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Calculating the forces between atoms

• The forces between atoms can be calculated in many different ways
• This lecture: 

• classical potentials. 

• pair potentials, many-body potentials

• Quantum mechanics

• A classical potential can be written in the form:%

V V1 ri !

i

& V2 ri rj' ! V3 ri rj rk' ' ! (+

i j k' '

&+

i j'

&+=

• V  is the total potential energy of an N  atom system. 

• In principle all sums loop from 1  to N  

• V1 : single particle potential: external forces

• V2 : pair potential which only depends on the distance between atoms r
ij

 

• direct dependence on the vectors r
i
, r
j
  => dependence on the choice of the origin

• V3 : three-body potential which may have an angular dependence

• depends only on three variables, i.e. V3 V3 rij rik )
ijk

' '( )= %

• Four-body potentials, even five-body terms: chemical and biological applications
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Calculating the forces between atoms 

• V2  and V3  enough to describe the basic mechanical and structural properties of most elements and sim-

ple compounds

• In order that things would not be too straightforward, in many cases a environment-dependence (i.e. 

implicit three-body term) is embedded into the two-body term V2 . We will give examples on these later. 

• All terms which are not pure single particle or pair potentials are called many-body terms.
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Calculating the forces between atoms

• Classification of empirical interatomic potentials [A. E. Carlsson, Solid State Physics: Advances 

in Research and Applications, 43 (1990) 1.]

• Pair Potential V VP rij! "
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• Pair Functional Potential V VPF %
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Force calculation for pair potentials

• Pure pair potential V r
ij

 ! . The force acting on atom i  from atom j   
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• To be precise #  operates on the position r
i
 of atom i :. (Makes a difference for many-body 

potentials.)

• Cut-off radius r
c
: atom pairs with r

ij
r
c

'  do not interact,  r
c

a few Å( . "
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Force calculation for pair potentials

• In case the potential extends to infinity, an analytical correction can be made to the energy, and 

other quantities of interest:"

V
tot

V
2
V
corr

+ E
c

2)N* r2V r ! rd

rc

+

,+= = "

where * "is the atom density of the system."

• This obviously assumes that when r r
c

'  the atom density is constant everywhere, and thus does not 

work when for example a surface is present.
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Force calculation for pair potentials

• Discontinuity at rc    jumps in energy

• Solution: take the potential to zero in  r
c
r
c
! "r+# $  

• potential and the force are continuous (3rd order polynomial) or

• displace the potential, as the zero point of V  is arbitrary but this changes the value of Vtot                                          

• Many modern potentials are in fact defined so that they have a well-defined cutoff rc  where V  and at least 

the first derivative are % 0.

rc

V(r)

r
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Force calculation for pair potentials

• Example: cut-off of Lennard-Jones potential

shift and tilt

polynomial

rc 2.3 Å= "rc 0.2 Å=

VLJ r& '

P r& '

(
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*
r
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- .
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r
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6
–= (

• Shift and tilt the potential: V r& '  and V' r& '  continuous at 

rc :(

(

V r& ' VLJ r& ' r rc–& 'V'LJ rc& '– VLJ rc& '–=

• Problem: may change the potential at smaller r  values(
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Force calculation for pair potentials

• Problem: high forces may result (see below) 

• Brenner potential for carbon (Well, this is not a pair potential): 

• Potential quickly to zero; doesn’t look too bad 

• However: huge forces; effect seen in fracture simulations  

(see also M. Sammalkorpi et al., Phys. Rev. B 70 (2004) 245416.) 

T. Belytschko et al., Phys. Rev. B 65 (2002) 235430.

potential force
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Force calculation for pair potentials

• Force calculation without periodic boundaries or neighbour list:

do i=1,N 
   do j=1,N

if (i==j) cycle

rijx = rx(j)-rx(i)

rijy = ry(j)-ry(i)

rijz = rz(j)-rz(i) 
rijsq = rijx**2+rijy**2+rijz**2

rij = sqrt(rijsq) 
if (rij < rcut) then 
V = (Potential energy per atom)/2

dVdr = ...derivative of potential energy with respect to its only argument r...

a = -dVdr/m/2.0 ! Unit transformations may be needed. Note the factor 1/2!!

ax(i) = ax(i)-rijx/rij*a ! The application on both

ax(j) = ax(j)+rijx/rij*a ! i and j ensures that

ay(i) = ay(i)-rijy/rij*a ! Newton’s third law is

ay(j) = ay(j)+rijy/rij*a ! fulfilled

az(i) = az(i)-rijz/rij*a

az(j) = az(j)+rijz/rij*a

endif 
enddo 

enddo
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Force calculation for pair potentials

• Use of Verlet neighbour list (cf. lecture 3):

startofineighbourlist=1

do i=1,N

nneighboursi=neighbourlist(startofineighbourlist) 
do jj=1,nneighboursi

j=neighbourlist(startofineighbourlist+jj)

rijx = rx(j)-rx(i)

rijy = ry(j)-ry(i)

rijz = rz(j)-rz(i) 
rijsq = rijx**2+rijy**2+rijz**2

rij = sqrt(rijsq) 
if (rij < rcut) then 
V = (Potential energy per atom)/2

dVdr = ...derivative of potential energy with respect to its only argument r...

a = -dVdr/m/2.0 ! Plus unit transformations ! Note the factor 1/2!!

ax(i) = ax(i)-rijx/rij*a

ax(j) = ax(j)+rijx/rij*a

ay(i) = ay(i)-rijy/rij*a

ay(j) = ay(j)+rijy/rij*a

az(i) = az(i)-rijz/rij*a

az(j) = az(j)+rijz/rij*a

endif 
enddo

startofineighbourlist=startofineighbourlist+nneighboursi+1

enddo 
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Force calculation for pair potentials

• Note that in the sum above every interaction is counted twice:

do i=1,N 
   do j=1,N

if (i==j) cycle

...

• That is, e.g. interaction 1-3 is counted both as 1-3 and 3-1. Hence the factor 1/2 in front of the potential energy summa-

tion and forces (this actually depends on the exact definition of the potentials, some already have a factor of 1/2 in 

front).

• A straightforward solution:

do i=1,N-1 
   do j=i+1,N

...

(either in constructing the neighbour list or forces) reduces the calculation time to one half.  

• For some many-body potentials this does not work.

• V r! "  often is defined to give the total energy for a pair of atoms. When one wants the potential energy per 

atom one thus may have to include one more factor of 1/2. But this additional factor is not needed in the 

force calculation since the force always affects both atoms (Newton’s III law).

• Note that the sign conventions in defining r
ij

 in the literature may vary.
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Force calculation for pair potentials

• One practical way of checking that you have correctly derived the forces from the potential 

energy and that all signs and factors of ½ are OK in you potential implementation:

1. Calculate Epot  at 0 K and compare with an analytical prediction for some simple system, e.g. a dimer or 

perfect lattice.

2. Simulate a two-atom system starting from a very small distance, so that Epot  is very large, much larger 

than the equilibrium energy per atom (say 10000 eV). When you run the simulation with a very small time 

step the atoms should explode outwards from each other so that the final Ekin /atom is the same as the 

original Epot /atom. If you are uncertain what a ‘very small’ time step is, keep decreasing it until the 

answer doesn’t change.

3. Another good test: numerical derivation of potential energy: 
 

Move one atom in direction sˆ  amount !s .  

Directional derivative of the potential (assume sˆ 1= ): 
 

V r" #$

s
ˆ

$
--------------

V r hs
ˆ

+" # V r" #–

h
-----------------------------------------

h 0%
lim &V r" # s

ˆ
' F r" # s

ˆ
'–= = =

Computed from  
potential energy  
as !V !s(

Computed from  
forces as 

 Fxsx F
y
s
y
F
z
s
z

+ +

r

s F

F r" # s'
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Force calculation for a three-body potential

• For a pure pair potential for an interaction between atoms i  and j  V
ij

V
ji

=  because 

V r
ij

" # V r
ji

" #=  and hence also &
i
V
ij

&
i
V
ji

=  as described above. This symmetry simplifies the 

force calculation.

• For a three-body potential things get trickier because V
ij

 may not =  V
ji

. To get the force F
i
 act-

ing on an atom i  one instead has to calculate 

 

F
i

V
ij

V
ji

+" #

j

) V
jki

k

)
j

)+i&– Vi&
ij

V
jii&+" #

j

) Vi&
jki

k

)
j

)+–= =  

• Many practical three-body potentials have been written such that 
 

V
3
r
ij
r
ik

*
ijk

+ +( ) V
3
r
ij
r
ik

*
ijk

cos+ +( )=  

 

i.e. all angular information is in a cosine term. 



Introduction to atomistic simulations 2008               5. Calculating the forces                                                                                                                                                     15

Force calculation for a three-body potential

i
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rij

krik

 ijk
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ijk
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• In this case one can utilize the following equalities:!

 
ijk

cos
r
ij
r
ik

#

r
ij
r
ik

----------------= !

   !

that is, no need to evaluate cos function.

• In many-body potentials there are often symmetries which can be used to reduce the number of 
operations needed in the force calculation even more.
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The origin of interactions

• Qualitatively a two-atom interaction looks like the following:

r

V(r)

r0

• The minimum, i.e. equilibrium distance, is 
r
0
.!

• At small separations there is a strong 
repulsion. Just below r

0  this derives pri-

marily from the Pauli rule preventing elec-
trons being in states with the same 
quantum numbers, and from the electron-
electron repulsion, whereas when the 
nuclei are very close to each other, the 
Coulombic repulsion between the nuclei 
dominates completely.!

• At larger distances there may be an attraction, which can have different reasons: van der 
Waals attraction, Coulomb attraction, a covalent bond, (due to pairing of valence electrons) or 
metallic bonding!

• Potential may also be purely repulsive
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• A few examples (1 bohr = 0.53 Å)
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• Overview of bonding expected in different cases, and illustration of electron distributions
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• So for the pure elements we get the familiar division:
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Idealized potentials for theoretical and qualitative studies

Source: Allen-Tildesley

• Hard sphere:      V
HS

r !
" r #$%

0 r #&%'
(
)

= *

• First MD simulations were carried out with 
this potential.

• The equations of motion reduce to calcu-
lating where the next collision occurs: true 
billiard ball physics*

• Applications in packing problems*

• Square well:     

V
SW

r !

" r #1$%

+– #
1
r #

2
$,%

0 r #
2

&%'
-
(
-
)

= *

• soft sphere:      V
SS
r ! +

#
r
---

.
=
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“Realistic” pair potentials

• Lennard-Jones (LJ)  

                                V r! " 4#
$
r
---

% &
' (

12 $
r
---

% &
' (

6
–=

• The attractive 1 r
6

) - term can be derived from the dipole-dipole interaction, or as the interactions between 
two oscillators (QM)  [Kittel, Introduction to Solid State Physics, 7th edition, p. 62]. It is also known as the 
Van der Waals or London interaction.

• The repulsive term 1 r
12

)   chosen for convenience.

• Also other exponents used; notation for any two exponents A and B is LJ (A-B) potential.

• # and $ are usually chosen by fitting into experimental data. $ gives the equilibrium distance # the cohe-
sive energy.

• A few Lennard-Jones-parameters for gases [Ashcroft-Mermin s. 398]:
                                       Ne           Ar                 Kr          Xe

# (eV)  0.0031      0.0104          0.0140    0.0200
$ (Å)      2.74         3.40          3.65        3.98

• Very weak interaction: e.g. Vmin 3.1 meV–=  for Ne. 

• LJ (12-6) potentials have proven to be good for noble gases (filled electron shells * almost always neu-
tral) close to equilibrium. But they are obviously terrible for very small r  (r 1 Å+ ) since the true interaction 

is e
r–
r)  and not 1 r

12
) .
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“Realistic” pair potentials

• LJ potentials have been, and are used a lot, for instance in molecular modelling, in many cases even in 
systems where there is no physical motivation to using the LJ functional form. But if the fit is good for 
some purpose, using it may still be justified as long as the limitations are kept in mind.

• Reduced units 

• If a potential only has a couple of parameters, evaluating it can be really efficient in reduced units 

• Also, in reduced units the results are always the same, so the results can be transferred to different sys-
tems with straightforward scaling. 
 

• For instance for the Lennard-Jones-potential: 
 

V r! " 4#
$
r
---

% &
' (

12 $
r
---

% &
' (

6
–=     [or any V r! " #f r $)! "= )] 

 
* Natural length unit = $  

natural energy unit = #  
 

* V* x! " 4 x 12– x 6––, -=  
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“Realistic” pair potentials

• other units: 

t
*

t m!
2

" # $%& '
1 2%

%=  

(
*

(!
3

=  

T
*

kBT $%=  

P
*

P!
3

$%=  

f
*

f! $%=  

v
*

v $ m%& '
1 2%

%=  

• Reduced units were very popular when one had to save CPU time in every single multiplication, and 
when potentials were still as simple as LJ. 
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“Realistic” pair potentials

• Morse potential

• Simple metals (sp-metals, e.g. Na, Mg, Al; and metals with the 
fcc- or hcp-structure), are at least to some extent describable 
with a pair potential

Girifalco and Weizer, Phys. Rev. 114 (1959) 687.

 

• A popular choice: the Morse potential [P. M. Morse, Phys. Rev. 
34 (1930) 57.]:

 

                  V r" # De
2) r r0–" #– 2De ) r r0–" #––=  

• Designed originally to describe vibrations in molecules. 
• The Schrödinger equation happens to have an analytical solution for 

this functional form.  

• Efficient to evaluate, in the form above only one exponential 
function needs to be evaluated.  

• Decays faster at large r  than Lennard-Jones: less problems 
with cut-off.

• A fit for many metals [Girifalco and Weizer, Phys. Rev. 114 
(1959) 687.]

• Works decently for being a pair potential.
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“Realistic” pair potentials

• An ordinary pair potential has a close-packed structure as the ground state. (usually either 
“face-centered cubic”, FCC or “hexagonal close packed”, HCP).

HCP FCC
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“Realistic” pair potentials

• A pair potential can thus not describe well elements with other structures than FCC or HCP. But 

this doesn’t mean people haven’t tried:

• Diamond lattice: open structure, four nearest neighbours, very far from close packed.

• Still, it is actually possible to make diamond stable locally with a pair potential, but this will become rather 

pathological (Mazzone potential for Si, [Phys. Stat. Sol (b) 165 (1991) 395.]):

r

V(r)

r0

Morse harmonic well

• Does actually work close to perfect lattice.

• But what happens when atoms leave the har-

monic well due to e.g. a high temperature?

• A good example showing that even almost 

complete rubbish gets published. 

• Unfortunately this is not uncommon regarding 

interatomic potentials: one has to be very crit-

ical of any new potential! Even well-respected 

physicists have presented potentials which 

have some very pathological features...
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“Realistic” pair potentials

• Ionic compounds

• Different ions, between which the electron density is very 
small. The ions have filled electron shells, and are thus 
unlikely to change their electron configuration 

• An extreme examples: NaCl: 

• A pair potential approximation works quite well, and poten-
tials abound in the literature, as there is much experimental 
data available for the alkali halides which can be used in 
potential fitting. 

• Potentials typically contain a short-range (SR) term and the 
Coulomb interaction: 
 

V r
ij

! " VSR r
ij

! "
z1z2e

2

4#$0rij
------------------+= ; z

i
 = ion charges 

• VSR : repulsive force between electrons packed closely together and an attractive van der Waals (vdW) 

interaction 
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“Realistic” pair potentials

• Most common forms for the short range potential: 
 

Buckingham:  VSR r! " Ae r %/– C

r6
-----–=  

 

Born-Huggins-Mayer:  VSR r! " Ae B r &–! "– C

r6
----- D

r8
-----––=  

 

Morse: VSR r! " De
2' r r0–! "– 2De ' r r0–! "––=  

 

• 1 r
6

( -term comes from the dipole-dipole interaction (again) 
 

• The repulsion is usually significant only for nearest neighbours, and the vdW interaction for next-nearest neighbours. 
Frequently for instance in oxides the only interaction assumed between cations is their Coulombic repulsion. 
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Fitting of potential parameters

• In almost all classical potentials there is a number of free parameters, e.g. in Lennard-Jones 2 
(  and ! ), Morse 3 (D , " , r0 ) etc.

• An extreme example: the ReaxFF model for hydrocarbons:#
A.C.T. van Duin et al., J. Chem. Phys. A 105 (2001) 9396.
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Fitting of potential parameters

• Two main approaches to develop a potential exist:

1. Derivation from so called ab initio (quantum mechanical) calculations

2. Fit to empirical and/or ab initio data

• Although the previous approach is better motivated physically, in practice the latter approach, or a combi-
nation of the two, often works better.

• A good classical potential is one which with a small number of free parameters can describe a 
wide range of properties well (usually 5-20 % accuracy in condensed matter physics is consid-
ered to be “well”, since experiments seldom are much more accurate than this). #

• A related concept is that a good potential should be transferable, which means that it should 

be able to describe properties of other states of the material than those it was originally fitted to.
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Fitting of potential parameters

• Regarding fitting the parameters in a potential of type 2, there are two opposite extreme 
approaches:

1. “Blind fitting” : choose a functional form and a set of data to which the parameters are fit. Then use some fitting routine 

to obtain a best fit to all the data. 

2. “Parameter choice by hand”: use reliable experimental or ab initio data of crucial data to set as many potential pa-

rameters as possible exactly, then fit only the remaining (if any) parameters. For instance, the equilibrium separation, 

binding energy and vibration frequency for a dimer can be used to fix all the 3 Morse potential parameters.

• A pure approach 1 is dangerous in that quantities which are outside the original parameter set may obtain 

completely pathological values. 
• Example: some Si bulk potentials predict that the Si dimer is non-bonding. 

• Also, if some potential parameter happens to be insensitive to all quantities in the data set, the fit may 

give ridiculously small or large values for it, which may cause trouble elsewhere.

• To obtain transferable potentials, approach 2 is thus usually to be preferred. On the other hand, if optimal 

precision in a limited set of systems (say, elastic properties of a perfect bulk crystal) is desirable, 

approach 1 may still be the better way to go.

• Most authors use approaches somewhere between 1 and 2.

Introduction to atomistic simulations 2008               5. Calculating the forces                                                                                                                                                     32

Fitting of potential parameters

• A functional form can sometimes be derived from experimental equations of state P V ! . Exam-

ple: solid Ne and Ar:
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Fitting of potential parameters

• Here is a short list of macroscopic, physical, properties which can and often are used to derive 
or fit interatomic potentials:

Physical property Atom-level property

Crystal structure Balance of atomic forces.

Cohesive energy Potential energy at the equilibrium 
atom positions

Elastic constants Long-wavelength acoustic vibrations 
Elastic distortions of unit cell.

Equation of state Compression or expansion of material

Neutron scattering Phonon  in the Brillouin zone.

Dielectric constant Electronic polarizability

Dielectric constant 
Polarizarization of electrons and lat-
tice; long-wavelength optical vibration 
modes;

Infrared absorption Long-wavelength vibrations with a 
dipole moment.

Raman scattering Long-wavelength vibrations which 
change the polarizability.

c!"

P V# $

% k# $

&'

&0

m
e
ch

a
n

ic
a

l
e

le
ct

ri
c

• Out of these, the first five depend purely on the mechanical properties of the material, and are relevant to 
almost all solids. The latter four involve electric properties and may or may not be relevant depending on 
what kind of materials and properties are studied.
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Fitting of potential parameters

• Crystal structure:
• The equilibrium crystal structure should be stable if one wants to describe any process where large atom 
displacements may occur (melting, surfaces, deposition, etc. etc.).

• In equilibrium the force acting on every atom in the unit cell i  should vanish:
 

                            f
ij

j

( 0=  

• Here the potential is only tested at a few r
ij

 values. (The smaller the crystal symmetry, the more values.) 

• Any potential has a minimum potential energy con-
figuration, or many configurations with the same 
energy.

• Example: Tersoff potential for Si [J. Tersoff, Phys. 

Rev. B 38 (1988) 9902.]
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Fitting of potential parameters

• Local stability is easy to achieve in a classical potential. But global stability (that is, that the real crystal 
structure is indeed the global minimum of the potential) may be surprisingly difficult.

• Even well-known authors make mistakes. For instance, the first Si potential of Tersoff [Tersoff, Phys. Rev. 

Lett. 56 (1986) 632.] was well motivated, well derived, and published in the best journal in physics. But the 
formation energy of the vacancy turned out to be negative, which means it did not have the right ground 
state structure...

• A good way to test the minimum energy: start from random atom positions, and quench the cell slowly 
enough so that it crystallizes. If the structure is the correct one, it probably is indeed the ground state. 
Unfortunately doing this may take forever.

• Another test: simulate a liquid and solid in equilibrium at the melting point, and check that the solid 
remains stable and the liquid recrystallizes to the same structure on slight cooling below Tmelt .
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Fitting of potential parameters 

• Cohesive energy (Ecoh  = energy difference between free atoms and the solid):

• Directly related to the potential minimum energy level
• Often easy to get right exactly. 

• Elastic constants1 c!"

• Related to deformation in the material 
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• Voigt notation for ! - and " -indexing: xx 1& , yy 2& , zz 3& , yz 4& , zx 5& , xy 6&
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1. See e.g. Kittel, Introduction to solid state physics, 7th edition, ch. 3.
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Fitting of potential parameters

• The stress component  
ij

 is the force which acts on the plane with the normal x
j
 in the direction x

i

• In principle there are 36 stress and strain components, but their number reduces to much smaller num-
bers in practice.

• For instance in a cubic crystal there are only three independent !
elastic constants c11 c

xxxx
= , c12 c

xxyy
=  and c44 c

xyxy
= .

• Particularly important if there are deformations (compression, shear, melting) in the simulations. Also 
related to defect properties and the melting point " if we get the elastic constants about right we are 
already on a good way to a good potential.
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• An example of an (unusually) 
good fit: F. Ercolessi,  J. B. 
Adams, Europhys. Lett. 26 
(1994) 583.
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Weaknesses of pair potentials

• A pair potential can never describe well the directional properties of covalent bonds. For 
instance in the diamond/zincblende structure (C, Si, Ge,  -Sn, many compound semiconduc-

tors) the ideal angle between bonds = 109.47o
 . Similarly, in almost all molecules the directional 

properties of covalent bonds is of crucial importance.

• Also longer-range angular dependence is completely neglected. For instance in the structure of 
polymers torsional terms are important. Also, recent calculations of BCC metals have shown 
that 4-particle interactions are about 50 % of the bond.

• Pair potentials also do not account for the environmental dependence They predict that the 
strength of the two-atom bond is as strong in a dimer as inside a material, which almost never is 
true. 
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Weaknesses of pair potentials

• For instance the Ga-As interaction:
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Weaknesses of pair potentials

• Moreover, a pair potential always predicts 
that the elastic constants c12 c44=  for 

cubic crystals. but in reality:

Source: Ashcroft-Mermin

 

• Also, vacancy formation energies are often 
completely wrong in pair potentials (see 
below).

• Pair potentials also usually give bad sur-
face properties.

• Summa summarum: the pair potential 
approximation:
• may work well close to equilibrium structure in 
many materials

• is good for noble gases
• is rather good for ionic compounds such as 
alkali halides

• is rather bad for FCC and HCP metals
• is terrible for covalently bonded materials

• But for all these groups much better, and only slightly slower, models exist. These will be 
described later on this course.
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Weaknesses of pair potentials

• Simple estimate of vacancy formation energy using pair potentials: 

Evac
f

Etot vacancy N!" # Etot perfect N!" #–=

• nearest neighbor pair potential, energy/bond=V rnn" # $%

• no relaxation
• fcc structure & 12 neighbors 
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• However, ab initio calculations1: 

Element  (eV)  (eV)

V 5.31 2.1 ) 0.2

Nb 7.57 2.6 ) 0.3

W 8.90 4.0 ) 0.2

Ecoh Evac
f

 

• Relaxation: only minor effect (far less than 1 eV).

1. A. E. Carlsson, Solid State Physics: Advances in Research and Applications, 43 (1990) 1.


