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Atomistic interaction models

• The true interaction energy between N  nuclei and I  electrons could be obtained by solving the 

Schrödinger equation for the system comprising the N I+  bodies.%

• Assumes: interactions between the nucleons 

neglected
Almost always true

Not always true for heavy elements• This is also assuming relativistic effects can be 

ignored%

• Time-dependent Schrödinger 

equation: dynamics without MD 

alogrithm%

Model Type Scaling Nmax

Full solution of 
Schrödinger equation

quantum mechanical,%
ab initio

1

HF (Hartee-Fock) quantum mechanical,%
ab initio

50

DFT (density functional 
theory

quantum mechanical 1000

TB (Tight-binding) quantum mechanical%
(often semiempirical)

1000%
10000

MBP (Many-body poten-
tial)

classical, semiempirical 108

PP (Pair potential) classical, semiempirical 109
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• But solving the full equation is 

extremely expensive computa-

tionally, and hence one always 

has to resort to various levels of 

approximation
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Atomistic interaction models 

• O N! "  variants of all classes of methods

• The quantum mechanical O N! "  methods new  # work (so far) well only in a limited set of problems

• Prefactor in the efficiency, i.e. the factor A  in  speed =A N
x

$  for an O N
x

! "  method. 

• A rule-of-thumb: 

A
MBP

3 A
PP

$=  

A
TB

100 A
MBP

$=  

A
DF or HF

100 A
TB

$=  

• Quantum mechanical models (HF and DFT): ~ 100 atoms # e.g. small molecules, bulk proper-

ties of common phases, and point defect properties.  

• TB, a minimal quantum mechanical model works well in a few materials (e.g. C, Si, Ge) but is 

problematic in many others.  

• Classical models:  possible to simulate very large systems, such as large protein molecules, 2- 

and 3-dimensional defects, whole nanoclusters, surface growth, grain boundaries etc.
• No information on the electronic properties of the material. 
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Atomistic interaction models

• This chapter is a short overview on the methods; more information on the course Introduction 

to electronic structure simulation, that is currently lectured at HUT  

(http://www.fyslab.hut.fi/~asf/physics/lectures/) 

• Literature: 
• R. Phillips: Crystals, Defects and Microstructures, (Cambridge University Press, 2001), Chapter 4

• A. Sutton: Electronic Structure of Materials, (Oxford Science Publications, 1996)

• M. Finnis: Interatomic Forces in Condensed Matter, (Oxford Series in Materials Modelling, 2003)

• R. M. Martin: Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 

2004)
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Overview of quantum mechanical models

• A system of N  nuclei and I  electrons with coordinates r
n
 (n 1 N= ) and r

i
 (i 1 I= ):

• Schrödinger equation!
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• Here:

• T
n

 and T
e

 are the kinetic energies of the nuclei and electrons, respectively.

• V
ee

, V
ne

 and V
nn

 are the electron-electron, electron-nucleus and nucleus-nucleus Coulomb  interactions %!

Schrödinger equation.!

T
n

T
e

V
ee

V
ne

V
nn

+ + + + &" E"=    (7.2)

• "  is the total wavefunction of the full nucleus-electron system.
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Born-Oppenheimer approximation

• For any given configuration of the nuclei one can assume that the electrons find their ground 

state before the atoms move significantly. 
• Classical simulations also based on the Born-Oppenheimer approximation: interatomic potentials do not 

depend on the atom motion.!

• Mathematically:  the wavefunction "  is separated into a product !

!

" ' n r
i
() &* n) &+ , !

• ' n r
i
() &  is the electron wave function, which is a function of the positions of the electrons r

i
 and the posi-

tions of the nuclei n

• * n) &  is the wave function of the nuclei. !

• ' n r
i
() &  fulfills the wave equation!

!

T
e

V
ee

+ V
ne

+, -' n r() & E
e

n) &' n r() &=       (7.3)!

!

where V
ne

 is the nucleus-electron potential of the original Hamilton operator. !

• Solution of this gives the electronic total energy of the system as a function of the positions of the nuclei.
• Can also be used to give the forces acting between atoms %!atom motion can be simulated using the classical MD 

algorithm (ab initio MD)
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Hartree-Fock methods

• In the Schrödinger equation (7.3) the most difficult part is the electron-electron interaction  

V
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e
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r
ij

---------

j

!
i

!=  

• The basic solution in Hartree-Fock (as well as in DFT) is to create some sort of average elec-

tron density with which every electron interacts independently: 
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• Pauli exclusion principle: a Slater determinant of one-electron wave functions 
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Hartree-Fock methods

• Hence the Schrödinger eq. for electrons reduces to an equation to get a one-electron wave 

function '
i
: 

T
e i$ V

ne i$ V
i

av
+ +% &" x

1
x
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# x
n

$ $ $% &
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% & (
i
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i
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where Fˆ  is the so called Fock-operator. The equation is the so called Hartree-Fock equation. 

• Thus the new central problem becomes to find a good form for the average potential V
i

av
. 

• Iteration: initial guess for the wave functions '
i
, plugged into the equation, solving to get a new '

i
 , and 

keeping on iterating until the solution does not change any more, i.e. until a self-consistent field has 

been found  (HF-SCF). 
 

• The eigenvalues of the energy have a clear physical interpretation: ionization energy of the 

electron 

• The SCF method fulfills the variational principle: 

• The eigenvalue of every inaccurate wave function is larger than that of the most accurate one. 

• So the smallest found energy is also the ‘most correct’ one.
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Hartree-Fock methods

• The molecular orbital (MO) of every electron  
i
!is written as a sum over atomic orbitals (LCAO - 

Linear Combination of Atomic Orbitals):!

 
i

C
i"#"

"
$= !

• In the most straightforward approach the basis functions #"  can be so called Slater type orbitals (STO)!

# R r% &Y
lm

'  (% &= , 
R
1s

N
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e
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= =

*
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,
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!

which somewhat resemble orbitals of the hydrogen atom: !

.
nlm

r '  ( (% & e /r 20– /r% &lL
n l– 1–
2l 1+ /r% &Y

l
m '  (% &1 ,    / 2Z na

0
0= ,    a

0
h2 me20= .!

!

• Integrating these STO orbitals is numerically difficult, however. !
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Hartree-Fock methods!

• Computationally it is much more favourable to use Gaussian-type orbitals (GTO) !

#
GTO

r% & e
/r

2
–

=  !
because a product of two gaussians is a gaussian:!

e
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2
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e
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+

/ 2+
-----------------------------= ,!

K
AB

2/2
4 / 2+% &
---------------------

3 4/
e

/2
3
------- RA RB– 2–

= !

• But real electron wave functions are not Gaussian in shape 5!use a sum of GTO’s to describe the wave function:!

          #
STO

k
v
#

v

GTO

v

$=
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Hartree-Fock methods

• An example of an STO and how it can be approximated with one or more GTO’s. One GTO only 

is not very good, but 4 GTO’s already are quite close.

A
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M

o
le
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r 

M
o

d
e
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n

g

• The most popular basis function sets  ! "  are the Gaussian functions developed by the group of 

J. A. Pople (Nobel prize in chemistry 1998):
• In the so called minimal basis set there is one orbital for two core electron orbitals, and one orbital for 

each valence electron. Every STO is replaced by a sum of N  GTO-functions (STO-nG). The most com-

mon minimal set is the STO-3G set.

• To improve on the results the basic approach is to increase the size of the basis sets. In the so called 

“Double Zeta” set there are twice as many orbitals as in the minimal set. If the doubling is made only with 

valence electrons (which are usually the most interesting ones) one obtains the “Split Valence” set of 

basis functions.

• In the so called 3-21G set the first row elements have 3 GTO’s for 1s electrons, 2 GTO’s for 2s, 2p and so 

forth electrons, and the extra valence electrons are described by one GTO. This set is quite popular now-

adays.

• Other even larger basis sets: 6-31G, sets which have polarization functions, etc. etc. 
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Hartree-Fock methods

• Limitations of the basic Hartree-Fock method

• The method does not at all account for electron correlation, that is, the correlation between the momenta-

neous motion between electrons. This energy is usually only of the order of 1 % of the total, but can 

sometimes be comparable to the total binding energy of the system and hence quite significant. Several 

methods have been developed to take this into account:#

• In the Configuration Interaction (CI) method a linear combination out of Slater determinants is formed. This is a very 

good approach, but unfortunately also very slow.#

• In Møller-Plesset perturbation theory a perturbation series is made out of the error in the correlation energy. The most 

popular approach is MP2, which takes into account the lowest-order correction.#

• In Multiconfiguration SCF (MCSCF) a small CI term is included in the HF iteration.
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Density functional theory

• Density functional theory (DFT) is one of the most widely spread method to calculate elec-

tronic structure in materials. 

• Because it is computationally more efficient than HF, it has become especially popular among solid state 

physicists who need many atoms to describe a solid. 
 

• Starts with the Schrödinger equation for electrons  
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where V

ext
 is the so called external potential acting on the electrons due to the nuclei. 

• The basic idea of DFT: instead of manybody wavefunction * r
i

. /, -  use electron density n r, -   

• Only need to calculate a scalar function of one vector variable not I  vectors
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Density functional theory

• DFT is based on the Hohenberg-Kohn theorems [Hohenberg and Kohn, Phys. Rev. 136 (1964) 

B864]: 
 
Theorem I: For any given set of electrons which are in an external potential V

ext
 , 

this potential is determined uniquely, except for a trivial additive constant, from 

the electron density n r, - .  
 
Corollary I: Because the system Hamiltonian is thus fully determined short of an 

energy shift, the electron density can be used to fully derive the many-particle 

wave function and thus all desired system properties. 
 
Theorem II: It is possible to define a universal functional for the energy E n0 1  

depending on the electron density n r, - . The true ground state energy is the global 

minimum of the energy functional, and the density n r, -  which minimizes the func-

tional is the exact ground state density. 
 
Corollary II: The functional E n0 1  is enough to determine the true ground state 

energy and electron density. Excited states must be determined by other means. 
 



Introduction to atomistic simulations 2008               7. Quantum mechanical potential models                                                                                                                                                     15

Density functional theory

• Kohn-Sham ansatz [W. Kohn and L. J. Sham, Phys Rev. 140 (1965) A1133] 
[see  http://www.fysik.dtu.dk/~bligaard/wwwdirectory/phdthesis/phdproject.pdf] 
 

• The idea of the ansatz is that the original, complicated Hamiltonian can be replaced by another Hamilto-

nian function which is easier to solve. This effective Hamiltonian describes non-interacting “electrons”   in 

a system which is assumed to have the same density as the true system with interacting electrons. 

• To put it in another way: We assume that there exists a system of non-interacting electrons that produce 

the same electron density n r! " . 

• The orbitals #
i
r! "  of the non-interacting electrons are called Kohn-Sham orbitals. 

• Apply Hohenberg-Kohn variational principle to the Kohn-

Sham orbitals $ the Kohn-Sham orbital equations 

E n% & T
0

n% &
1

2
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n r! "n r'! "
r r'–

-----------------------d
3
rd

3
r''' V

ext
r! "n r! "d

3
r' E

xc
n% &+ + += , 

where T
0

n% &  in now the kinetic energy of non-interacting elec-

trons.

Note that the Hartree atomic units are 

used here: e m h 4()
0

1= = = =

• All the problematic terms are collected under E
xc

n% & :  

error in the kinetic energy:  T n% & T
0

n% &–  

error in the Coulomb interaction between electrons: E
ee
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2
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r r'–

-----------------------d
3
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correlation and exchange energies (quantum mechanical effects).
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Density functional theory

• What we have gained here is that the above terms in E
xc

  are (usually) small corrections and can be cal-

culated in an approximative way. 

• The variational principle gives then  

*E n% &
*n

--------------- 0= $
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2
---+2– V

eff
r! "+, -

. / #
i
r! " )

i
#

i
r! "=  

 
where i  runs over all electrons, )

i
 is the Kohn-Sham eigenvalue of electron i , and the effective one-parti-

cle potential is: 

V
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Density functional theory

• Pictorially this can be presented as1 
 
 
 

V
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0
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n
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n
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&
i 1 N'=
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V
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HK0KS

Real system Independent particle system

1. Adapted from R. M. Martin, Electronic Structure: Basic Theory and Practical Methods, (Cambridge University Press, 2004), Fig. 7.1
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Density functional theory

• If the exchange-correlation energy is known, these equations can be solved by self-consistent 

iteration 

• Note, however, that the Kohn-Sham orbitals and their eigenvalues (
i
 do not have a clear physical inter-

pretation. There is no guarantee that they have any relation to real electron energies and wave functions, 

but it appears that they are in fact a surprisingly good approximation of the real electron properties. 

• Local density approximation (LDA) 

• So far the DFT approach has not made any approximations. 

• To obtain the exchange-correlation functional E
xc

n) *  the local density approximation, (LDA) is used: 

 

E
xc

n) * rd n r! "(
xc

n) * r'! "+=    , 

 

where (
xc

n r! "! "  is the exchange and correlation energy of a homogeneous electron gas per one electron.  

• The exchange functional can be as simple as (Dirac LDA) 

E
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dr+–=  
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Density functional theory

• Once an exchange and correlation energy for a homogeneous gas is introduced (several exist), 

the equations can be solved with an iteration process: 
1) Start with some V

eff
r! " . 

2) Calculate the one-electron wave functions #
i
 $ new density n r! "  

3) New n r! "  $ new V
eff
r! " . 

4) Repeat steps 2 and 3 until we have obtained a self-consistent solution. 

• Spin in the exchange and correlation term: local spin density approximation, LSDA.

• DFT-LDA results compared with experimental data: 
1) Generally too large cohesive energies for solids 
2) Too large total energies for atoms 
3) Too small energy gaps for many semiconductors (LDA actually predicts zero gap for Ge!). 
4) Unstable for negative ions and gives a too diffuse electron density.

• To improve on the accuracy of DFT people have introduced exchange-and-correlation function-

als which also depend on the variation of the electron density: 
E
xc

n r! " dn r! "%& ' .

• There are numerous of these so called Generalized Gradient Approximations (GGA). 
• In practice there are a large number of GGA’s around, and people choose one which for some reason has been found 

to work well in their system. 

• The DFT solution method does not restrict the way we express the Kohn-Sham wave functions.
• Below are given two nowadays common ways to build the basis sets used in DFT calculations: 

plane waves and atomic-type orbitals.
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Plane-wave methods

• In plane-wave methods the basic algorithms are as in DFT but: 

• The outer valence electrons are described as a sum 

of plane waves: 

# f
l

l

Nl

( K
l

! "e
iKl r)–

=  

Search for wave functions * search for coefficients

where the wave vectors K
l
 are chosen to that they have the same periodicity as the simulation cell.   

• Any shape of the electron wave functions can in principle be described with this sum provided the sum 

has enough terms N
l
.  

• Names of some common plane wave methods: 
- APW = Augmented Plane Wave 
- LAPW = Linear APW 
- FLAPW = Fully LAPW 
- SAPW = Spline APW 
- OPW = Orthogonal Plane Wave 

• The main measure of the accuracy of plane-wave methods is the number of plane waves used to 

describe the system.  
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Plane-wave methods

• Examples of results of DFT / plane-wave calculation results: 
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LCAO methods 

• In the LCAO (Linear Combination of Atomic Orbitals) method the basis set consists of orbitals 

localized around each atom in the system.   

• Compare with plane waves that are as non-localized as possible.  

• Orbitals can be obtained from quantum mechanical atomic calculations. (Or pseudo-atomic; see below) 

• The accuracy is not so straightforward to adjust as in the plane wave method. 
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Pseudopotentials 

• In most cases the filled inner electron shells of atoms do not 

have any effect on the behavior of the system. 

r

Ze

r
------

V
pseudo

!
AE

!
pseudo

r
c

• The idea is to remove the core electrons and the strong 

nuclear potential and replace them with a weaker pseudo-

potential.

• Outside some cut-off radius r
c
 the pseudo wavefunctions 

and the pseudopotential are indentical to those of the real 

atom.. 

• The counterpart to pseudopotential methods are the all 

electron methods. 

• Pseudopotentials are commonly used with DFT calculations 

both with planewaves and atomic type orbitals. 
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Pseudopotentials

• Results for the lattice constant a and bulk modulus B for C and Si: 

• So it is quite possible to obtain the quantities to an accuracy ~ 1 %. 

• Car-Parrinello MD

• The Car Parrinello method [R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)] is a method where 

the electron and atom motion is updated at the same time. The method has become very popular 

because it is highly efficient and can also be parallelized well1. 
 
 

1. In Finland the FINGER (FINnish General Energy Relaxator) code, developed in Risto Nieminens group, is an efficient Car-Parrinello code which enables dynamic DFT simulations 

in ~ 200 atom systems in the Finnish Cray T3E.
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Example of scaling of a DFT calculation

• CPU time usage of a SIESTA1 calculation: 

• Si with simple SZ basis set. 

• CPU time for one energy calculation  
(~ time step). 

• Simulations by E. Holmström. 

1. Spanish Initiative for Electronic Simulations with Thousands of Atoms.
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Commercial HF and DFT programs 

• In practice, a large fraction of modern HF, DFT- and empirical simulations are carried out with 

commercial codes. 

• A large fraction of the most popular codes are available at the CSC (Center for Scientific Computing) 

computers, which can be used by any University research group for free. 

• In commercial codes, the algorithms are typically 5-15 years or old. This is a mixed blessing: the state-of-

the art methods may not be available, but on the other hand the algorithms in there are usually well 

tested. Roughly speaking especially the methods favoured by chemists have moved over to commercial 

codes, whereas physicists tend to stick to their own or non-commercial codes. 

• The commercial codes have flashy and easy-to-use graphical user interfaces. This is good in one sense, 

but also makes the risk to do garbage in–garbage out  kinds of simulations very large. So don’t blindly 

start using a commercial code, you should understand its inner workings and the physics in there first! 
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Commercial HF and DFT programs

• HF-codes:
• GaussianThe code deriving from Poples work. Very popular and versatile code.  

Nowadays also a DFT version is part of the package.

• TurboMole 

• DFT-codes
• CASTEP Plane-wave DFT code

• DMol3 DFT code based on numerical basis sets, rather than Gaussian Sets

• VASP Semi-commercial plane-wave DFT code developed in Vienna  
http://cms.mpi.univie.ac.at/vasp/

• SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms)  
- Home page: http://www.uam.es/departamentos/ciencias/fismateriac/siesta/ 

- A fully self-consistent O N! "  DFT code.  Uses LCAO basis sets. 
- Source code available, can be used as a force routine in your MD code (parcas_siesta!) 
- Free for academic use.

• Other important stuff
• InsightII The graphical user interface of Accelrys Inc., from which most codes of Accelrys  

and some non-commercial codes such as DMol and Gaussian can be run. 
http://www.accelrys.com

• Cerius2 Another Accelrys user interface, can run many of the same codes as InsightII 

• See also http://electronicstructure.org/
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Tight-binding methods

[Main source: Foulkes et al., Phys. Rev. B 39 (1989) 12520.]

• Tight-binding (TB) models can be considered “minimal” quantum mechanical models. They 

are most often semi-empirical, and the quality of the results varies a lot. At best, one can 

achieve results comparable to DFT with a 100 times less computer capacity, at worst they are 

no better or even worse than semi-empirical models but a 100 times slower! 

• In semi-empirical TB one starts with the assumption that total electronic energy E  can be written 

as  

E #
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2
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ij
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$+=  

 

where U  is a repulsive classical pair potential acting between the atoms, and the #
i
 are eigen-

values of some self-consists Schrödinger-like equation, 
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i
r! " #

i
r! "= =  

• This resembles the DFT formalism, and can be derived with various approximations.  

• The eigenvalues #
i
 are negative, and the repulsive energy positive. U r! "  is either constructed 

by empirical fitting to give the desired total energy, or derived from DFT.
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Tight-binding methods

• Bonding of H2  

-|h|

0

|h|• Wave function: !" # a
1

$
1

" # a
2

$
2

" #+=  

• Schrödinger equation 

Hˆ !" # E !" #=  

• Project to states $
1

" #  and $
2

" #  

$
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% "Hˆ !" # $
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% "E !" #=

$
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% "Hˆ !" # $
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% "E !" #=

&
'
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'
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  * 
E

0
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1

ha
2

+ Ea
1

=

ha
1

E
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a
2

+ Ea
2

=&
(
)

+  

h $
1

% "Hˆ $
2

" # $
2

% "Hˆ $
1

" #= =  (We know (?) that h 0, .) 

• Let’s shift energy origin so that E
0

0=  * we get the equation 

0 h–

h– 0

a
1

a
2

E
a

1

a
2

=  

• Solutions E h-= , !" #
1

2
------- $

1
$

2./0 1=
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Tight-binding methods

• The TB Schrödinger is solved with the variational principle for some set of basis functions $23 4  

which leads to a secular equation 
H 5S– 0=  

where 

H26 $2 Hˆ $6% " #=                                          

and 
S26 $2 $6% " #=

• Often one still assumes that the set of basis functions is orthogonal, in which case S  reduces to the unit 

matrix. 

• Usually the basis set is put to contain only the outermost electrons, with all others treated with 

the repulsive potential U r0 1 . The elements in the basis function set are usually also fit to experi-

mental data. 
• For instance, to treat a material where only the outer s and p electrons are important, one can get away 

with using only for basis functions (ss7, sp7, pp7 and pp8). If one want to also describe d electrons, one 

needs at least 10 basis functions.

• Roughly speaking it seems that TB methods usually works well in materials with only covalent bonding. 

Systems where much work has been done and which have been found to work well are at least C, Si and 

their hydrogen compounds. 

• See for example Foulkes et al., Phys. Rev. B 39 (1989) 12520, and Sutton et al., J. Phys. C: 

Solid State Phys. 21 (1988) 35. for the DFT foundations of the TB model 
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Tight-binding methods

• An example of a O N !  TBMD application [G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994) 3471]"

• A fullerene C60 colliding with a diamond surface with different kinetic ener-

gies Ek  (the surface is a reconstructed (111) surface with no dangling 

bonds):
120 eV

150 eV

300 eV

"

• When Ek # 120 eV no bonds are formed between the fullerene and the 

surface, and the fullerene simply bounces off it."

"

- When 120 eV < Ek < 240 eV a few bonds are formed between the fuller-

ene and the surface, and the fullerene may stick to the surface. The bonds 

may also be quickly broken again and the fullerene can bounce off again."
"

"

- When Ek $"240 eV several bonds are formed between the fullerene and 

the surface, the fullerene breaks down almost completely, and sticks to the 

surface.
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Very brief mention of a few other methods

• Quantum Monte Carlo (QMC) methods are a set of DFT-related methods where Monte Carlo 

simulation techniques are used to minimize the correlation term of DFT. "

• Computationally very expensive, but they can give very accurate results, especially for the correlation 

term which is difficult to treat otherwise."

• The most common varieties: Diffusion Monte Carlo (DMC) and Variational Monte Carlo (VMC)"

• Just an example on results [Grossman et al., Phys. Rev. Lett. 75 (1995) 3870]:"

"

• DMC gives all energies correct within the uncertainties, and clearly outshines HF and plain LDA.
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Very brief mention of a few other methods
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Very brief mention of a few other methods

• What is the minimum-energy configuration of C20 [Grossman et al., Phys. Rev. Lett. 75 (1995) 

3870.]? 

 
• According to QMC:n it is the “bowl” shape

• Note the large differences between the supposedly reliable DFT and HF methods, and that none of the 

agrees with the QMC behaviour. 
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Very brief mention of a few other methods

• Path Integral Molecular Dynamics

• Path Integral MD (PIMD) is a DFT / Car-Parrinello type of method which uses a Feynman path integral 

representation of the density matrix. 

• Also hideously expensive computationally, but claimed to be the only really good method to describe 

water-related reactions. 

• A rough rule of thumb for both QMC and PIMD is that the number of atoms is limited to ~ 20 or so... 

• Time-dependent HF, DFT, TB 

• The methods described until now are all normally used to obtain the ground state. This means one 

assumes that the electron system has time to come to rest before the processes of interest happen. Since 

electronic relaxation times are typically of the order of femtoseconds, this is often a very good approxima-

tion.  

• However, if one is interested in e.g. electronic excitation, this approximation is not valid, and one has to 

actually solve the time-dependent Schrödinger equation. This can be done by iterating over time. 

• Time-dependent (TD)-methods are somewhat of a hot topic in electronic structure calculations now, and 

there are TD variations of all the main methods: HF, DFT and TB. 

• A rough rule of thumb is that a TD-method is at least a factor of 100 slower than the corresponding ordi-

nary method.


