angle between bonds is ‘forced’ to the ideal tetrahedral angle with the cosine term 

'
jik

cos 1 3(% &+% &2 . This is not a good feature, because of the reasons given above for “explicit 

angular” potentials."
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The Stillinger-Weber-potential

• However, SW describes the Si (001) surface better than the Tersoff potentials [Nurminen et al., 
Phys. Rev. B 67 (2003) 035405.] 
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The EDIP potential

• The EDIP-potential is fairly similar to the SW one, but it has been derived from an ab initio-cal-
culated database of the cohesive properties of Si both in the diamond and graphite phases. 

• The potential is: 

 

with the choice
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The EDIP potential

• So the main difference to SW is the environment-dependence in the form of the effective coordi-
nation number Z , which modifies the terms. 

• The potential is available in the web 
http://www-math.mit.edu/~bazant/EDIP/ 

including Fortran and C codes by which it can be evaluated efficiently.

• The parameter-values are: 
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The EDIP potential

• As required in a good fit, a large number of other 
properties have also been tested in the potential, 
the most important of which is that the diamond 
structure is the minimum of several common crys-
tal structures: 

• But note that EDIP does overestimate the energy 
of many other phases fairly much compared to 
DFT. 

• Among the best properties of the EDIP potential is 
that it reproduces the elastic constants very well, 
gives both good point defect, stacking fault and 
dislocation properties, and describes amorphous 
Si well. Also the melting point is described well, 
the potential predicts 1550 50!  K [Nord et al, PRB 
65 (2002) 165329], quite close to the experimental 
value of 1685 K. 

• The thermodynamical properties of EDIP-Si have 
been studied by P. Keblinski et al.,[Phys. Rev. B 
66 (2002) 064104.]
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The EDIP potential

• For example the radial distribution function 
of amorphous Si compared to experiments 
is reproduced fairly well: 

 

• The EDIP potential clearly is one of the best 
Si potentials available now, most tests of its 
properties have been quite favourable to it.  
 
 
 
 
 
 

• Another new Si potential is [Lenosky et al., 
Modelling and Simulation in Materials Sci-

ence and Engineering 8 (2000) 825]. This is a combination of EAM and SW models, which 
gives truly excellent fits to a large number of elastic constants, different structures and defect 
properties. However, it contains some questionable features (such as a negative electron den-
sity for some distances r ) so its transferability outside the parameter database to which it has 
been originally fit is questionable.
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Tersoff potential 

• The Tersoff potential [first good Si fit in Phys. Rev. B 38 (1988) 9902] is a cluster-functional and 

bond order potential which has an environment dependence and no absolute minimum at the 
tetrahedral angle. Tersoff based his potential on the ideas presented by Abell a few years ear-
lier. The Tersoff or more appropriately Tersoff-Abell formalism is probably the most widely 
used bond order potential formalism and has become the basis or inspiration for a huge number 
of potentials developed since then.  
 
Tersoff-like potentials are pure bond order potential motivated by the approach presented a few 
pages back in these notes, i.e. of the form: 
 

V Vrepulsive rij! " b
ijk
Vattractive rij! "+=  

• The original Tersoff potential has the following form. The total energy is 

 

E
1
2
--- V

ij

i j#

$=    , 

 

where  
 

V
ij

fC r
ij

! " a
ij
fR r

ij
! " b

ij
fA r

ij
! "+% &=  .
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Tersoff potential

• The various terms have the following forms: 

repulsive part       fR r! " Ae
#1r–

=    , 

attractive part       f
A
r! " Be

#2r–
–=   , 

 
potential cutoff function 
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Tersoff potential 

• Here, as above, the distance between atoms i  and j  is r
ij

 and the angle between bonds ij  and 

ik  is 4
jik

.

• Inspection of the terms shows that there is an angular dependence, but because is embedded 
inside the b

ij
 term, it does not give a fixed minimum angle between bonds. 

• The relation to the bond order potential basic formalism is as follows: if  n 1= , c 0= , 1 1= , and 
#
3

0=  we get the “pure” bond order potential with  

 

b
ij

1 f
C
r
ik

! "

k i j%7
8+

1 2/– 1

Z
i

---------;= .     

 
Note that the sum excludes atom j  that is taken into account by adding one. 
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• Tersoff could not find a parameter set A B  1  2 ! " n c d h  3 R D# # # # # # # # # # # #$ %  which would describe 

well both the reconstructed Si surfaces and its elastic properties. Because of this he gave two 
parametrizations: Si C, which describes well elastic properties, and Si B, which gives good sur-
face properties. Tersoff’s Si A is the original potential which proved to be unstable. Si(B) is also 

known as Tersoff 2 and Si(C) as Tersoff 3.

Si(B)/T2 Si(C)/T3

A  (eV) 3264.7 1830.8

B  (eV) 95.373 471.18

 1  (Å-1) 3.2394 2.4799

 2  (Å-1) 1.3258 1.3722

! 0.0 0.0

" 0.33675 1.0999&10-6

n 22.956 0.78734

c 4.8381 1.0039&105

d 2.0417 16.218

h 0.0 -0.59826

 3  (Å-1) 1.3258 1.7322

R  (Å) 3.0 2.85

D
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 (Å) 0.2 0.15

Si(B)/T2 Si(C)/T3
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Tersoff potential

• The parameter  3  is an interesting case: it does not affect the equilibrium properties at all, only 

properties far from equilibrium. Tersoff himself said it can be set to 0, and this is often done. 
However, in far-from-equilibrium studies it has proven to be best to include  3 . !

• Note also that since " 0= , the two last equations in the potential form are meaningless (give 
exactly 1). Although Tersoff have these two equations, I am not aware of any case where they 
would actually have been used.!
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Tersoff potential

• Below is a comparison of the energies and bond lengths obtained 
with Tersoff for different coordination numbers compared to exper-
imental and ab initio-calculations.!

Why should anyone care about e.g. 
12-fold coordinated Si? !
Although some coordination numbers 
may not exist in the ground state, they 
may still be present e.g. in defects, 
surfaces and metastable molecules.
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Comparison of Si potentials

• Balamane & co have done an extensive comparison of Si potentials, looking e.g. at bulk, sur-
face, defect and small molecule properties. [H. Balamane, T. Halicioglu, W. A. Tiller, Phys. Rev. 

B 46 (1992) 2250.]. Unfortunately EDIP was not part of this comparison. 

• Included were the SW, and Tersoff potentials Si(B) [T2] and Si(C) [T3]. Also included were the 
Biswas-Hamann potential (BH) [PRL 55 (1985) 2001, PRB 34 (1986) 895.], the Tersoff-like 
Dodson potential [DOD; Phys. Rev. B 35 (1987) 2795.] and the potential by Pearson et al. 
(PTHT; Cryst. Growth. 70 (1984) 33.]. 
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Comparison of Si potentials

• Below is the pair term of the potentials V2 r! " . The spheres are ab initio results. 

 

• We see that except for DOD the potentials are fairly similar. BH and PTPH have a long range 
compared to the others. 
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Comparison of Si potentials

• Here is the energy of three Si atoms/atom: 

    

!

rNN

 

• Note that the energy becomes fairly large for small angles for all the potentials.  
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Comparison of Si potentials

• In the adjacent picture the cohesive energies of different structures are shown, compared to 
DFT calculations. 
• Note that PTHT predicts that the simple hexagonal struc-
ture is the most stable one. 

DIA = diamond 

HD = hexagonal diamond 

BC8 = bc-8 

BTIN = "#tin 

SH = hexagonal 
SC = cubic 

BCC = body-centered cubic 

HCP = hexagonal close-packed 

FCC = face-centered cubic 

GS = graphite

"-tin

HD (wurtzite) BC8

Good source of crystal structures:  
http://cst-www.nrl.navy.mil/lattice/index.html



Introduction to atomistic simulations 2008           9. Potential models  for diamond and zincblende structures                                                                                                                                              37

Comparison of Si potentials

• And below are the elastic properties of the potentials

experiment PTHT BH SW DOD T2 T3

 B 0.99 2.788 1.692 1.083 0.884 0.98 0.98

 B' 4.2 7.82 5.66 2.93 4.27 4.58 4.30

 c11
1.67 2.969 2.042 1.616 1.206 1.217 1.425

 c12
0.65 2.697 1.517 0.816 0.722 0.858 0.754

 c44
0.81 0.446 0.451 0.603 0.659 0.103 0.690

 c44
0 1.11 2.190 1.049 1.172 3.475 0.923 1.188

 0.74 1.03 0.74 0.63 1.06 0.83 0.67

!TA X" # 4.4 4.5 5.6 6.7 2.7 9

!TO X" # 13.9 19.3 14.5 15.9 15.3 16

!LOA X" # 12.3 13.8 12.2 13.1 11.7 12

!LTO $" # 15.3 18.3 16 18.1 16.5 16

%

%

%

, ,  %
%

%

%

%

%

%

%

%

%

%

%

• We see that T3 and SW give good 
elastic properties. Lattice vibra-
tions are described well by the BH 
potential.

B& ' c
ij

& '( Mbar= !& ' THz= B'
Pd

dB=

%
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Comparison of Si potentials

• And here are a bunch of energies for 
lattice defects.

%

= vacancy%

=split vacancy%

%

=tetrahedral interstitial%

%

=hexagonal interstitial%

%

=bond-centered interstitial%

%

=split interstitial. %

The first number is the energy of the ground state, the second the energy of the ideal 

(non-relaxed) structure, and the third gives the radial relaxation of the nearest neigh-

bours in percent (negative value inwards, positive outwards).%

* Note that Balamane had an error here, this is determined by K. Nordlund.%
%

%

%

• The table tells predominantly that the short-range 
potentials (SW, DOD, T2, T3) describe defects best. 
SW is good in that it predicts that the simple vacancy 
and split interstitial are the ground state defects, which 
agrees with ab initio results for uncharged defects.

V

V
S

I
T

I
H

I
B

I
S

DFT PTHT BH SW DOD T2 T3

 V 3-4 0.77 2.12 2.82 2.57 2.81 3.70

 4.5 2.50 3.83 4.63 3.23 2.83 4.10

 38.5 -25.7 -24 14.7 1 10.5

 V
S

4.19 2.83 2.30 3.36 4.17 1.40 3.50

 5.01 4.53 4.72 6.00 8.12 4.15 10.5

 -9.5 -15.9 -12.5 -11.8 -14.5 -14.9 -8.8

 I
T

5-6 0.63 1.56 5.25 3.03 5.03 3.45

 1.91 4.57 12.21 5.00 5.85 6.92

 3.8 8 9 9.1 7.3 10.5

 I
H

4-5 0.84 2.89 6.95 2.61 3.67 4.61

 5.32 9.31 17.10 5.1 1 5.39 8.22

 7.4 11.5 14.7 7.3 7.6 10.2

 I
B

4-5 1.92 2.54 5.99 4.39 2.84 5.86

 I
S

1.47 3.30 3.66* 3.49 2.32 4.70
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Comparison of Si potentials

• Finally a table of the properties of the Si (100) 
surface:

DFT PTHT BH SW DOD T2 T3

1 1

! 2.5 1.805 2.080 2.315 1.779 2.015 2.126

"
xx

2.535 1.176 1.421 0 0 0 0

"
yy

0.855 2.363 1.683 0 0.145 0.625 -0.236

1 1 relaxed

#! -0.03 -0.077 -0.027 0 -0.085 -0.004 -0.037

 "
xx

-0.427 0.848 0 0.515 0.023 0.076

 "
yy

-2.176 0.273 0 -2.775 0.080 -1.693

# -5.1 -7.0 -5.5 0 -10.2 -2.3 -7.2

2 1

#! -0.93 -0.690 -0.709 -0.899 -0.714 -1.258 -0.759

"
xx

0.693 -0.808 0.669 1.167 -0.094 0.703 0.367

"
yy

-1.945 -1.731 0.008 -0.051 -1.709 0.190 -1.236

# -24.4 -23.3 -13.3 -8.3 -22.9 -14.6 -15.6

DFT PTHT BH DOD T2 T3

c2 2

-0.839 -0.703 -0.824 -0.720 -1.143 -0.753

-1.356 0.898 1.691 0.274 1.517 0.865

-1.419 0.851 0.574 -0.866 0.567 -0.344

#!

"
xx

"
yy

Si 1 1 Si 2 1

Si c(2 2): buckling of dimers

$

=surface energy (eV)$
=change in surface energy from 1x1$
=surface tension tensor (  in the direction of the dimer$

        bond and  in the direction of the dimer row)$
= distance change between 1. and 2. layer (%).

!
#!
"
ii

x
y

#
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Comparison of Si potentials

• The conclusions of the authors are that no potential is clearly superior. Different potentials 
describe different properties well.$
$

SW, T3 and to some extent DOD are good for elastic properties$
$

T3, SW, DOD, T2 and BH give fairly good values for the point defects, to the extent this is pos-
sible to judge considering that the experimental values are not known very well either!$

$

The (100) surface is described best by BH, SW and T3. No potential describes the complicated 

reconstructions of the (111) surface.$

• EDIP was not part of this comparison, but it is clear it would be among the best at least for the 

elastic and defect properties.$

$

$
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MEAM models 

• There also exist so called MEAM (modified EAM) models for Si. This is basically EAM to which an angular 
term has been added:  

Etot F
i

!
i

" #

i

$
1
2
--- V

ij
r
ij

" #

ij

$+=  

!
i

!a r
ij

" #

j i%

$ !a r
ij

" #!a r
ik

" #g &
ijk

cos" #

k j' i%

$+=  

• Baskes has developed some models, but is apparently not quite satisfied with them. 

• Applied (in addition to metals) to e.g. silicides (TaSi, MoSi; electronic components!)
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Potentials for semiconductor alloys

• The alloys of Si are something of a hot topic.  

• Silicon carbide is interesting both for its mechanical hardness as well as its possibilities in high-
voltage or high-current electronics.  

• Silicon-germanium compounds (Si1-xGex) again are very interesting 

because by adding some 20 % Ge to Si one can get the electron mobil-
ity (and hence integrated circuit speed) about as high as in GaAs, about 
twice the value in Si. But because the device is still based on Si, one 
does not have to change to the more complicated GaAs manufacturing 
technology. 

Si0.8Ge0.2

Si

Si

Si0.8Ge0.2C0.02• In Si1-xGex-compounds there is, however, the problem that their lattice 

constant does not match that of Si (on top of which the SiGe is grown). 
The latest promising word is then Si1-x-yGexCy where x ~ 0.2 and y ~ x/

10. That is, only a few years ago someone realized that by adding a lit-
tle bit of carbon one can get a perfect lattice match to Si. 

• For instance because of this it is interesting to have models for SiGe-, SiGeC and SiC-com-
pounds. 
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Potentials for semiconductor alloys

• The Stillinger-Weber potential has two Ge-parametrizations [Ding and Andersen, Phys. Rev. B 
34 (1986) 6987 and Wang and Stroud, Phys. Rev. B 38 (1988) 1384]. Out of these, the Ding 
and Andersen potential has:  2.181 Å=  and ! 1.93 eV= ; the other parameters are identical to 
Si. Wang-Stroud is like Ding-Andersen except that " 31= .#

• One can construct a SiGe compound potential simply by taking the geometric average of the Si and Ge 
parameters:#
#

 SiGe  Si Ge=

!SiGe !Si!Ge=

"SiGe "Si"Ge=

#

• There is also actually a SW-parametrization for C [Pailthorpe and Mahon, Thin Solid Films 192/

193 (1990) 34], but this should normally not be used - since SW has a minimum for sp3 bond-

ing, but carbon also can be favourably in the triply bonded graphite sp2 configuration, with bond 

angles of 120o°, the SW parametrization is of very limited usability.#

• But in describing the lattice compensation of Si1-x-yGexCy for y ~ 0.01 the combination of the 

three SW potentials actually does correctly reproduce the good lattice match to Si.
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Potentials for semiconductor alloys

• Tersoff has also developed potentials for SiC and SiGe [PRB 39 (1989) 5566.]. The formalism is 
almost the same as for his Si potential:#
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Potentials for semiconductor alloys

• Here the indices i  and j  on the parameters denote the atom types. The mixed parameters 

 
ij
!
ij
A
ij
B
ij
R
ij
S
ij

" " " " "  are obtained by interpolation from the elemental parameters:#

 
ij

 
i
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+
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!
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A
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=   ,  B
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B
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=   , R
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R
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ij

S
i
S
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• A new parameter is $  by which the mixed potential can be finetuned. Tersoff set $
ii

1=  and 

$
ij

$
ji

=  , so there is only one free parameter for the mixed interactions, all the others are deter-

mined from the elemental parameters. Moreover, %
ik

 could be used to finetune the mixed inter-

actions but Tersoff set %
ik

1=  
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Potentials for semiconductor alloys

• The parameter values for C, Si and Ge were obtained from a fit to the properties of different 
structures, and the finetuning parameters $  were obtained from the cohesive energies of SiC 
and (hypothetical) zinc-blende SiGe. 

C Si Ge

A  (eV) 1393.6 1830.8 1769

B  (eV) 346.7 471.18 419.23

  (Å) 3.4879 2.4799 2.4451

!  (Å) 2.2119 1.7322 1.7047

& 1.5724'10-7 1.1000'10-6 9.0166'10-7

n 0.72751 0.7873 0.75627

c 3.8049'104 1.0039'105 1.0643'105

d 4.384 16.217 15.652

h -0.57058 -0.59825 -0.43884

R  (Å) 1.8 2.7 2.8

S  (Å) 2.1 3.0 3.1

            $C-Si 0.9776=     $Si-Ge 1.00061=

The Si parameters are just Si(C) without  3 .#
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Potentials for semiconductor alloys

• The potential gives the following properties for SiC:

Tersoff Expt.

a  (Å) 4.32 4.36

B  (Mbar) 2.2 2.2

c11  (Mbar) 4.2 3.6

c12  (Mbar) 1.2 1.5

c44  (Mbar) 2.6 1.5

• Tersoff also calculated the energies for a few stoichiometric defects 
(eV):

Tersoff DFT

VSi VC+ 7.4 12.7

CSi SiC+ 7.2 8.4

Si
TC C

TSi+ 22.6 23.3

Si
TSi C

TC+ 23.2 26.0

C
TC C

TSi– 3.0 2.4

Here  
 

 is the Si vacancy, 
 

 is a carbon atom 
on an Si site, and  
 

 a C atom on a 
tetrahedral site, sur-
rounded by C atoms. 

V
Si

C
Si

C
TSi
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Potentials for semiconductor alloys

• The potential predicts the properties of SiC fairly well, especially considering that the potentials 
has only one parameter which is really fit to the properties of the compound ( ). And even this 
parameter is fairly close to 1. Only the shear modulus c44  and the formation energies of vacan-

cies are pretty bad.!

• One problem here is that in reality SiC is partly ionic in its bonding, which is not accounted for at 
all in the Tersoff potentials. One potential where this is taken into account is [Shimojo, Phys. 

Rev. Lett. 84 (2000) 3338] but this potential uses explicit angles so it is also problematic!

• Nowadays also a wealth of reparametrizations exist for the Tersoff formalism SiC potential - it 
seems almost every group working on SiC has made their own parametrization...
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C potentials

• Constructing a potential for elemental C is complicated (as noted above) because it has two 
structures which are practically identical in energy: diamond and graphite. Both have a cohesive 
energy of about 7.4 eV. The structure of graphite is:!
 !

• As noted above, this situation clearly can not be described with an explicit angle potential, but a 
bond order potential like Tersoff can handle this.!
!
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C potentials

• The Tersoff parametrization for C does, however, describe both bonding types well [Tersoff, 
Phys. Rev. Lett. 61 (1988) 2879], and is clearly the most used C potential in the materials phys-
ics community.

• But it describes the graphite-to-diamond potential poorly. But simply by increasing the parame-
ter S  in the potential to 2.46 Å [Nordlund et al., Phys. Rev. Lett. 77 (1996) 699] one can make 
this transition much better described: 
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C potentials 
 
 
 
 
 

 
                   

Fahy et al. Phys. Rev. B 34 (1986) 1191.
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C potentials

• But there is a significant problem with the Tersoff C potential: because of its short cutoff, it does 
not describe the interaction between graphite layers at all. 

• There are two good solutions to this. 

• Nordlund et al. have made an extension to the Tersoff potential which does describe the interaction 
between graphite layers well [Phys. Rev. Lett. 77 (1996) 699]. However, the additional terms are very 
weak except precisely for configurations very close to the flat graphite layers, and do not have a deep 
physical motivation 

• A more general formulation which includes Lennard-Jones-like long-range potentials for many carbon 
bonding types (including polymers) by Stuart et al. [J. Chem. Phys. 112 (2000) 6472].
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Ge-potentials

• As we saw above, pure Ge has two almost identical SW-parametrizations, and the Tersoff 
parametrization, which are all fairly good in the crystalline phase. 

• But they all severely overestimate the melting point of Ge, giving about 2500 - 3000 K when the 
experimental value is 1210 K. 

• Nordlund et al. tried to solve this in the same way as Stillinger and Weber obtained the right 
melting point for Si, i.e. decreasing the cohesive energy [Phys. Rev. B 57 (1998) 7556]. By 
decreasing the cohesive energy in the SW potential by 18 % (i.e. setting ! = 1.56 eV) they 
obtained a melting point 1230 " 50 K, and at the same time the threshold displacement energy 
and mixing coefficient (important in ion irradiation physics) obtained reasonable values. 

• But it is clear that this kind of solution is problematic. 
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Potentials for compound semiconductors

• Compound semiconductors are an interesting alternative to Si in some applications, especially 
opto-electronics. 

• A Keating-type potential [Schabel and Martins, Phys. Rev. B 43 (1991) 11873] has been 
designed which can describe a large variety of semiconductors when the atoms are close to the 
ideal sites, but the model is absolutely terrible when the atoms are farther because it has a a 

harmonic (“r
2
”)-potential well. 

• For GaAs there is the Smith potential, based on the Tersoff formalism [Nucl. Instr. Meth. Phys. 

Res. B 67 (1992) 335], which uses all the normal Tersoff parameters for Ga-Ga, Ga-As and As-

As separately, except that !3 0= . But this potential has a vanishingly small angular term, and 

hence all shear moduli are almost exactly 0. 

• Sayed started from the Smith parametrizations, but fitted anew the Ga-As-interactions, and con-

structed an AlAs-potential. The GaAs potential is terrible because the zincblende-structure is 

not its ground state! However, by setting !3 = 0 it becomes fairly decent. 

• Ashu made a potential for InAs following Sayed’s approach, but this potential even has the 

wrong lattice spacing! However, Janne Nord has later made a reparametrization which 

describes InAs stably [Nordlund et al., Comput. Mater. Sci. 18 (2000) 283]. 
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Potentials for compound semiconductors

• There also exist a tight-binding-based Tersoff-like parametrization by Conrad et al, [Phys. Rev. 

B 58 (1998) 4538] but this potential is terrible far from the ground state, it collapses into a state 

with at least a factor of 2 lower energy than the correct zincblende structure. 

• The most recent approach is a modified Tersoff-like parametrization which gives the correct 

ground states for Ga, As and GaAs, as well as good melting properties for all three [Albe et al., 

Phys. Rev. B 66, 035205 (2002)]. The only major problem is As-rich surfaces and defects. 

• There is also a potential for GaN in this formalism.

• Modeling also like-ion interactions: e.g. Ga and As has many complex structures  
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Potentials for compound semiconductors

• Ground state of the Sayed potential for GaAs: 
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Bond order potentials for metals and compounds

• As noted in the description of bond-order potentials above, they are actually equivalent to the 
basic EAM form. Hence nothing actually prevents from constructing metals potentials from a 
bond order, e.g. Tersoff-like form. 

• People in the Accelerator Laboratory and Karsten Albe have done this, so far for Pt, Ni and W, 
obtaining potentials which are at least as good as the common EAM-like potentials for the same 
metals. 

• The Pt and Ni potentials were constructed together with a fit to the metal-carbon compound. 
Again a quite decent potential was obtained, showing that the bond order concept carries fur-
ther even to complex compounds. The PtC part is published in [Albe et al., Phys. Rev. B 65, 
195124 (2002)]. 
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Molecular interaction models

• Since molecules are bonded by covalent bonds, at least angular terms are needed, 
• In many cases many more complicated terms as well: e.g. carbon chains the difference between “single” 

and “double” bonds often is important %&at least a four-body term is needed. &

• To describe complex molecules a large set of force fields have been developed.
• Molecular mechanics: use of force fields, no reactions (i.e. bond breaking or creation)

• Fixed neighbor topology (except for so called non-bonded interactions).&

• The total energy of a molecule can be given as
E

bond

E
angle

E
torsion

E
oop

&

E E
bond

E
angle

E
torsion

E
oop

E
cross

E
nonbond

+ + + + += &

E
bond

: energy change related to a change of bond length (V
2

)&

E
angle

: energy change associated with a change in the bond angle,(V
3

)&

E
torsion

: torsion, i.e. energy associated with the rotation between two parts &

of a molecule relative to each other (also termed dihedral)&

E
oop

:    “out-of-plane” interactions, i.e. the energy change when one part &

of a molecule is out of the plane with another (keeps the molecule planar)&

E
cross

: cross terms between the other interaction terms&

E
nonbond

: interaction energies which are not associated with covalent bonding  (e.g. 

ionic or van der Waals terms)&

• In the following we describe the terms, using notation more common on chemistry rather than 

the physics notation used earlier on the course.
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Molecular interaction models

• The term E
bond

• This term describes the energy change associated with the bond length. It is a simple pair potential, and 

could be e.g. a Morse or LJ potential.
• At its simplest, it is purely harmonic, i.e. 

                      E
bond

1

2
---k

b
b b

0
–! "

2

bonds

#=  

where b  is the bond length. 

• If we write this term instead as  

                     E
i

1
2
---k r

ij
r0–! "

2

j

#=  

we see that it is the same thing as the pair potentials dealt with earlier.

•  
Can be good enough in problems where we are always close to equilibrium, since any 

smooth potential well can always be to the first order approximated by a harmonic 

well. 

• But harmonic potentials obviously can not describe large displacements of atoms or 

bond breaking reasonably. 

• In solids, the harmonic approximation corresponds to the elastic regime, i.e. the one 

where stress is directly proportional to the strain (Hooke’s law). 

• A historical footnote is that Hooke presented the law already in the 1678 as “Ut ten-

sio, sic vis.”1 so it did not originally have to do much with interatomic potentials... 
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Molecular interaction models

• To improve on the bond model beyond the elastic regime, one can add higher-order terms to it, e.g. 
 

Ebond K2 b b0–! "
2

K3 b b0–! "
3

K4 b b0–! "
4

+ +

bonds
#=  

• Larger strain can be described, but not bond breaking:  b $%  also E $%  

• The familiar Morse potential 

Ebond D
b

1 e
a b b0–! "–

–
& '
( )
* +

2

bonds
# D

b
e

2a b b0–! "–
2e

a b b0–! "–
– 1+

& '
( )
* +

bonds
#= =          

This is shifted in  axis 

so that 

.

E

Ebond b0! " 0= 

is much used to describe bond energies.  

• It is good in that E constant%  when b $%  so it can describe bond breaking.  

• But on the other hand it never goes fully to 0, which is not quite realistic either as in 

reality a covalent bond does break essentially completely at some interatomic distance.  

1. The Power of any spring is in the same proportion with the Tension thereof.
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Molecular interaction models

• Angular terms E
angle

• The angular terms describe the energy change associated with two bonds forming an angle with each 

other. Most kinds of covalent bonds have some angle which is most favoured by them - for sp3 hybridized 

bonds it is ~ 109o, for sp2 120o and so on. 

• Like for bond lengths, the easiest way to describe bond angles is to use a harmonic term like  

E
angle

1

2
---H! ! !

0
–" #

2

angles
$= , 

where !0  is the equilibrium angle and H!  a constant which describes the angular dependence well. This 

may work well up to 10o or so, but for larger angles additional terms are needed.  

• A typical means for improvement is, surprise surprise, third-order terms and so forth, for instance 

Eangle H2 ! !0–" #
2

H3 ! !0–" #
3

+

angles
$=  

• An example: by taking the simplest possible bond length and angular terms, it is 

already possible to describe one water molecule to some extent:
H H

O

b b'

! 

EH2O
KOH b bOH

0
–" #

2
KOH b' bOH

0
–" #

2
KHOH ! !HOH

0
–" #

2
+ +=  

where b  and b'  are the lengths of the two bonds and !  the angle between them. 
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Molecular interaction models

• Torsional terms Etorsion  

• The bond and angular terms were already familiar from the potentials for solids. In the physics and chem-

istry of molecules there are many important effects which can not be described solely with these terms. 

• The most fundamental of these is probably torsion. By this, the rotations of one 

part of a molecule with respect to another is meant. A simple example is the rota-

tion of two parts of the ethane molecule C2H6 around the central C-C carbon 

bond. 

• Torsional forces can be caused by e.g. dipole-dipole-interactions and bond conju-

gation. 

• If the angle between two parts is described by an angle %, it is clear that the function f which describes the 

rotation should have the property f %" # f % 2&+" #= , because it is possible to do a full rotation around the 

central bond and return to the initial state. The trigonometric functions sin  and cos  of course fulfil this 

requirement, so it is natural to describe the torsional energy with a a few terms in a Fourier series 
 

Etorsion V1 1 %" #cos+" # V2 1 2%" #cos+" # V3 1 3%" #cos+" #+ +=  

 



Introduction to atomistic simulations 2008           10. Potential models  for molecules and hydrocarbons                                                                                                                                              7

Molecular interaction models

• Out-of-plane terms E
oop

• With the out-of-plane-terms one describes the energy which in (some cases) is associated with the dis-

placement of atoms out of the plane in which they should be. This is relevant in some (parts of) molecules 

where atoms are known to lie all in the same plane. The functional form can be rather simple,  

E
oop

H!!
2

!

"=  

where !  is the displacement out of the plane.

• Cross terms E
cross

• The cross-terms are functions which contain several of the above-mentioned quantities. They could e.g. 

describe how a stretched bond has a weaker angular dependence than a normal one. Or they can 

describe the relations between two displacements, an angle and a torsion and so one.  

• Non-bonding terms E
nonbond

• With the non-bonding terms all effects which affect the energy of a molecule but are not covalent bonds 

are meant. These are e.g. van der Waals-terms, electrostatic Coulomb interactions and hydrogen bonds. 

For this terms one could thus further divide 

E
nonbond

E
vdW

E
Coulomb

E
hbond

+ +=  

• The van der Waals term is often a simple Lennard-Jones-potential, and E
Coulomb

 a Coulomb potential for 

some, usually fractional, charges q
i
. 
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Molecular interaction models

• If all of the above are included except for hydrogen bonds, the total energy expression can for 

instance look like

Ebond Eangle Etorsion

Eoop

Ecross

EvdW ECoulomb

 

• There are many popular force fields in the literature: 

AMBER, CHARMM, MM2, MM3, MM4, ... 

• GROMACS is a GPL’ed MD code able to use various force fields.
• Home page: http://www.gromacs.org/ 
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Brenner potential

• The Brenner potential [D. W. Brenner, Phys. Rev. B 42 (1990) 9458] is a ‘simple’ potential for 

hydrocarbons, which is based on the Tersoff potential but developed further from this.  

•  The ideas behind the potential show how information on chemical bonding can be added in a well-moti-

vated way to a classical potential.  

• The Brenner potential is also attractive in that it can describe chemical reactions, which the potentials with 

harmonic terms can not. 

• The basic Tersoff potential contains a bonding term E
bond

 and an angular term E
angle

. But these can not 

describe alone e.g. conjugated bonds.  

• The issue here can be understood as follows. Consider first graphite:

C

CC

C

C

C

C

CC

C

C

C

CC

CC

 

• Here all the carbons have an identical local neighbourhood. Because carbon has 4 outer electrons, but 

only three bonds, every bond has 1 1/3 electrons.
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Brenner potential

• Then consider the following molecule: 

C

H3C

H3C

CH3

C

CH3

 

• Here there is a double bond between the two C atoms marked in blue. But the local neighbourhood of 

these two atoms is identical to the two C atoms in blue in graphite. Because the Tersoff potential only 

accounts for the nearest neighbours, it describes the middle bond here in the same way as the bonds in 

graphite, although in reality there is a clear difference in bond character, strength and length. 

• To improve on problems like this, Brenner added terms which depend on the chemical environment into 

the Tersoff potential. 

• Brenner starts with the Tersoff potential 
 

 
 

and defines the repulsive and attractive parts V
R  and V

A  just like Tersoff. But the environment-depen-

dence obtains additional parts.  



Introduction to atomistic simulations 2008           10. Potential models  for molecules and hydrocarbons                                                                                                                                              11

Brenner potential

• Bij  is now: 

 

/2
 

 
where  

 

• The first part is almost as Tersoff’s formulation (except no power of three in the exponential), but the H
ij  

and F
ij

 are new. Here N
i

H! "
 are the number of H neighbours of one atom, N

i

C! "
 the number of C neigh-

bours of one atom, and N
i

t! "
 the total number of neighbours. The number of neighbours is calculated by 

utilizing the normal Tersoff cutoff-function 
 

 

Introduction to atomistic simulations 2008           10. Potential models  for molecules and hydrocarbons                                                                                                                                              12

Brenner potential

• The sums over f
ij

 thus gives an effective number of neighbours (coordination!): 

• The values of N
i

t! "
 can be used to deduce whether some C atom is part of a conjugated system. If any C 

atom has even one neighbour which does not have 4 neighbours, it is interpreted as conjugated. 

(because all quantities are continuous, the precise requirement is in fact N
i

t! "
4# )
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Brenner potential

• The continuous quantity N
ij

conj
 which describes whether a bond ij  is conjugated is calculated as

                            

• So if one carbon atom has exactly 4 bonds we get  

x
ik

3= F x
ik

! "# 0 N
ij

conj
# 1= = .

• If the bond on the other hand is conjugated, N
ij

conj
2$ . 

• The remaining question is how to form the functions F
ij

N
i

t! "
N

j

t! "
N

i

conj
% %! "  and H

ij
N

i

H! "
N

i

C! "
%! "  ?

• Brenner does this simply by fitting into a large set of experimental data. As many as possible of the values 

for integer indices are set to some values directly derived from experiments, and thereafter spline interpo-

lation is used to interpolate values smoothly for non-integer arguments.
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Brenner potential

• For instance, the values for integer arguments determined in version 1 of the potential for the function H  are:
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Brenner potential

• And for function F :

• In addition, Brenner also presented another parametrization of his potential.
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Brenner potential

• Crucial here are not the exact values, but the principle used: that as many parameters as possible are set 

to well-defined experimental quantities. Also the H values are largely derived from experimental data: 
 

• Also the parameters for pure carbon were refitted by Brenner. 

• Brenner tested his potential by calculating atomization energies for a large group of simple hydrocarbons. 

The results are listed on the next page. 

• The potential was also shown to describe well the reconstructed and H-terminated diamond (111) surface 

and molecules chemisorbed on the surface.
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Brenner potential 
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Brenner potential
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Brenner potential

• Later Murty and Atwater [Phys. Rev. B 51 (1991) 4889] have made a Si-H version of the Brenner poten-

tial, and Beardmore and Smith [Phil. Mag. A 74 (1996) 1439] a combined C-Si-H-version. 

• Brenner himself has later added a torsional term to the potential, and at least two groups have added 

long-range interactions (intermolecular interactions) into it: [Stuart et al., J. Chem. Phys. 112 (2000) 6472] 

and [Che et al., Theor. Chem. Acc. 102 (1999) 346]. 
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Brenner potential

• Example application: Beardmore and Smith examined in their paper how a fullerene C60 hits an Si sur-

face.

• Case I: 250 eV C60 ! virgin Si, incoming angle 80o i.e. the fullerene forms bonds with the surface and rotates along it 

for a while (note the periodic boundary conditions).
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Brenner potential

• But if the Si-surface is H-terminated (all dangling bonds are filled with a H) the behaviour changes: 

Case II: 250 eV C60 ! H-terminated Si, 80o. 

So the H protects the surface such that only a couple of bonds are formed with the surface, and the fuller-

ene bounces back almost impact, having only taken up one Si atom.
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Brenner potential

• Case III: 250 eV C60 ! doubly H-terminated Si, 80o

• So now the protective H layer is so thick that there are no C-Si bonds formed at all, and the fullerene bounces back 

intact.
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Stuart potential

• Long range interactions are important also in graphite and in multiwalled carbon nanotubes (MWCNTs) 

• Stuart et al. [J. Chem. Phys. 112 (2000) 6472] used the Lennard-Jones potential to 

model the dispersion and intermolecular interaction: 

 

              Vij

LJ
r! " 4#

ij

$
ij

r
-------

% &
' (

12 $
ij

r
-------

% &
' (
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–=  

• However, LJ should be switched off when molecules approach

• Switching depends on interatomic distance [S t
r

r
ij

! "! " ], bond order 

[S t
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b
ij

! "! " ], and connectivity [C
ij

]: 
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• For C-C interaction $
ij

3.40 Å=  (graphite interlayer distance) - large neighbor lists (rcutoff 11 Å. )! 
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Stuart potential

• Example: Load transfer between shells in MWCNTs [M. Huhtala et al., Phys. Rev. B 70 (2004) 045404] 

    

F

Intershell bond         

No intershell bonds

Defect type Force (nN)

Single vacancy 0.08—0.4

Two vacancies 6.4—7.8

Intershell interstitial 4.9—6.3

Intershell dimer 3.8—7.3
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Potentials for ionic compounds

• There is a wide range of materials where ionic interactions are important:
• In hard condensed matter many, if not most, compounds have at least some degree of ionicity.
• Partial ionic charges are also very important for organic materials%

• In ionic compounds one can simply describe the long-range interaction with a Coulomb pair 
potential. But one should add a short-range interaction VSR  to describe repulsion at short dis-

tances:%
%

V r
ij

 ! VSR r
ij

 !
z1z2e2

4&'0r
ij

------------------+= ; %

• The charges z
i  are often fractional charges, depending on the degree of ionicity of a material (e.g. NaCl: 

1, GaN: 0.5, GaAs: 0.2, Si 0.0). %

• VSR  contains the repulsion of the electron shells and possibly an attractive van der Waals-interaction. 

Common forms:

• Buckingham:                VSR r ! Ae r (/– C

r6
-----–=

• Born-Huggins-Mayer: VSR r ! Ae B r )– !– C

r6
----- D

r8
-----––=   

• Morse:                          VSR r ! De
2* r r0– !– 2De

* r r0– !––=
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Potentials for ionic compounds

• The repulsion is usually significant only for nearest neighbours, and the van der Waals interac-
tion for the 2-nd neighbours. In oxides frequently the interaction between cations is assumed to 
be only the Coulomb repulsion. 

• In many real compounds the interactions are a mixture of covalent, metallic and ionic interac-
tions (e.g. many carbides and nitrodes).
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Potentials for ionic compounds

• Such potentials have been formed for many ionic compounds. We present here briefly the potential by 
Vashista et al. for SiO2, [Phys. Rev. B 41 (1990) 12197.] which comes up in many different contexts.
• Silicon dioxide also has many different structures, which makes it difficult to model:
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Potentials for ionic compounds

• But all of these have the common feature that they can be under-
stood as tetrahedra with Si in the centre and O atoms in the joint cor-
ners: 
   ! cristobalite          " cristobalite      " tridymite           keatite   

     
    ! quartz                 " quartz 
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Potentials for ionic compounds

• Simulation of a 40-Å diameter SiO2 beam in equilibrium (left) and strained.
• Colorcoded is the ratio between the shortest and longest edge of a face of a tetrahedron.
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Potentials for ionic compounds

• The potential is of the familiar form: 

 

• The two-body part V2 : 

    

The first part is the “steric” repulsion due to the ion size, the 
second the Coulomb term and the third a charge-dipole 
term, which takes into account the large polarizability of O.  

• The three-body term: 

 
 
where the f -function describes how the bond lengths and the p -term how a change of the bond angle 
affects the interaction.  
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Potentials for ionic compounds

• These are 

 
 

• Parameters are shown on the right. 

• A corresponds to Si and X to O in the three-body parts. 
Note that only the AXA- and XAX-three-body terms are 
defined - the potential would not describe sensibly e.g. 
pure Si since there is no AAA-term.  
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Potentials for ionic compounds

• The Si-Si and O-O-interaction are just a purely repulsive pair potential: 
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Potentials for ionic compounds

• The potential describes well the most common forms of SiO2 :  
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Potentials for ionic compounds

• A newer potential was developed by Watanabe et al. [Appl. Surf. Sci. 234 (2004) 207.].
• One of its strengths is the ability to describe also the so called sub-oxides of SiO2; e.g. SiO. 

• Because of this it is suitable for describing interfaces between Si and SiO2 and to be used in defect studies and ion 

bombardment simulations.
• The potential is based on the Stillinger-Weber potential and the Si-Si interaction is the original Si-SW.

• Examples of its use in nanocluster bombardment can be found in J. Samela’s PhD thesis1.

• However, its elastic properties are not well tested.

1. Electronically available at http://urn.fi/URN:ISBN:978-952-10-3927-0
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Charge-transfer potential models

• There is a clear fundamental problem with the description of ionic bonding and covalent bond-

ing described above.  
• Consider the following (schematic 2D representation) of an Si-SiO2 interface system:
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O
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O
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• On the Si side of the interface, zSi 0=  ! ordinary Si potentials. 
To be more precise, ab initio calculations give 

for SiO2: 
,  ZSi 1.4e" ZO 0.7e–"

• On the SiO2 side z
Si

2"  ! ionic model.  

• What happens if we move an Si atom from the SiO2 to the Si 

side (green line). This could easily occur in reality by diffusion 

or a radiation process. Which model should be used to describe the interactions of this atom??
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Charge-transfer potential models

• Here we get to the charge transfer model for the atoms, where the environment-dependence of 

the ionicity of the atom is built into the model. 

• There are extremely few models like this, since charge transfer processes are difficult to deal with and 

poorly understood. 

• One fairly well motivated approach is that of Alavi et al., Phil. Mag. B 65 (1992) 489. 

• The idea is to formulate an environment-dependent term which gives the charge state of atoms: 

z
i

Z f
AiBj

r
ij

! "

j i#
$% &

' (
) *

=  

• f
AB

r
ij

( )  is some function of the atom distances and types A
i
 and B

j

• Z x! "  is a function which could e.g. limit the charge state to reasonable values (like say between -4 and +4 for Si). 

• Some thought reveals that the f
AB

 functions would be likely to have the properties 

            f
AA

0

f
BB

0

f
AB

r
ij

! " f–
BA

r
ij

! "

=

=

=

 

• The first two criteria ensure charge neutrality in a pure elemental region, the latter one global charge neutrality.
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Charge-transfer potential models

• Once the z
i
 have been determined, one could use an expression of e.g. the form 

V
i

z
i
z
j
e2

4+,
0

r
ij

------------------

j

$ g z
i

! " V
manybody

jk

$+=  

 
to obtain the total interaction energy of an atom i .  

• V
manybody  could be some many-body potential for an uncharged system.

• The function g z
i

! "  would be used to switch this potential on and off depending on the ionicity: 

g z
i

! "    
   1=  when  z

i
0=

 0-   when z
i

0#.
/
0

 

• The big and difficult question is how to choose f r
ij

! " . It should be constructed to ensure global charge 

neutrality, and give correct ionicities in known environments. 
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Charge-transfer potential models 

• For instance in the SiO2 case presented above, it obviously should be constructed such that if an Si atom has four O 

atoms at the equilibrium distance, it should give z
i

1.4e! . Since every Si atom has 4 O neighbours and every O atom 

2 Si neighbours this would mean that in case only nearest-neighbour interactions are counted and the equilibrium 

atom distance is r0 , one could have 

           

fSi-Si 0=

fO-O 0=

fSi-O +0.35=

fO-Si -0.35=

Z x" # x=     when x 4$%&
'
'
'
(
'
'
'
)

   (remember: ZSi 1.4e! , ZO 0.7e–! ) 

• One way to deduce the functional form could be to use quantum mechanical schemes to deduce ionicity, 

such as Mulliken charge analysis. 

• Since little work has been done on this topic there is not much more to say, except that this is a wide-open 

topic with lots of room for new and interesting research.  

• See also F. H. Streitz, J. W. Mintmire, Phys. Rev. B 50 (1994) 11996; X. W. Zhou et al., Phys. Rev. B 69 

(2004) 035402.
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Potential models for ionic compounds

• Sometimes rather simple models may be sufficient.
• An example: Si/SiO2 interface (again!) [Y. Tu, J. Tersoff, Phys. Rev. Lett. 84 (2000) 4393.]

• Simple VFF potential (sum over bonds; only Si-O and Si-Si bonds; no defects: continuous network of bonds): 

         E
r* +

1
2
--- k

b
b

i
b0–" #

2

i

,
1
2
--- k- -

ij
cos -0cos–" #

2

i j%
, U+ +=  

• Suboxide penalty U  allows to study other environments of Si atoms than the perfect SiO2. It gives the energy cost of 

having less than 4 O neighbors: 

                          

Number of O 
neighbors /eV

0 0.00

1 0.47

2 0.51

3 0.24

4 0.00

U

                                 

• Interface structure was optimized using bond-switching Monte Carlo. 

• For every bond topology the atom positions r* +  were obtained by minimizing the potential 

energy
Phase space = 

ensemble of bond 

topologies

 

                         E min
r* + E

r* +( )=
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Potential models for ionic compounds 

                    

Results: interfaces Si—amorphous SiO2 

and Si—tridymite
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Repulsive potentials for high energies

• When talking about repulsive potentials there is first reason to clarify the concepts: 

• Repulsive part of equilibrium potentials: Constructed to obtain a minimum in the potential, and to 

describe states close to equilibrium, at energies ~ 0.1 - 100 eV above the minimum. 

• E.g. the short-range potentials VSR  mentioned above belong to this category. 

• Ion ion irradiation and nuclear physics one frequently is interested in very high-energy collisions. 
• An ion with a kinetic energy of 100 keV makes a head-on collision with a target atom ! the C.M. energy is 50 keV 

• In this regime the equilibrium potentials are not valid, and there is a reason to fit a high-energy repulsive potential to 

them. 

• Repulsive potentials are usually written in the form 

V r" #
Z1Z2e2

4$%0r
------------------&

r

a
---

' (
) *=   ,

Z1 Z2

Z1
Z2

 

where & x" #  is a screening function and a a Z1 Z2+" #=  a 

screening length. 

• &  is formed such that & 1!  when x 0! , so the potential 

reduces to the Coulomb potential between the nuclei at high 

energies.

• At normal interatomic distances the electron shells screen the 

nuclei so that the nucleus don’t “see” each other almost at all 

(& 0, ).
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Repulsive potentials for high energies

• At very small distances the nuclei are so close that the electron clouds do not screen them. The interac-

tion is then purely Coulombic and  1! ."

"

• The most used repulsive potential is that formulated by 

Ziegler, Biersack and Littmark (ZBL). "

• They used free-electron gas (FEG)-calculations to obtain the 

repulsive interatomic potential for 522 randomly chosen atom 

pairs, and sought a shape for the screening length which makes 

the screening function be as similar as possible for the different 

atoms:"
"

a
0.8856 a0#

Z1
0.23 Z2

0.23+
--------------------------------=   , where a0 0.529Å=  is the Bohr length."

"
"
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Repulsive potentials for high energies 

• Onto these curves they fit a universal function (right figure above) of the form"

 x$ % a
i
e

bix–

i 1=

4

&=   .

1 0.1818 3.2

2 0.5099 0.9423

3 0.2802 0.4029

4 0.02817 0.2016

i a
i

b
i"

and obtained the parameter values shown on the right."

• This potential is generally called the ZBL universal potential. The advantage of 

using it is that it is extremely easy: the only information needed of it are the atom 

numbers Z
1

 and Z
2

 . The disadvantage is that this is an average potential, from which each specific case 

can vary easily 5-10 %."

• It is also possible to reproduce the FEG calculations for any atom pair based on information in the ZBL 

book The Stopping and Range of Ions in Matter (Pergamon, New York, 1985). This gives so called ZBL 

pair-specific potentials. These seem to be accurate to a few % or so.
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Repulsive potentials for high energies 

• In case the best possible accuracy is desired, one can use Hartree-Fock- or DFT-calculations of 

the energy of a dimer, or even better an atom inside a solid.  

• With dimer calculations by using certain HF- , HFS- and DFT methods it is possible to obtain the high-

energy repulsive potential to ~ 1 % accuracy [Nordlund, Runeberg and Sundholm, Nucl. Instr. Meth. 

Phys. Res. B 132 (1997) 45]. 
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Efficient ways to calculate ionic interactions

• So far we have assumed that the sum giving the energy of each atom always converges easily. 

This is not true always, however. 

• Let us consider potentials of the form V r
d–

! . Far from the central atom in a homogeneous material the 

number of atoms in a thin shell dr  is 4"r
2
#dr , where #  is the atom density, so the total potential in this 

layer is proportional to 4"r
2

#drr
d–

. If we now integrate the total potential for all r , we obtain 
 

V 4"#r
2
r

d–
rd

rmin

$

% 4"#
1

3 d–
------------ r

3 d–

rmin

$
= =  

• This vanishes in infinity only if d 3& . So in three dimensions we obtain convergence trivially only if the 

potential decays faster than r
3–

. 

• Exponentially decaying potentials (Morse, Tersoff etc.), as well as LJ potentials are OK in this resprect, 

but not the Coulomb potential which is r
1–

 
' When one simulates a periodic system with an ionic potential one can not use a simple cutoff 

distance < cell size/2.

• To circumvent this many methods have been developed:  1) Ewald summation [Ann. Phys. 64 (1921) 

253]. It is much more efficient than direct summation, but is still an O N
2

( )  method. 2) A newer method is 

the so called Fast Multipole Method, which can be parallelized and is O N( ) .
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Ewald-summation

• Take into account all interactions to an atom both from the MD cell itself as well as all the periodic image 

cells.

• The potential energy due to the Coulomb interaction is 

Vzz 1
2
---

z1z2

r
ij
n–

------------------

j 1=

N

!
i 1=

N

!
n

!=  
Note: cgs units

 

• z
1

 and z
2

 are the atom charges, and cgs units are 

used for brevity. The vector n  is now in principle a sum 

over all image cells n
x
L n

y
L n

z
L" "# $ , where 

n
x

%– & 1– 0 1 & %" " " " " "=  and the indices i  and j  

loop over atom pairs inside the cell (except of course 

not i j=  when n 0= ). 

• This sum does not necessarily converge! 

• Change the summation order: A natural way to 

achieve this is to add image cells radially outwards 

from the origin.

• Physically the reason this leads to convergence is 

easy to understand: since each cell has to be charge 

neutral  the charges in it give at a long distance a 

dipole, quadrupole etc. interaction, which vanishes during symmetric summation.
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Ewald-summation

• The surrounding medium also affects the energy of this ball. In a perfect conductor (metal) 

(' %= ) and in vacuum (' 1= ) the results are different; in vacuum a dipole layer will form at the 

surface. The correspondence between the two quantities is: 

 

Vzz ' %=# $ Vzz ' 1=# $
2(

3L3
--------- z

i
r

i

i

!
2

–=  

• Ewald summation enables calculation of Vzz ' %=# $ . 

• If we want our system to be surrounded by vacuum, we can add the dipole term.  
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Ewald-summation

• In the Ewald method the charges z
i
 are given in the form 

of a charge density  
i
z  . This  

i
z  is given us the sum of a 

Gaussian and delta function electron density:!
!

r

r

 
i2 r" #

 
i1 r" #

 
i
z r" #  

i1
z r" #  

i2
z r" #+= !

!

 
i1
z r" # z

i
$ r r

i
–" # %3& 3 2/– e

%2 r ri–" #2–
–' (= !

!

 
i2
z r" # z

i
%3& 3 2/– e

%2 r ri–" #2–
= !

!

•  
i1
z  is now a sum of delta functions located at the atom positions, and Gaussian-shaped densities of cen-

tered on the same position but of opposite signs, formed so that the integral is 0. Because  
i1
z now has a 

finite range, we can calculate the energy and force due to is using a cutoff radius.!

• On the other hand, we also use the function  
i2
z  to correct for the error made in introducing the Gaussian 

functions. But this function is now smooth, and can be calculated in reciprocal space: the Fourier-transfor-

mation of   are summed, and then an inverse Fourier transformation is used to obtain back the real-

space answer.!
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Ewald-summation

• The result (“after a few steps of algebra”) is an equation 
which has a real-space term r , a k -space term and the 
inverse value of the self-energy and the surface energy:!

Vzz ) 1=" # V
real
zz V

recipr.
zz V

self
zz V

surf
zz+–+

1

2
--- z

i
z
j

erfc % r
ij

n+( )

r
ij

n+
-----------------------------------

1

&L3
--------- z

i
z
j
4&2

k2
---------e k2 4%2*– k r

ij
+" #cos

k 0,
-+

n 0=

.

-
j 1=

N

-
i 1=

N

-

%

&1 2/
----------- z

i
2

i 1=

N

-

2&

3L3
--------- z

i
r

i

i 1=

N

-
2

+

–

=

= 1

2

3

4

• Term 1 is the short-range part. erfc x" # 2 &1 2/*" # e t2– td
x

.
/=  is 

the complementary error function and L  the side length of the MD-

cell. We assume here that the cell is cubic. Again in the n  sum the 

term i j=  when n 0= .!

• Term 2 is the sum over reciprocal space vectors k 2& L*" #n= .

• Term 3 V
self  is the self-energy of  

i2
z  which has to be removed 

because it is included in the V
recipr.
zz  part.

• Term 4 is the surface term of the sphere.!

• By setting %  (the width of the Gaussians) large enough we 

can restrict ourselves to the term n 0= , which corresponds 
to the normal ‘minimum image’ convention.

• The real-space term can be calculated in the some loop as 

the short-range forces. Then V
real
zz  is of the form!

V
real
zz z

i
z
j

erfc %r
ij

( )

r
ij

----------------------

i j0
-= .
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Ewald-summation

• Using complex numbers the reciprocal-space term can be written in the simpler form 
 

Vrecip
zz A k! " z

i
e

ik ri#

i

$
2

k

$=  

 

A k! "
2%

L3
------exp k2 4&2'–! "

k2
------------------------------------=  

 

• The force acting on atom i  is  
 

f
recip
i 2z

i
kA k! "Im e

ik ri#–
z
j
e

ik rj#

j

$
( )
* +
, -

k 0.
$–=  

 

• Note that the force calculation takes time as O N2! " . 

• Does this sound highly complicated? Fortunately there are several implementations of Ewald summation 

easily available, see e.g. Allen-Tildesley program F.22 or N. Anastasiou and D. Fincham, Comput. Phys. 

Commun. 25 (1981)159.  

• It is easy to generalize the equations to non-cubic cells.
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Ewald-summation

• In applying the method one has to choose three parameters: 
cutoff radius r

c
 

width of Gaussian charge densities &  

upper limit for k  summation k
max
2 . 

• It is best to start by setting r
c
 fairly large, e.g. L 2' . From this a suitable value of &  can be obtained, on the basis of 

which a suitable limit for the k -summation can be obtained. Typically& 5 L'/ , in which case the calculation is con-

centrated in k -space. The k -summation would then involve 100-200 vectors. 
 



Introduction to atomistic simulations 2008           11. Potential models for ionic compounds                                                                                                                                             29

Ewald-summation

• Example: EuF2 :  

 
 

N 324=  
L 17.4Å=  
!L 5.2=  

rc L 2"=  

k max
2 5Å 2–=  
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Ewald-summation

• Application of MD in neutrino-induced Doppler broadening (NID) [A. Kuronen, et al. Phys. Rev. B 52, (1995) 12640.]: K 

electron capture of 152Eu # $  emission # 3.0-eV recoil energy to 152Sm # %  rays  Doppler broadened  
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Ewald-summation

• If the periodicity of the Ewald summation causes trouble, one can use the particle-lattice (or par-

ticle-mesh) method: 

• The reciprocal space part is calculated by smoothing the ion charges in a regular lattice and solving the potential from 

the Poisson equation !2" # $0%–=  with Fourier methods. 

• The advantage is that this scales as O N& ' .  

• The disadvantage is that the program gets more complicated 
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Reaction field method

• In this method neighbours farther than r
c
 are approximated as continuous medium with some $

s
.  

• The forces and energies inside the cavity are calculated normally. 
 

A

B

C

D

rc

 

• The continuous medium polarizes, which leads to a force on molecule i  in the cavity R  

 

E
i

2 $
s

1–& '

2$
s

1+
----------------------

1

r
c
3
----- (

j

j R)

*=  (sum includes i ) 

• The problem here is $
s
, which has to be known in advance.
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Field Multipole Method (FMM)

• The FMM method [Greengard and Rokhlin, J. Comput. Physics 73 (1987) 325.] is based on looking at dif-

ferent regions of space with different resolutions.  

• The advantage of the method is that it is O N! "  and also can be parallelized [Nakano et al. Comput. Phys-

ics Commun. 83 (1994) 197.] 

• The method uses an electrical multipole method to describe the influence of a region far away on an 

atom. 

• Potential outside a localized charge distribution # r! "  can be written as a multipole expansion: 

      $ r! "
4%

2l 1+
--------------q

lm

Y
lm

& '(! "

rl 1+
-----------------------

m l–=

l

)
l 0=

*

)= , 

    where the multipole moments are defined as  

      q
lm

Y
lm
* &' ''(! "r'l# r'! " r'd+= . 

• In practice, the sum over l  can be truncated to some finite value: 

      $ r! "
4%

2l 1+
--------------q

lm

Y
lm

& '(! "

rl 1+
-----------------------

m l–=

l

)
l 0=

p

)=
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Field Multipole Method (FMM)

• Why is this useful, then ? Let us consider as a simple example two sets of points x
i
 and y

j  which are 

inside two circles of radius R :

R R

> R

x0 y0

y1

y2

y3

y4

yn

x1

xm

x4

x3

x2

m points n points

 

• Let the points x
i
 have charges q

i
 . If we now want to calculate the forces from points x

i
 on the points y

j
 

we could of course calculate the Coulomb interaction from all the m y -points to all the n  x -points. This 

would require nm  interaction calculations, i.e. the algorithm is O nm! " . 

• But if we, instead of this, first calculate the p2  factors q
lm

, requiring mp2  operations. After this we could 

calculate the sum for all points y , which requires np2  operations. Hence this method is O mp2 np2+! " . If 

the two circles are far away, p  can be relatively small. If the number of points is large then clearly 

mp2 np2+ nm« , so we can gain lots of simulation time. 
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Field Multipole Method (FMM)

Level 0

Level 1 Level 2 Level 3 Level 4

cell b

‘s near neighbors: cell at the same level as  that have a common point with b b b

‘s far neighbors: cells at the same level as  that are children of ‘s parent’s 

near neighbors but are not ‘s near neighbors

b b b
b

Cells that are not each others near neighbors are well separated.

In the actual FMM-method space is divided into different levels of cell sizes.

• Level 0 is the normal, ordinary simulation cell, and the higher index levels finer divisions of it.

• Multipole expansion is used to calculate interactions between cells that are well separated.

• At level 1 (see above) there are no well separated cell pairs, so that we have to go to level 2 to be able to use the 

expansion. 

• At level 2, in order to calculate interactions between a cell and its near neighbors, we divide the box further to smaller 

cells. Now each new cell has far neighbors for which the multipole expansion is applied. (Note that interaction between 

a cell and those cells that are not its near or far neighbors has been taken care of in previous levels.)

• At some stage division is so fine that interaction between near neighbors can be calculated by normal sum over atom 

pairs.
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Field Multipole Method (FMM)

• This calculation scales as O N Nlog !  (where N  is the number of atoms):"

1) at every level the calculation of multipole expansions scales as O p2N ! "

2) number of levels is O Nlog ! "

• To obtain the O N !  behavior multipole expansion is calculated from atom positions only at the smallest 

scale divisions.
• These results can be compined to calculate the expansions in coarser levels by so called translation of a multipole 

expansion."

• An accurate algorithm, the equations and boundary condition solutions can be found from the paper of 

Greengard and Rokhlin. "

• In practical calculations numerical noise may become a problem."

• In addition, as in Ewald summation it is also possible to take into account the effect of periodic image cells 

with the same principle."

• It is also evident that this algorithm can be parallelized well, since for the far cells it is enough to know 

only the multipole expansion, which is relatively easy to pass around."

• The FMM-model is also very general: in addition to the calculation of atomic interactions it can also be 

used in plasma dynamics, fluid mechanics and in astronomy!"
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Field Multipole Method (FMM)

• Sample application: R. Kalia et. al. simulated the fracture of about a million atom Si3N4 crystal [R. Kalia, 

TMS conference proceedings 1997]. 
 

 
Note that in the picture above the atoms are so small they can not be distinguished from each other!! 

• After the original FMM formulation, variations often called Fast Multipole Algorithms (FMA) have been 

developed. 
• Basic idea same as in FMM, but tree-like data structures and FFT’s are used to optimize the interactions even further.



Introduction to atomistic simulations 2008           12. Energy minimization techniques                                                                                                                                             1

Energy minimization techniques

• The task of minimizing the energy of a set of atoms is a very common, yet surprisingly complex 

problem to solve efficiently. 

• N  atoms, set of atomic coordinates x r
1x

r
1y

r
1z

r
2x

!" " " "# $= , system potential energy V x# $

• Find x  that minimizes V x# $   

• Examples: the equilibrium shape of a protein, the ground state configuration of an atom cluster, a mini-

mum-energy configuration of a defect, ... 

•  A large variety of energy minimization techniques in numerical mathematics.  

• For large sets of atoms, one has to require that the memory requirement of the method scales as O N# $ , 

which rules out many efficient techniques which require O N
2

# $  memory.  

• In these O N
2

# $  methods the Hessian matrix A , A
ij x

i
x

j
%

2

%

% V
=  is usually needed.  
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Energy minimization techniques

• At least the following approaches can be used to atomistic 

energy minimization: 

1. Monte Carlo simulation: Do an MC-simulation letting T 0& . 

- Can be good e.g. in finding the equilibrium coordination in a 

liquid. 

- Not very efficient in finding the closest local minimum. 

- Good when non-physical moves needed to reach the equi-

librium. 

2. MD simulation: Do an MD-simulation letting T 0& .

Simulated 

annealing
 

- Can be made more efficient by setting all v 0=  if the energy 

grows, or by setting v
i

0=  if the force f
i
 is in the opposite direc-

tion to v
i
 

- Sometimes quite efficient in finding a local minimum 

- Sometimes also good tool to find a global minimum: simulate at high T  

   first, cooling down in cycles. 

3. Conjugate gradient 

- Very efficient method to find a local minimum. 

4. Genetic algorithm 

- Probably best method to find a global minimum from a random initial 

   configuration.

• In this lecture package conjugate gradient and genetic algorithms are presented.
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Energy minimization techniques

• A sidenote: optimization at ‘constant pressure’ : Usually the potential energy V  is written as a function of the coordi-

nates x
i

 ! y
i

 ! z
i

 !" "  (i 1 # N" "= ) of the atoms in the system. When the cell edges are taken as variables it is 

easier to write the energy as a function of reduced coordinates s
i

 ! t
i

 ! u
i

 !" "  and sizes of the simulation box in x , 

y , z  directions: $ % &" " :   V V s
i

 ! t
i

 ! u
i

 ! $ % &" " " " "' (=  where s
i

x
i
$)= , t

i
y

i
%)= , u

i
z
i
&)=

• Now the gradient of the potential energy is *U
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Conjugate gradient

• The conjugate gradient (CG) method is a general method to minimize function f x' ( , where f  can 

be any function of points x  in N -dimensional space [Numerical Recipes, 2nd ed. ch. 10]3

• For N  atoms we can write their coordinates r  as a 3N -dimensional vector x  of the form 3
3
x r

1x
r
1y

r
1z

r
2x

#" " " "' (= 3

• The function f x' (  corresponds now to the potential energy function V r' ( . 3

• In the CG method the gradient (force) of the function is used as a help in finding the minimum. 3

• The gradient tells in which direction the function changes the most rapidly. 3
3
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Conjugate gradient

• An obvious, but not very efficient way to minimize the energy is to always move in the direction 

of the negative gradient. 

• This is the so called steepest descent method, which for atoms can be described as follows: 

 

0. Start from point r
0

, set i 0= . 

1. Calculate V
i

r
i

! " , F
i

#V
i

r
i

! "–= . 

2. If V
i 1–

V
i

– $%  end. 

3. Minimize V r
i

&F
i

+! "  with respect to the scalar quantity & . 

4. Set r
i 1+

r
i

&F
i

+=  and i i 1+= . 

5. Return to stage 1.  

• The algorithm resembles MD, but: no time, velocity or acceleration. 

• The line minimization in stage 3 a 1-dimensional operation in which the minimum of a function is sought 

by moving in a predetermined direction &F
i
. 

• The line minimization is a relatively straightforward operation which is carried out in two steps. 

 

1. Make sure that there is a minimum and bracket it. 

2. Search it with a given accuracy. 
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Conjugate gradient

• Stage 1 is in principle easy to carry out. Starting from a point r  and known direction F , move forward 

some direction 'F . If V r 'F+! " V r! "(  and in addition V r 'F 2)+! " V r! "%  and V r 'F 2)+! " V r 'F+! "%  

the minimum is bracketed with the three points (1) V r! "  (3) V r 'F 2)+! "  and (2) V r 'F+! " . If these crite-

ria are not fulfilled, increase '  and try again.

V r! "

V r 'F 2)+! "

V r 'F+! "

• After the minimum has been bracketed, one could of course use ordinary binary search to find it. A 

slightly better method turns out to be to use a golden section, i.e. let the new minimum be 0.38197 from 

either end.

• Often much better is to use so called inverse parabolic interpolation. In this method, a parabola is fit to the 

points a , b  and c  (corresponding to (1), (2) and (3) above), and the estimate of the minimum is the mini-

mum of the parabola x :

        x b
1

2
---

b a–! "
2

V b! " V c! "–* + b c–! "
2

V b! " V a! "–* +–

b a–! " V b! " V c! "–* + b c–! " V b! " V a! "–* +–
------------------------------------------------------------------------------------------------------------------–=  
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Conjugate gradient

• When the minimization is done once, either point a  or c  is replaced by point x  (depending on which side 

of b  x  is), and the minimization step is repeated.

• The iteration is continued until the minimum has been found with the desired accuracy. 

• A combined method: try the inverse parabolic search, but switch to the golden section if this fails.

• One such method is the so called Brents method, which is presented in Numerical Recipes1 (program brent()). 

1. http://www.nr.com/
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Conjugate gradient

• By combining the Steepest descent (SD)-algorithm and the Brent line minimization the energy of an atom 

system can be minimized. But this is still not very efficient in many dimensions. The reason is that the SD 

method easily winds up in a zig-zag pattern which does not move towards the minimum efficiently as in 

the figure below: 
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Conjugate gradient

• In the Conjugate gradient (CG) method the problem is solved by choosing a new “conjugate” 
direction of movement so that it depends on the previous direction, and does not lead to the zig-
zag-pattern above.
• What is really meant by two directions being conjugate to each other? Consider an arbitrary function f x !  
of N  dimensional argument, and construct its Taylor-series around a point P :"
"

f x ! f P !
f#

x
i

#
-------x

i

i

$
1

2
---

#
2
f

#x
i
#x

j

---------------x
i
x

j

i j%

$ &+ + + c b x
1

2
---x A x' '+'–(=

where   c f P !     b) *f
P
      A–

#
2
f

#x
i
#x

j

---------------

P

= =

"

• The matrix A  is the so called Hessian matrix. In this approximation the gradient of f  is *f A x' b–= , and 

a change in the gradient *f  over some distance +x  is again "

+ *f ! A +x !'= "

• The previous direction in which we have moved is u , gradient is g . How to construct the next direction v?

• In the current point: g u,

• After the next step we still want g' u,   - the change in the gradient + *f ! should be perpendicular to u :"

u + *f !' 0= u A v' ' 0=. "

• If this is valid, the directions u  and v  are considered to be conjugated.
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Conjugate gradient

• In the conjugate gradient method two vectors g  and h  are used to calculate the new direction 
into which to move. h  is the actual direction into which the line minimization is carried out."

• In solving linear equations, these are iterated as follows:"
g

i 1+
g

i
/

i
A h

i
' ! and h

i 1+
– g

i 1+
0

i
h

i
+= = "

"
where"

      /
i

g
i

g
i

'

h
i

A h
i

' '
-----------------------

g
i

h
i

'

h
i

A h
i

' '
-----------------------     ja    0

i

g
i 1+

g
i 1+

'

g
i

g
i

'
------------------------------= = = "

• The vectors g  and h  fulfil the orthogonality and conjugation requirements:"
"

     g
i

g
j

' 0       h
i

A h
j

' ' 0     g
i

h
j

' 0= = = "

• Not suitable for atomistic systems: the N N1  matrix A !  "

• The crucial, saving statement is the following: if we have just minimized f  in the direction h  to some point 

x
i 1+

, the new g  can be obtained simply with"

     g
i 1+

f x
i 1+

 !*–= "

"
and the end result corresponds to the above equations!"
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Conjugate gradient

• In principle this iteration algorithm gets one to an energy minimum in a system of N  atoms with a memory 

requirement O N !  and a number of iteration steps O N ! . "

• This sounds like a problem for large numbers of atoms: if say N 100000=  we definitely do not want to 
iterate 100000 times. "

• In practice the atom motion in large systems is almost always strongly correlated, and much fewer itera-
tion steps are enough to get to a minimum. "

• Typically ~ 200 steps in periodic systems and ~ 1000 steps in systems with a surface is enough to find an 
energy minimum with 15 digits of accuracy regardless of system size.
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Conjugate gradient

• Using these equations we obtain the following algorithm for conjugate gradient energy minimization:"
"

0. Start at point r
0

, set i 0= , V
0

V r
0

 != , x
0

#V r
0

 !–= , g
0

x
0

= , h
0

x
0

= ."

"

1. Minimize V r
i

$x
i

+ !  with respect to the scalar $ , then set r
i 1+

r
i

$x
i

+=  and evaluate 

V
i 1+

V r
i 1+

 != ."

"

2. If V
i 1+

V
i

– %& , quit."

"

3. Calculate x
i

#V r
i 1+

 !–=  and V
i

V r
i 1+

 != ."

"

4. Calculate  ' x
i

x
i

( ! g
i

g
i

( !)= "

"

5. Set g
i 1+

x
i

= ."

"

6. Set h
i 1+

g
i 1+

'h
i

+=   and x
i 1+

h
i 1+

= . "

"

7. Set i i 1+=  and return to phase 1. "
"
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Conjugate gradient

• The above is the original, so called Fletcher-Reeves - algorithm. In some cases it is more efficient to use 
the so called Polak-Ribiere- version, which is identical to the above except that step 4 is: 
 

4. Calculate   !
xi

g
i

+" # x
i

$

g
i

g
i

$
-----------------------------=  
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Conjugate gradient

• The above algorithm is already a very efficient way to look for a local minimum. 
It also does not have anything specific to atomistic simulations; the

Material on the ACG 
variant of CG is from 
Kai Nordlund.

 function V r" #  
can be any N -dimensional function f x" #  which has a well-defined gradient. 

• In typical atomistic simulations there are special features (especially the knowl-
edge that the atoms do have a smooth minimum) which can be utilized to optimize the algo-
rithm, at the possible expense of generality. 

• In atomistic simulations the calculation of the potential energy V r" #  is very slow, and the calcula-
tion of forces even slower.
• In the above algorithm the line minimization-step 1 is the only step where forces are actually calculated. 
This step had two parts (see above): 
1. Make sure there is a minimum, and bracket it. 
2. Search it with the desired accuracy.  

• The bracketing requires at least 3 evaluations of the potential, and the Brent method line minimization 
typically 5-10 evaluations.  

• In atomistic systems we know, however, that the length scale is rather limited. 
• Unless the initial atom positions are really unphysical, the atoms are almost certain to be ~ 0.2 Å from the ground state 

position, or even closer. If we simply assume that the minimum is never farther than say 0.5 Å, we can simply get rid of 
step 1. But this is clearly a bit dangerous, and still does not gain us more than 20 % or so of the efficiency.  

• It would be even better if we could get rid of the 5-10 potential evaluations needed in the Brent method. 
This can be achieved rather simply.  
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Conjugate gradient

• In this speed-up method (called ACG for reasons apparent below) we start by assuming that the ‘mini-

mum is out there’.  

• The main point in the ACG method is the observation that when the original CG method line minimization 

of V r
i

!F
i

+" #  with respect to the scalar ! , for most steps the optimal value of the scalar !  is about the 

same, ~ 0.05.  

• This is of course no natural constant, but seems to be valid for common Si and metal potentials. If the scalar !  is 

almost the same in any case, it does not seem sensible to optimize it separately every time. 

• So the method is as follows: 

• Set initially ! 0.05= . 

• For every step move forwards by !F
i  

. 

• If the potential energy goes down, increase optimistically !  a bit. 

• If the potential energy goes up, disregard the previous step, decrease !  and repeat the same iteration.  
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Conjugate gradient

• Because of the optimization of ! the method might be called adaptive conjugate gradient, ACG: 

 

0. Start from r
0

, set i 0= , F
0

$V r
0

" #–= , g
0

F
0

= , h
0

F
0

= , ! 0.05=  

1. Store old r
i

r
i

prev
%  

2. Set r
i 1+

r
i

!F
i

+=   

3. Calculate V
i 1+

V r
i 1+

" #= , F
i

$V r
i

" #–= . 

4. If V
i 1+

V
i

&  return r
i

prev
r

i
%  , set ! ! 2'= ( return to step 2. 

5. If V
i 1+

V
i

– )* , quit. 

6. Calculate +
x

i
g

i
+" # x

i
,

g
i

g
i

,
-----------------------------=   (Polak-Ribierre) 

7. Set   g
i 1+

F
i

–=  

8. Set h
i 1+

g
i 1+

+h
i

+=   and F
i 1+

h
i 1+

= .  

9. Increase ! 1.05!= , set i i 1+=  and return to step 1. 

• Here the constants 0.5 and 1.05 were optimized for Stillinger-Weber Si.
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Conjugate gradient

• Written in this way the method usually needs only one potential evaluation per iteration step, except when 
the energy increases. In practice the energy decreases almost always, so on average the number of 
potential evaluations still is only about 1.1 / iteration. In the ordinary CG method this value is about 10, so 
in the ACG each iteration step is about 10 times faster than in CG! 

• On the other hand, the ACG loses the perfect match of conjugate directions, so it needs more iterations. 
Still, the overall speedup of ACG vs. CG is almost always a factor of ~ 3-5.
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Conjugate gradient

• As an example a 40 Å diameter Co-nanocluster in a 16!16!16 unit cell periodic Cu cell was created, and 
relaxed this system with EAM potentials with different methods. These calculations (in larger cells) are 
useful in understanding the energetics of Co nanoclusters.

• The figure above shows the atom displacements due to the minimization, but so that the displacements 
have been exaggerated by a factor of 3. The open circles are the original atom positions, the closed cir-
cles the final positions after minimization. 

• The blue atoms are Co, red Cu. Because Co has a smaller equilibrium nearest-neighbour distance than 
Cu, the atoms move inwards.
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Conjugate gradient

• The simulation results were as follows (computer ~ 400 Mhz Pentium1 Linux):
 

Method                  Et (eV) Niter   Final E (eV)    Simulation time (s)

------                  ------- ------  -------------   -------------------

SD= Steepest Descent 
CG= Conjugate gradient 
MD= Molecular dynamics.  
 

Et is the energy tolerance 

Niter the number of iterations

SD Plain                0.001   227      -59927.160     2684.20

SD Adaptive             0.001   172      -59927.052      323.56

CG Plain                0.001    27      -59927.193      363.03

CG No bracketing        0.001    27      -59927.193      251.98

ACG             0.001    70      -59927.194      128.34

MD btctau=70 fs         -       250      -59927.169      390.25

 

• We see that all methods give essentially the same result, as they should. The 0.1 eV differences may be shifts in the 
position of a single atoms, and hence not likely to be a significant problem. 

• The SD method with line minimization is very slow, as expected. The number of iterations is clearly the smallest in the 
CG methods, but they are still ~ 3 times slower than ACG.  

• A bit surprising is that the adaptive SD method is in fact faster than straight CG, and that ordinary MD is almost as fast 
as straight CG or adaptive SD.  

• But the ACG method clearly beats all the others by a factor of 3 or more. 

• However, in a new minimization problem it is best to first implement the full CG method. After that, one 
can check whether it can be optimized for the particular range of problems, e.g. by a scheme similar to the 
one above.  

1. I know, this should be updated.
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Genetic algorithms

• Genetic algorithms (GA) are a popular method for looking for a global minimum, which have not 
been used too much in the physical sciences. They are, however, well suited at least for looking 
for the minimum of a fairly large set of atoms.

• Groups of atoms typically have a fairly large set of energy minima, so the ordinary methods are 
not well applicable for looking for a global minimum: CG only looks for the closest local mini-
mum, and MD and Monte Carlo (simulated annealing) are fairly easily stuck to one minimum or 
a local region.
• But the GA method is well suited for looking for global minima, at least for dilute atom systems. 

• Genetic algorithms have obtained their inspiration from Darwin’s theory of evolution. 

• The idea is to perform natural selection for some group of parameters G  which describes well the real 

system. 

• The group is allowed to breed by mating, after which natural selection is carried out (i.e. the poorest 

adapted species are killed).

• The parameters G  can be considered to correspond to a gene sequence, DNA. 

• Here we present the Deaven and Ho approach to genetic algorithms for atoms [Deaven and Ho, 

Phys. Rev. Lett. 75 (1995) 288]. 

• Let us state the problem as follows. We have N  atoms in free space, and want to find their minimum-

energy configuration. The parameter set is now simply the set of atom coordinates G x
1

x
2

! x
N

" " "# $= . 

• We illustrate there the algorithm with 2D figures; in reality it of course usually is in 3D. The difference 

between 2D and 3D is trivial.
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Genetic algorithms

• Deaven and Ho genetic algorithm: 

 

0. Start. Create random initial positions for  structures, each with exactly N  atoms. 
1. Mating and breeding. Select two well-adjusted parents for breeding. This is 
done by selecting a given parent i  with state G

i
 with the probability 

            P G
i

! " e
E Gi! " Tm#–

$  

where the mating ‘temperature’ T
m

 is selected as the range of energies among the 

whole population G
i

% & . Split the two parent structures along the same line. Take 

one half of one parent, and another half of another parent, and join them together. 
Here the added complication that a child may have a different number of atoms than the parents comes in. In 

this case, the lines creating the two parents are moved in opposite directions until a state where the child has 

equal numbers of parents is found. 

2. Mutation. With a probability '  perform a mutation on the child. There are two 

possible kinds of mutations: 

a) Move atoms in a random direction by a random distance a random number of times.  

    The distance is of the order of the bond length, and the number of times ~ 5 - 50. 

b) Move an atom up along the potential energy function. (Try to move over potential barriers.) 

3. Minimize the energy of the child to the closest local minimum. This is done by CG or MD. 

4. Natural selection. If the child has lower energy than any of the parents, allow it to stay alive. Then 

check that its energy does not match the energy of any parent within an energy range (E . If this is true, 

include it in the population, and kill the least-well adapted parent (the one with the highest E ). 

5. Convergence test. If convergence has not been reached, return to stage 1. 
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Genetic algorithms

• The energy range (E  is included to prevent the population from having several identical or very similar 

structures.

• The mutation operation can sometimes be completely left out.

• The mating temperature reduces the probability that poorly adjusted parents get to breed. Hence they are 

more likely to die without giving rise to any offspring.

• If T
m

E
max

»  all parents get to breed by about the same probability. If on the other hand T
m

E
max

«  only the best 

adjusted parents get to breed. (Even this can be seen to have a biological interpretation, although not a very good one: 

in warm climates it is easier to survive, whereas in harsher, colder climates only the best adjusted individuals can sur-

vive and breed...) 

• The size of the population does not have to be very large. With Deaven and Ho, who used TB, had it usu-

ally at 4. Jura Tarus found that somewhat larger numbers work better for the Tersoff C potential. 

• Deaven and Ho used their code to find the equilibrium structure for a fullerene C60 and other small carbon 

clusters, starting from random atom coordinates. 
• No other simulation method had at that time been able to produce a fullerene ‘from scratch’ . 

• Chelikowsky got close with MD [Phys. Rev. Lett. 67 (1991) 2970.], but using a to-say-the least suspicious bond-bend-

ing part in his potential. 

• Simulated annealing (a Monte Carlo method) can find the structure of molecules of the order of C20 , but not larger 

than that. 

• Deaven and Ho used a Tight Binding force model, which was known to describe fullerenes well. 

• Parameters: mating temperature T
m

0.2 eV/atom= , energy resolution (E 0.01 eV= , population p 4= .
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Genetic algorithms

• Fullerene C60 . The algorithm finds a per-

fect fullerene after about 6000 mating 
operations starting from random coordi-
nates, without mutations ( 0= ) :!

• The upper curve is the maximum energy 
of the population, the lower the minimun. !

• We see that fairly fast (1000 mating opera-
tions) a fairly well-adjusted state (a) which 
still has defects (a 12-membered atom 
ring and two 7-membered atom rings). !

• A large fraction of the time, about 5000 
mating operations, goes to removing the 
last defects. !

• In stage (b) there is still left a 7-atom ring, 
and in state (c) there already is the correct 
amount of pentagons and hexagons, but 
two pentagons adjacent to each other.
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Genetic algorithms

• Carbon cluster C20. When the genetic algorithm 

is run for 20 carbon atoms, the effect of mutations 
becomes apparent:!

• States 1 a-c and the solid line describe the results 
when the code is ran without mutations. !

• The structure is stuck in a round carbon circle. !

• But some  0=  -states do find the correct structure. !
!

• In states 2 a -c and 3 a-b  0.05= . !

• Now the structures find fairly fast the lowest-energy bowl 
form. !

• State 2 c is already close to the ground state, but the rings 
on the side have 5 or 7 atoms. !

• State 3 b is the correct ground state, with only 6-membered 
atom rings.!
!
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Genetic algorithms

• Carbon cluster C30 

• Most runs end up in the correct state, but some of the 
! 0=  states do not in 4000 mating operations found 
the ground state, but get stuck in state (1c).  

• With ! 0.05=  almost all states end up in the correct 
cage structure (2b) and (3b).  

• The intermediate configurations (2a) and (3a) show 
that the correct final state can be reached in several 
different ways. 

• Only mutation, with no mating, does not lead to the 
correct state. 
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Genetic algorithms

• Here it is important to realize that the development of the GA minimization process does not 
necessarily contain any physically meaningful information. 

• The real path to the ground state probably has no relation to the GA path.  

• So only the ground state found by GA may correspond to real life (in case the experimental situation has 
had time to reach the ground state). 

• You probably remember: This same note applies to equilibrium MC simulations.  
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Genetic algorithms

• In the original way of realizing GA the information on the state is coded in a binary “gene 
sequence” which corresponds to DNA.  

• Let us consider the interaction between two molecules A and B [Xiao and Williams, Chem. Phys. Lett. 
215 (1993) 17]. Both molecules can be described with a position and rotation angle, so the information 
needed x y z ! " #$ $ $ $ $% &  .  

• If we now discretize the possible positions and angles, using e.g. 16 possibilities for each dimension, the 
state of the molecule can be described with 24 bits of information, for instance 

 

(4.5 Å,5.0 Å,9.0 Å,120o, 100o,60o)=(1001:1010:1110:0110:0101:0011).

• The breeding operation is defined such that the binary string is exchanged from some point forward 
(“crossover”). So if we have two parents 

 

P1 = (1001:1010:1110:0110:0101:0011) 
P2 = (1001:1010:1110:0100:1011:1110)

 

 

and the exchange position is chosen to be 17, we get the children 

 

C1 = (1001:1010:1110:0110:0101: 1110) 
C2 = (1001:1010:1110:0100:1011: 0011)
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Genetic algorithms

• In this case stage 1. in the above algorithm simply becomes. 
 

1. Mating and breeding. Exchange the gene sequence of a parents with another starting from a random 
position.  

• The mutation operation now becomes simply 

 

2. Mutation. With a given probability '  exchange the state of a bit (0(1 or 1(0) for all bits in all individu-
als. 

• Because a bit corresponds to a position or rotation angle, this directly changes the state of the individual.

• Otherwise the algorithm is essentially as that of Deaven and Ho.

• Xiao used the algorithm to search for the ground state configurations for simple hydrocarbon molecules 
such as the benzene dimer. He used a population of 100 and 8 bits to code each position or angle.

• But this approach has the problem that during the mating and mutation the state of the molecule can 
change quite radically, and the properties of the parents are not transferred to the children. Hence Deaven 
and Ho say that their method is better for optimizing atomic structure. 

• GA has been applied in physics particularly in studying equilibrium structure of small clusters. 
[See e.g. K. M. Ho et al., Nature 392 (1998) 582; D. M. Deaven et al., Chem. Phys. Lett. 256 

(1996); J. Zhuang, et al., Phys. Rev. B 69 (2004).] 
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Reaction (or minimum energy) path determination

•
E
S

E
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E
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E
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E
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E
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E
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–=

Thermally activated atomistic processes
• Need to know the transition rate (events/unit time) for  B

1
B
2

 .

• If the probability for the event is not too low direct MD simulation is pos-
sible.

• For really rare events transition state theory (TST) can be used.

• Rate can be written in form ! !
0
e

EA kBT"–
=   #need to know the activation 

energy E
A

E
S

E
1

–= , where E
S

 is so called saddle point energy. 

• From TST one can also get an estimate for the prefactor !
0

 based on vibra-

tional properties: !0 !
i

i 1=

N

$ !'
i

i 1=

N 1–

$"= ,  where !
i
, and !'

i
 are the vibration 

frequencies at B
1

 and the saddle point, respectively. Note that at the saddle 

point there is one less frequency compared to the local minimum B
1

. 

• Quite often the prefactor is simply set to a typical vibration frequency in the 

system: !
0

1012s 1–% .#

• Exactly E
A

 is defined as the maximum energy along the path with low-

est energy #
(minimum energy path; MEP)  going from B

1
 to B

2
 (local minima; blue dots).

• Path here means a line in the 3N  dimensional configuration space. 
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Reaction (or minimum energy) path determination

• There are many methods to do this; one of the most often used in atomistic systems is the Nudged Elastic 
Band method or NEB. [G. Henkelman, H. Jónsson, J. Chem. Phys. 113 (2000) 9901.; G. Henkelman, H. 
Jónsson, J. Chem. Phys. 113 (2000) 9978.]#

• In NEB images of the system are created by interpolating the atomic coordinates between the initial and 
final configurations (that are usually local minima). #

• Every image is connected by a spring force to its neighboring images. (End points are fixed.)#

• The spring force prevents all images to fall to the nearest local potential energy minimum.#
#

 

E
A
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Reaction (or minimum energy) path determination

• The total force on the atoms in image i  is calculated as 
M

Every image has  atoms. 
Number of images  (in-
cluding the end points). 

N
M

 

F
i

F
i  !
s

"V R
i

# $
%

–=
||

 ,    

R
i
 is the 3N  dimensional vector of atom coordinates in image i . 

• The first term is the spring force which acts only in the tangential direction 
of the image chain: 

F
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s

k R
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R
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where k  is the spring constant and (i is the tangent vector of the image 

chain: 
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• When the middle image is the minimum or maximum of the three the tan-
gent is calculated as  
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Reaction (or minimum energy) path determination

• The second term is calculated from the potential energy model of the system: 
 

"V R
i

# $
%

"V R
i

# $ "V R
i

# $(̂i (̂i0–=  

V
i 1–

V
i

V
i 1+

1

2

3

4

5

6

• When calculating the tangent on has to take into account all the six energy config-
urations of the three neighbor images shown on the right. 

• The spring force tries to keep the images in the chain evenly spaced.
• The potential force is there to find the minimum energy of all images in the direc-
tion perpendicular to the image chain (=reaction path).
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Reaction (or minimum energy) path determination 
 

i

!V R
i

" #
$

F
i  %
s

||

1

M
 

Let’s illustrate NEB by a simple 2D po-

tential energy surface shown on the 

left [G. Henkelman, H. Jónsson, J. 

Chem. Phys. 113 (2000) 9978.] 

• Solid line: the real MEP 

• Dashed line (magenta): initial 

configuration for NEB (inter-

polated) 

• Dotted line with circles: the 

path obtained by NEB 
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Reaction (or minimum energy) path determination

• Running a NEB simulation: 

• Create the end points by optimizing the two configurations by e.g. CG of cooling-MD.  

• Interpolate the images and remove atom overlaps. 

• Find the minimum energy path by optimizing the image system by applying the forces described above. 

• Modifying an existing MD code for NEB is not difficult:  

• Input the coordinates of the image chain.

• When calculating neighbor list skip atom pairs that belong to different images.

• Add the calculation of tangent &
i
,

• The inter-image distance is calculated simply as        

    R
i

R
i 1–

–
2

x
i j% x

i j 1–%–" #
2

y
i j% y

i j 1–%–" #
2

z
i j% z

i j 1–%–" #
2

+ +' (

j 1=

N

)= ,  

where ri j%  is the position of the j th atom in the i th image.  

• Add the calculation of the spring force.

• Modify the force routine to calculate only the perpendicular component of the force.

• The only parameter is the spring force constant k . Fortunately, calculation is rather insensitive to its value.
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Reaction (or minimum energy) path determination

• A simple example: surface diffusion in a 2D Lennard-
Jones system

Difficult to  jump down from the 
step: Erlich-Schwoebel barrier 
 !surface growth instabilities.

!

 !

                   (a)                                        (b)!
!

 !

                   (c)                                        (d)!
!

!

                    (e)


