Set the initial conditions r(¢,)), v,(¢,)

v

Update neighborlist Potential

models for
¢ metals

Get new forces F(r;)

\J

Y

Solve the equations of motion numerically over time step A¢:
r(t) orlt, ) vt o vt )

'

Perform T, P scaling (ensembles)

v
t—> 1+ At |

1

Get desired physical quantities

'

t>t > Calculate results
max and finish
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Classical potentials for metals

» About 80 % of all elements are metals. The crystal structures of the elements are distributed as
follows:

e |

o | e | w] o] |l

Ailsi‘P|5|C}|Ar|

| V0| | wn | TR eoT| i [eu| [Za] (ca | e | as | se| &r| kr|
zr | [Nb | Mo | e | [Ru | [RR | [Pa | [Ag | €| in | sn]| sb| | 1 | x|
s | [nf |7 | [w | re | [os | ie | [pe | [au]|[Ha | m | eo| 8i | Po| ac| Ra]
@Ra‘** RflI'.‘_rbng:lBhlHslMtlDsl'RglUublUutlﬁlUuplﬂlUus‘Uual

* Lalil Prlil PmlS_mI Eulil Tblil Halilelﬂl Lul

= ac| m| pa| | no| pufam|cm| s cf| & | Fm| ma| no v

Sc
i
*

Program gelemental

= Legend (Series)

Nonmetals Noble gases :: Alkaline earth metals Semimetals

Halogens Post-transition metals Transition metals | Lanthanides

FCC 19 HCP 26 BCC 15 (quick counting from inside cover of Ashcroft&Mermin)

* If we can describe the FCC, HCP- and BCC structures with interatomic potentials, already
some 60 % of all stable elements are described well at least with respect to the structure.
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Classical potentials for metals

» The crystal structures are as follows:

FCC

w

* FCC Face-Centered Cubic (close packed)
atoms at the corners of the cube and in the center of each side face
HCP Hexagonal Close-Packed (close packed)

Angle between x and y unit cell axes is 120°.

One atom at each corner of the unit cell,

one (atom E) above the middle of the triangle ABC.
BCC Body-Centered Cubic (not close packed)

Cubic unit cell, atoms at the corners of the cube and in the center of the cube
FCC and HCP are close packed = can be stabilized with pair potentials (although getting the small HCP-
FCC energy difference right is a bit tricky).
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Effective medium theory

» The effective medium theory, EMT, is an approximation in which models based on density-func-
tional theory are used to describe the properties of solids, usually metals.

» Today there exist numerous many-body interatomic potentials which are based on EMT, in which the total
energy is written in the form

1
E, = ZF(ni(Ri))+§Zd)(Ri—Rj) ,
i ij
where F is a function of the electron density, and @ is a (usually purely repulsive) pair potential.
« Sort of a generalization of DFT: local electron density can be used to deduce the energy.

* EMT can be used to directly derive a potential but many potentials only obtain the motivation of their func-
tional form from EMT.

* In EMT the real material is replaced by jellium which consists of
1) a homogeneous electron gas, formed by the free electrons of the metal
2) a constant positive background density (metal ions)

* When an atom is ‘embedded’ into this medium in a position r, the change in energy is as a first approxi-
mation
AE(r) = E

(E )= AEPOM(n (1))

atomtjellium ‘"~ atom tE jellium

where AEhom(n) is the embedding energy into a homogeneous electron gas with density », and n(r) is

the electron density at r.
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Effective medium theory

« The embedding energy AEN®™(z) is a universal function of the electron density. Below is a list of exam-
ples [Puska, Nieminen, Manninen Phys. Rev. B 24 (1981) 3037].

30+ Mg, Mg
25~ -
_20f . = .
> Ne Ne
<
e S ] - -
2
Yok e = e

OL/
-5 1 1 ]

| ]
0 001 002 003 0 001 002 003 0 001 002 003 0 0o 002 003
n, (au.) nolau) N lau) nola.u)

« From the pictures we see that for noble gases AENM(y) is linear for all values of n, i.e. the closed elec-
tron shell only causes a repulsive interaction. (Some noble gases do have bonds, but this interaction
derives from van der Waals effects which are not included in DFT/EMT).

* For other elements there is a minimum in the curves, which describes their propensity to form bonded
materials.
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Effective medium theory

» How do we get from this to the total energy of the whole system? [Manninen, Phys. Rev. B 34
(1986) 8486.]

* The total energy of this “atoms in jellium” N-atom system is
N — gN
Eior = ERlnl
where n is the electron density of the ground state of the system.

» The energy difference when an atom i is removed is
AE; = EN —(EN-1+E = AE[n]

tot tot atom)

where n; is the electron density in the system after atom i has been removed.

* The idea of EMT (motivated by DFT):
Both £Y and EN -1 can be stated as a functional of the same electron density 7.

* The energy of the whole atom system can be stated as

Ey, = EN-[n]+AE[n]+E

t tot atom
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Effective medium theory

« By removing more and more atoms, one at a time, we obtain for £, ,
N
Etot - NEatom+ Z AEz'[’1123...i]
i=1
* Here Nip3 is an electron density in the system after atoms 1, 2, 3, ..., i all have been removed.

By rearranging the terms in the electron density this can be written as

E. = NE

atom

In sums with many indices the
terms with at least two same indi-
ces are left out.

+ ZAEi[ni]

+ %Z(AEj[nij] ~AEj[n))
i

+ éZ(AEk[nijk] ~AE[ng] - AEIn, ]~ AE[n,])
ijk

+ ...

» Terms with distant atom pairs is are small, so the sums converge rapidly.

Introduction to atomistic simulations 2008 8. Potential models for metals 7

Effective medium theory

* The electron density n,,; , is approximated as a superposition of atom (or pseudo-atom) electron den-

sities n,(r)
N
Mgz, (1) = Z na(r;=R;) .
j=i+1

» The atomic densities can be densities for free atoms or for atoms in the solid state where the surrounding compresses
the electron shells.
» As mentioned above, in the first approximation
AE;[n] = AE"°M(n.(R)) |
i.e. the functional is replaced by a function.
* By superposition the density nj is now
nij(Rj) = nj(Rj)fna(ijRl.) .

* The embedding energy AEhom(nij) can be calculated from AEhom(nj) by developing it as a Taylor series
N X 8AEh°m(nj)
AE Om(nij) = AE Om(nl.) - na(Ri - RJ)T +...
J
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Effective medium theory

* If the same is done with the other terms in the expression (*), we find that the total energy:

N
_ h
Eior = ZFom(ni(Ri)) ,
i=1
where

1 OAEMM(n) 1 ,82AEhOM(y)
N +-n .
2 on 6 on2

Fhom(yy = 4+ AEhOM (i)

atom
« Pair potential is completely missing!

» Can be used to some extent, but it is not completely satisfactory as it e.g. tends to lead to wrong values
for the elastic constants [Daw, Baskes, Phys. Rev. B 29 (1984) 6443.]

* A better model is obtained by taking account of the electron density induced by an atom in the material
Ap(r) = An(r)—Z3(r)

and by considering the difference between the real external potential and the jellium external potential
SveXY(r) .

Introduction to atomistic simulations 2008 8. Potential models for metals 9

Effective medium theory
* By using perturbation theory one obtains
AEMD(R,) = IdrAp(r—Ri)SveXt(r) ,
which can also be written as
AED(R,) = [drap(r-R)é(r) ,

where ¢(r) is the electrostatic potential of the system (without the potential of the embedded atom).

* By the superposition principle this can be stated as a sum over single-atom potentials:
Ap(r—R)Ap(r'—R;)

r—r

AEDR) = ¥ j drdr’

i#j

* By using instead of the electron density at a point some average over the electron density in a region the
model can also be improved. One suitable average is

_ 1 , Api(l"—Ri)
ni(Ri) = —ajdl‘dl‘ ni(l‘)W ,
where
Ap.(r'-R))
o = —J.drdr';
Ir—r
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Effective medium theory

* Now the total energy of the system is of the form

= hom > 1 'Ap(r—Ri)Ap(r'_R.)
Bigr = ZF (n(Ri))+2Zjdrdr — )

i i#]

* A density-dependent term and a pair potential term!

» Changes in the single-electron states in the system = correction term AE |-

* Affects things mostly in the case of transition metals (unfilled d shell)

» As an example measured and simulated potentials for a few metals:
10.0

1.00

>
2

< oo

0.01

[¢]

-0.0l

DISTANCE (au.)
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Effective medium theory

» As an example of an application to metals the properties of Al and Cu studied by constant pres-

sure MD:
. . L] g

N
3 MD .-n"" 8
g ooe * -
et ’_';/ ©
By
Sa Exp. i 8
25 2
g ot
g g
@ Cu e Ce
NS «* =
B MO * g
= . oo ® -]

MD o« 00 ® e * e

o ce
e A P . L .
Q 500 1000 1500 0 R 300 600 900 1200
temperature (K) temperature (K)
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Embedded-Atom Method (EAM)

* The EAM method [Daw, Foiles and Baskes, Mat. Sci. Rep. 9 (1993) 251] is based on the same
ideas as EMT.

* The functional form has been deduced primarily semi-empirically and in part by fitting.
* Despite its poorer physical motivation EAM usually works as well or better than EMT.

* The EAM total energy is written in the form

1
Ee = 2 FP) 52 Viiry) (EAM 1)
i ij

where

p; = Z pj?'(rl-j) is the electron density at atom i,
j#i

p]'?‘(r) is the electron density of atom ; and

F, is the embedding function.
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Embedded-Atom Method (EAM)

* This resembles a lot the EMT total energy, the main difference being that the argument of F; is the elec-
tron density in a given point.

* Note that the embedding function Fi is universal in the sense that a same function can be used to embed the atom to

different materials; material dependence only comes through the argument p.

» Daw, Baskes and Foiles obtained the functions Fi and Vij by fitting experimental results (lattice parameter, elastic

constants, cohesive energy, vacancy formation energy and difference between fcc- and bcc- structures).
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Embedded-Atom Method (EAM)
* Here is an example of all the terms in the original Foiles Cu EAM potential:

Electron density Embedding energy Pair potential

10° Y
0.0 0.5 1.0 1.5 20 2.5 3.0 3.5 4.0 4.5

0 10°
0.0 0.05 0.1 0.15 0.2 0.0 05 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45
N 'S

Tij

* Let’'s compare the expression above with the general expression for a many-body potential
given earlier:

V= le(ri)+ZV2(ri’ rj)+ Z Vi(r;, rp ot

LJj ij,k

* V; is clearly a pair potential V', . But what is the embedding term?

» The embedding term is easiest to understand as a pair potential whose strength is affected by the local
environment: an environment-dependent pair potential.

* It can not be directly written in the form shown above.

* Maybe, by Taylor expansion, it could be done. (Haven't tried it.) In that case the series in the above-men-
tioned would be infinite.
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Embedded-Atom Method (EAM)
» The pair potential is further interpreted as

1L Z(NZ ()
r

Vl'](r) - 4ne

where the Z?(r) are effective screened charges of the nuclei of atom type «.

* This has the advantage that if instead of Vl.]. the Z?(r) are used as the starting point in evaluating the potential, form-
ing the EAM potential for an alloy is straightforward:

* The mixed Vij is given by the equation above, and since pj‘.‘(r) only depends on the type of atom j and Fi on the

type of atom i, the embedding term can also be evaluated directly for the mixture.

* The electron densities p]?(r) are obtained from modified HF electron

densities for the outermost electrons of the material.

* In many cases the embedding function F(p) is obtained by fitting to §
universal binding energy relation [Rose et al., Phys. Rev. B29 (1984)
2963.]: 5
E(a*) = -E_fla*) ;
a 3
fla®) = (I +a*)e ®
E_.\-1/2 3
a* = (-9—— 1)( coh , B = bulk modulus, Q = atomic volume ol 1L 1)
9B SCALED SEPARATION a*

)
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Embedded-Atom Method (EAM)

» So in practice the EAM potential has three 1-dimensional functions.

* In analytical form or a set of points to be used with spline interpolation

* The standard “Universal 3” format for elemental EAM potentials of Daw, Baskes and Foiles looks like:

Arbitrary comment line

Z1l m a latticename

nrho drho nr dr rcut

((nr points of F(rho) data))

((nr points of Z(r) data, V(r)=1/(4 pi epsilon 0) z(r)?/r))
((nrho points of rho data))

where Z1 is the atomic number, m the mass and a the lattice constant.

* A real example (Foiles Cu potential):

Cu functions (universal 3)

29 63.550 3.6150 FCC

500 5.0100200400801306e-04 500 1.000000000000009e-02 4.9499999999999886e+00
0.

-3.1561636903424350e-01

-5.2324876182494506e-01

and so on, with 1497 more data points.
» The advantage of using a code which reads this format is that any potential which can be given in the

functional form (EAM 1) can then be made into a set of spline points and read into the code without any
modifications necessary in the code itself.
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Embedded-Atom Method (EAM)

» Non-uniqueness of EAM-like potentials: Note that in EAM-like potentials the division of the
energy into the pair potential and embedding term is not unique.
* In the formalism (EAM 1) one obtains the same
total potential energy for any configuration with the
transformation

{Vij(r) = Vl.j(r) + ZKpj(rl.j)
F(pi) = F(pl-)fkpi
trary real number.

, Wwhere X\ is an arbi-

 Forces in EAM (embedding part; force on atom F; = kaZF(pl.) = VkZF{Z p(rl.j)j
k): i

i VER

vkp( 3 p(rkj)j Vi y F[Z p(rij)j

j#k itk j#i

“Fpp S P 3 F(p)p (e

j#k ik

=S I (p) + F'(p)Ip (e
izk
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Glue models

* Like EAM but physical interpretation of the functions more or less thrown away

* For instance Ercolessi et al. gold potential: [Phys. Rev. Lett. 57 (1986) 719, Phil. Mag. A 58 (1988) 213.]
* Nearest neighbors only

* Functions are usually polynomials

* In here instead of an embedding function a ‘glue function’ U is used, which depends on the atomic coor-
dination

1
Bt = 3 z o(rip) + Z Uiny)
i#j i
where

n; = Zp(rij) .

i#j
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Glue models

» Example: glue model for Au

TR
= o4
-
0| ~ +
20 2,50 35
riA)
n
ta) o 4 8 12 1
’ /|
24 4 /o
3 /|
B8 P |
o £
-
o' 3
0 "
20 25 a0 35
r®
(2]

(e)
The three functions ¢{r) (a). p(r) (B) and Un) (¢) optimized for Au.

* Note that here the pair potential is no longer purely repulsive (Non-uniqueness of EAM-like potentials!)
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Glue models

* A few properties of the potential:

Table 3. Comparison between some experimental quantities of gold and the same guantities
as predieled by the glue model. The fit is not always exact, owing lo the procedure used
{see text). o (referring Lo & non-reconstructed (111) surface), £S and £Y are caleulated at
T=0 and include relaxation effects, o, T, 5, and AH | are determined by zero-pressure
molecular-dynamics simulations. For the experimental g, the T=0 estimate ol
Miedema {1978) has been used,

* Thermal expansion

Cluantity Experimental  Glue model
T=10 Latlice parameter a (A) £07 407t from MD S|mU|at|0nS
Cohesive energy FE,(eV/atom) 378 3TRT
Surface energy & {meV A~ 968 966t 414
Vacancy formation energy £5 (eV) 094 126 s |
Vacancy migration energy £M (V) 0-85 0-97 b N
Bulk modulus B (10" * dyne cm ™ %) 1-803 1-8031 % 412 |
€y, (10" dyneem™?) 2016 2203 cE F
€2 (10" dyneem ) ; 1-697 1-603 s4r
Cya (10" dynecm ™ %) i 454 - AEOD Sanf
v, (X) (THzZ) ' 4-61 3-89 = F 7
ve(X) (THz) 273 2:75¢ Q4 :
(W) (THz) 363 337 E el T MR
W) (THzZ) 263 275 "/ R
v (L) (TTHZ) 470 389 — 47
4 (L) (TH?) 156 194 S |
Thermal expansion cocflicicnl x at 15-2 13-8¢ 06 0 200 400 600 800 1000 1200 1400
THK (107 K™Y .
Melting temperature T, (K) 1336 1357+ Temperature (K)
Entropy of melting §,, (kg/atom) 1113 1
Latent heat of melting AH,, [V atom) 013 012
1 Fitted.
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Glue models
* Phonon dispersion relation:
r X w X K r L
50 . -
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o g R ! . .
2 r /r i h points: experiment
oor ff ; ' solid line:  with glue function
E - : : dashed line: without glue function
o ek
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* Gold (100) surface reconstruction
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Rosato group potentials

» The group of Rosato et al. (first ones by Cleri and Rosato) has formulated a large group of
potentials based on the second-moment approximation of the tight-binding Hamiltonian (TB-
SMA). [Cleri and Rosato, Phys. Rev. B 48 (1993) 22]:

» The method starts from the knowledge that a large set of properties of transition metals can be derived
purely from the density of states of the outermost d electrons:

* The second moment of the density of states is ., , and experimentally it has been found that the cohe-
sive energy of metals is roughly proportional to the width of the density of states, which in the second-
moment approximation is simply sz

* When only the ddo, ddwn and ddé orbitals are taken into account, the band-energy of atom i can according
to the model be written as:

- foeen] o)

which only depends on the distance and which formally is exactly the same as the F(p) part of the EAM
potentials (with the square root operation being the embedding function F).
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Rosato group potentials

* In addition the model has a repulsive Born-Mayer-term:
; r..
Ey =S dexp|—p| L1
. Z exp{ p[ro ﬂ
J
so the total energy of the system becomes
i i
E, = Z(ER +Ep)
i

* Here ryis the equilibrium distance between atoms, and 4, &, p and g are fitted parameters. Despite its sim-

ple functional form, the model can be used to describe quite well elastic, defect and melting properties of
a wide range of FCC- and HCP-metals.

 Later work in the Rosato group has given also extensions to alloys, e.g. [Mazzone et al., Phys.
Rev. B 55 (1997) 837].

» One practical caveat about the Cleri-Rosato potentials: at least in some of their papers they
have been sloppy with factors of 1/2 and minus signs, you may have to correct these yourself.
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Finnis-Sinclair potentials

» One more important group of EAM-like potentials are the so called Finnis-Sinclair potentials
[Phil.Mag. A 50 (1984) 45; for an improvement see Phil. Mag. A 56 (1987) 15]. They model tran-
sition metals based on ideas derived from the tight binding method.

» The form of a Finnis-Sinclair-potential is

i#jf i
where

n; = Zp(rij) )

i#]

i.e. this is the same functional form as in EAM where the embedding function is simply F(n;) = —Aﬁ.
The square root function can be motivated by the tight-binding model, as in the Rosato potentials.

* The potential parameters are obtained purely by fitting to experimental data.
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Vacancy formation energy revisited Se o.9. Rob Phillips, Crystals, De-

fects and Microstructures.

» Definition of the formation energy:

f
E .. = E.(vacancy, N) - E,  (perfect, N)

vac

Remember pair potentials:
E,(vacancy, N) = %[(N— 12)12¢ + 12(12 - 1)$] = 6(N - 1)

E\(perfect, N) = %N12¢ = 6N¢

* EAM-type potential
1
Etot = ZF(pl) + EZ V(i"l-j),
i ij

P; = Zpa(l’lj)

J#i

¢
= E,. = —6¢ = —E_,/atom

* Perfect fcc lattice atoms, only NN interaction, equil. bond length ro'
1
Eyy(perfect, N) = NF(12pg) + 512N¢ = NF(12py) + 6N¢

1
E\y(vacancy, N) = (N~ 12)F(12pg) + 12F(11pg) + 5[(N = 12)12¢ + 12 x 119],

where p, = p(ry), & = V(ry)

=Y Eiac = 12[F(11py) — F(12py)] 66
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Vacancy formation energy revisited

* Note that now cohesion energy per atom is

E erfect,
_ Brglperfect, M) F(12py) + 60 = 6¢ = E_, —F(12p,)

coh N
. . . f
* Substitute 6¢ in expression for £, Element ‘ Ecoh‘ Ei/ac (&V)
f (eV)
= Evac = 12F(11p0)711F(12p0)7ECOh v 531 21202
Nb 7.57 2.6+0.3
W 8.90 4.0+0.2
NOTE: Pure pair potential means that F(p) = ap, i.e. Typically for metals
linearity = E, ./E.,=02.04

f
Eae = 12(11apg) = 11(120pg) —E o = —Eqp
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Vacancy formation energy revisited

f
* So now we at least have EVac # ’Ecoh

f .
*Tohave £, <-E_ requires
F(1lpy) F(12pg)
<

12F(11py) - 11F(12py) <0 = T o
dz
i.e. positive curvature —> 0:
dp
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Vacancy formation energy revisited

* Glue model for Au Daw & Baskes for Ni, Pd Foiles et al.
08| \‘ ll N .
I\ S 2:[ \ / "
[ \ e \\\ //
o~ |\ &3 3
30.4{ \ N S . ri s -
= YoTTa e T e || Y . z
PO
} o Ni
V]
20 25 an 35 40 Pd 0 SR . ,7,:;,1
r ‘:A) " - — - | 0.00 0.02 o (Z\ 3) 0.04 0.08
P/5
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Some EAM-like potentials

» Below are listed some EAM potentials. It is impossible to list all of them, so this is just a list of
some common ones.

¢ FCC metals TABLE III. Alloy heats of solution fm? single substit\}tional impurities used to dgﬁne the fur}ctions.
. uorig i nal” EAM_pOtentlaIS [S M . FOI|eS, ;l;::igt;ﬁ'r';?nm}:z;"l;;.h?[;:‘::e:liz:]:::din“::l}_l these functions and the lower number is the experimental
Phys. Rev. B 32 (1985) 3409; ibid. 33 - K e N i
u g u i t
(1 986) 7983] Cu 0.18 —-0.12 0.06 —0.33 —0.38
» Good potentials for Ni, Cu, Pd, Ag, Pt, Au 025 —o13 o —039 —030
and all dilute alloys of these. Good in many ~ *® PN o o4 Tont o
ways, surfaces the most commonly men- Au —0.18 —o 030 —o0.15 007
tioned shortcoming. But surfaces tendtobea —ow -0 028 —020
. Ni 0.04 0.38 0.08 —0.15 —0.25
problem for most EAM potentials 0.03 022 —0.09 —0.33
* Decent potential for Al. Pd —034 —0.24 -0.12 007 0.03
« Very widely used and tested, and almost no o o o3 000
ery y . ’ Pt —0.54 —0.07 0.09 —0.28 0.04
fatal shortcomings have been reported, so ~0.53 —028

these can be used with good confidence. Foiles of al Phys. Rev. B 33 (1986) 7683,

TABLE V. Calculated surface energies of the low-index faces and the experimental average surface
energy from Ref. 33 in units of ergs/cm?.

Cu Ag Au Ni Pd Pt
(111) 1170 620 790 1450 1220 1440
(100) 1280 705 918 1580 1370 1650
(110 1400 770 980 1730 1490 1750
Experimental 1790 1240 1500 2380 2000 2490

(average face)
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Some EAM-like potentials

* Glue potentials: [Ercolessi, Adams: Europhys. Lett. 26 (1994) 583]: good potentials at least for
Au and Al.

 [Cai and Ye, Phys. Rev. B 54 (1996) 8398]: Alternative EAM potentials for Al, Ag, Au, Cu, Ni, Pd
and Pt. May be better than original EAM in particular for alloys and surfaces.

* [Johnson, Phys. Rev. B 37 (1988) 3924]: Analytical EAM model for most FCC metals

 [Sabochick, Lam, Phys. Rev. B 43 (1991) 5243]: Potential for Cu, Ti and their compounds
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Some EAM-like potentials

» The Cu part of this potential seems to be very good for

TABLE L. Defect propertics obtained in the present work,

point defects e e o S
[Nordlund and Averback, Phys. Rev. Lett. 80 (1998) e BT e
4201] (see on the right). the ot per scom i Cho it @~ 119 e
Quantity Present work Experiment
— A 0230 0. 05 0
» [Voter and Chen, Mat. Res. Soc. Symp. Proc. 82 (1989) af Drev  imaossev (o
. . — 5 . 2 k& .35 k
175]: NiAl system potentials Hy o eve 070 £ 008 % g
Wo,» 510 + 10 jumps/ps
A‘E{z 046 Q
. HY, 2.37 eV
* Cleri-Rosato parameters (see above) for FCC metals i, b+
. . HE 0.26 eV
exist at least for Ni, Cu, Rh, Pd, Ag, Ir, Pt, Au, Al and Pb. w2 10.0 % 0.2 jumps/ps
— AV, 200 1.55 £ 0.20 2 [10]

— g}f lgi e;fk 28 - 426V [10]

* [Ackland and Vitek, Phys. Rev. B 41 (1990) 10324]: EAM — 5: ol e
potentials for Cu, Ag, Au and alloys. Improvements in — Zﬁgﬁé‘f‘ :ﬁ o
[Deng and Bacon, Phys. Rev. B 48 (1993) 10022]. > sl oy s 0117

2 Potential fitted to this property
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Some EAM-like potentials

HCP-metals

Compared to both FCC and BCC metals, the HCP metals have been studied relatively little,
both experimentally and with simulations.

In fitting potentials for an HCP one should take care to ensure that the HCP phase is lower in
energy than the FCC phase, and that one can obtain the required c¢/a ratio (which experimen-
tally seldom equals exactly 573, which is the “ideal” value calculated for close packing of hard
spheres)

In addition there are 5 elastic constants, rather than 3 as in cubic metals.

Pasianot and Savino [Phys. Rev. B 45 (1992) 12704] have made EAM-like potentials for HCP-
metals Hf, Ti, Mg and Co. But they also showed that an EAM-like model can not reproduce all
elastic constants correctly for those HCP metals which have

1
Cl3=Cgq<0 OF SBecpp—cp)<eiz—cy
» Such metals are e.g. Be, Y, Zr, Cd and Zn.

Cleri and Rosato (see above) derive parameters for the HCP metals Ti, Zr, Co, Cd, Zn and Mg.

Oh and Johnson [J. Mater. Res. 3 (1988) 471] have also put their fingers here, for the HCP met-
als Mg, Tiand Zr.
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Some EAM-like potentials

BCC-metals

When one constructs potentials for BCC metals, one has to take into account that the BCC
structure is not closed packed. A pair potential would most likely make the BCC phase unstable
compared to FCC and HCP, unless carefully constructed. Or one can attain unwanted effects
such as a negative thermal expansion.

In BCC metals the Finnis-Sinclair potentials (see above) have been much used. Originally they
were formulated at least for Fe, V, Nb, Ta, Mo and W. In the five latter ones serious problems
were later found, which were corrected in [Ackland and Thetford, Phil. Mag. A 56 (1987) 15].

Johnson and Oh [J. Mater. Res. 4 (1989) 1195] have been active in BCC as well. They derived
potentials at least for Li, Na, K, V, Nb, Ta, Cr, Mo, W and Fe.

But in BCC metals one should take into account the recent theoretical work which showes that
in them 4-body interactions can have an important role, and these can of course not be
described well by EAM-like potentials [J. A. Moriarty, Phys. Rev. B 42 (1990) 1609].

* Moriarty has developed 4-body potentials at least for a few metals [e.g. Phys. Rev. B 49 (1994) 12431].
These have shown for instance that the migration energies of the Finnis-Sinclair model are probably 3-15
times too large [Phys. Rev. B 54 (1996) 6941].
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Some EAM-like potentials
» Metal-hydrogen potentials

* Finally, we mention that it is possible to construct a somewhat sensible EAM-like potential for
metal-hydrogen interactions. Of course these can not describe delocalized hydrogen in metals,
but they can still reproduce well e.g. the cohesive and migration energy of hydrogen in solid

metals and hydrogen on solid surfaces.

+ Just one example: [Rice et al., J. Chem. Phys. 92 (1990) 775]; EAM potential for Ni-H.
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Fitting a repulsive potential to EAM models.

* When one wants to describe high-energy processes (Ey;, > 10

eV) one almost always has to modify the repulsive part of the
potential. One can for instance use the so called ZBL universal
potential for this, which describes the repulsive part with ~ 10
% accuracy for all material combinations, or even better an
accurate potential derived from ab initio - calculations.

» A special feature for EAM-like potentials is that one still has to
remember that the electron density has to be set to a constant
value in the same r range where the high-energy repulsive
potential is fit to the pair potential part.

« Example: fitting the Foiles Pd-potential to the ZBL repulsive
potential. With the same fit also the high-pressure properties
and melting point of the potential was obtained almost exactly
right, whereas the properties of the interstitial atom became
worse. [Nordlund et al., Phys. Rev. B 57 (1998) 13965].
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Two-band EAM model

 EAM is often used to model
transition metals:

« Their bonding is characterized Bl c [ [ m [V [ & [wn [ & (e | ihi [ e 2
by the free-electron-like s
orbital and the narrow d

B

=

[

&
G A

** Rf Db Sgl Bhl Hsl Mt Rg Uub! UutI Uuql Uup [ Uuh | Uus | Uuo
-

orbital.
* In the original EAM potential ~ 5 ] I v | 5 ] e e (sl i el I il
the effect of these two orbitals ~ h| | p| 6| o eu| Am | om| B o & | om | ma| bo 1|

was taken into account by g i}

assuming the ele.CtrO.n denSIty Nonmetals Noble gases © Alkali metals. ':- Alkaline earth metals Semimetals
be a sum of contributions from

s and d shells:

Halogens Post-transition metals| Transition metals Lanthanides Actinides

pA(r) = nyp (r)+n p (r).

* The ‘occupations’ ng and n, drband

were obtained by e.g. fitting to 7
H heat of solution or such. ] -

T T T T
o,-W,/2 u,| Ef| | oW, /2 B

G.J.Ackland, S.K.Reed, Phys. Rev. B 67 (2003) 174108.

W, /2 Oy O,/ 2
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Two-band EAM model

* In the two-band EAM model the s and & orbitals (or bands) are explicitely taken into account.

* Energy of atom ;i is written as

1
E,‘ = Fd(pl', d)+Fs(pi,s)+§ZV(rij)’
J

where Pip = Zd)b(rlj) is the electron density contribution from band 5.

J

* The original formulation of the EAM model in the form of fitting the s band density

* A two-band EAM potential has been developed for elemental caesium [G.J.Ackland et al., Phys. Rev. B
67 (2003) 174108.] and for the binary alloy FeCr [P.Olsson et al., Phys. Rev. B 72 (2005) 214119.]

» For many transition metals the cohesion is determined mainly by the d band but the s band affects the
elastic properties by providing repulsion.

* On the other hand for alkali and alkaline-earth metals are normally close-packed metals with bonding
determined by the s electrons.

« However, at large pressures electrons are transferred to d band which is — although higher in energy — more com-
pact, allowing lower atomic volumes.

* With these models the isostructural transition of Cs and the thermodynamical properties of Fe-Cr alloy

were reasonably described.
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