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Solving the equations of motion

[Main source: Allen-Tildesley]

• In MD, what we really want to do is solve the equations of motion of N  atoms (or particles in 

general) interacting via a potential V  %

• Lagrange equations of motion:%
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Solving the equations of motion

• We can also start by considering the Hamiltonian equations of motion 

q·
i p

i
!

!H
= , p·

i q
i

!

!H
–= , 

where p
i q·

i
!

!L
=  is the generalized momentum 

and H q p"# $ q·
i
p

i

i

% L q q
·

"# $–=  the Hamiltonian function (we assume that q·
i
 can be 

given as a function of p )

• If V  does not depend on the velocities, we get quickly back to the familiar form 

H q p"# $ K p# $ V q# $+=  

and if we again use cartesian coordinates the equations of motion will be: 
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• So we have two alternatives:
1. Solve a system of 3N  2nd order ODE’s  (m

i
r
··

i f
i

= ) derived from the Lagrangian or Newtonian formalism 

2. Solve a system of 6N  1st order ODE’s derived from the Hamiltonian formalism

Introduction to atomistic simulations 2008               4. Solving the equations of motion                                                                                                                                                     4

Numerical solution of equations of motion

• Finite difference method: from a system configuration (atom positions, velocities etc.) at time t  

we calculate the configuration at time t 't+

• 't  can be constant or variable

• initial conditions r 0# $ , v 0# $  have to be known (initial value problem) 

 

• As an example a predictor-corrector -algorithm:  

• Use a Taylor series to predict the system configuration at time t 't+  using the 

small deviation 't : 
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---'t
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---'t
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b t# $ (+ + + +=  
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t 't+# $ v t# $ 'ta t# $
1

2
---'t

2
b t# $ (+ + +=  

a
p

t 't+# $ a t# $ 'tb t# $ (+ +=

Equations of motion 

not (yet) used.

 

b
p

t 't+# $ b t# $ (+=  

• v , a  and b  are higher time derivatives of r : 

v  = velocity, a  = acceleration and b  = the time derivative of acceleration. 
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Numerical solution of equations of motion

• We can instead of b  also use information from previous time steps: 

r t! " v t! " v t #t–! " v t 2#t–! "$ $ $% &  

 or r t! " v t! " a t! " a t #t–! "$ $ $ &

• Correction step: we now have r
p

, from which we can get the forces at 

t #t+   

' accurate corrected accelerations a
c

t #t+! "  

' error in accelerations  (a t #t+! " a
c

t #t+! " a
p

t #t+! "–=

Equations of motion 

now used.

 

• Using this known error, one can calculate corrected positions, velocities and so on 
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• The constants c
i
 depend on how many derivatives of r  we include and the degree of the equation, etc.

• The correction can also be iterated

• But no in MD: calculating the forces expensive ' use an algorithm requiring only one evaluation of the 

force per time step (one correction)

• If the correction is not iterated, an obvious choice is c
2

1= .
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Numerical solution of equations of motion

• Thus we reach the following approach to solving the MD equations of motion: 

(a) predict r , v  and a  for the time t #t+  using the present values  

of the same variables 

(b) calculate forces and hence a f m)=  from the new r  

(c) correct the predicted r , v  and a  etc. using the new a  

• Requirements for a good MD algorithm 

 

(a) fast (not that important) 

(b) takes little memory (important) 

(b) allows a long time step #t  (important) 

(c) reproduces the correct path (see below) 

(d) conserves energy (and is reversible:  

#t #t–*  ' back to original state) (very important) 

(f) easy to implement (not that important) 

(g) only one force evaluation/time step (important for complex V ) 
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Numerical solution of equations of motion

• Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time. 

Since all computers have limited floating-point precision, a small round-off error will eventually grow to a 

large difference (Lennard-Jones system; in reduced units  * 0.6= , T* 1.05= ):

Source: Allen-Tildesley
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• A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccura-

cies.!
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Common algorithms

• In the following we present some of the most common MD algorithms:

• Verlet
• Derived from the following two Taylor series:!

r t "t+# $ r t# $ "tv t# $
1

2
---"t

2
a t# $ %+ + += !

r t "t–# $ r t# $ "tv t# $–
1

2
---"t

2
a t# $ %+ +=

• Sum them up and rearrange: !

r t "t+# $ r t "t–# $+ 2r t# $ "t
2
a t# $+= !

&r t "t+# $ 2r t# $ r t "t–# $– "t
2
a t# $+= !

• So we have an algorithm which essentially does:!

r t# $ a t# $ r t "t–# $' '( ) r t "t+# $ a t "t+# $'( )* .!

• However, the velocities are missing; these can be calculated from!

v t# $
r t "t+# $ r t "t–# $–

2"t
-----------------------------------------------= .!

• The error per iteration O "t
4

# $ ; in the velocities O "t
2

# $ .

• Memory requirement: 9N .

• Numerical problems, fluctuates heavily
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Common algorithms

• Leap-frog
• Mathematically equivalent with Verlet (not numerically) 
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---#t–$ %

& '( (
) *
+ ,
- .

r t #t+! " a t #t+! " v t
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& '( (
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v t
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2
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& ' v t
1

2
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& ' #ta t! "+=  

r t #t+! " r t! " #tv t
1

2
---#t+$ %

& '+=  

• Velocity  

v t! "
1

2
--- v t

1

2
---#t–$ %

& ' v t
1

2
---#t+$ %

& '+=   

for energies etc. 

• Advantage: explicit v . 

• Memory requirement 9N . 

• But still velocities at different time than the positions.
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Common algorithms

• Velocity Verlet
• Eliminates the half-step velocity problem 

 
r t! " v t! " a t! "( (0 1 r t #t+! " v t #t+! " a t #t+! "( (0 1/  

r t #t+! " r t! " #tv t! "
1

2
---#t

2
a t! "+ +=  

v t #t+! " v t! "
1

2
---#t a t! " a t #t+! "+2 3+=  

• If we would eliminate v  we would get back to normal Verlet

• This can also be considered to be a simple predictor-corrector-algorithm: 
(same as three stage Gear with r  correction 0= ): 
 
1. Predictor stage: 

r t #t+! " r t! " #tv t! "
1

2
---#t

2
a t! "+ +=  

v
p

t
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2
---#t+$ %

& ' v t! "
1

2
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2. Corrector stage: 

v
c
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p

t
1

2
---#t+$ %

& ' 1

2
---#ta t #t+! "+=  

• Memory requirement 9N .
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Common algorithms

• Schematic illustration of the progress of different Verlet algorithms: 

 

Source: Allen-Tildesley

Verlet

Leap-frog

Velocity-Verlet

 

• Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accu-

rate.
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Common algorithms

• Velocity Verlet as pseudocode:

do i=1,N

x(i)=x(i)+deltat*vx(i)+0.5*deltat**2*ax(i)

vx(i)=vx(i)+0.5*deltat*ax(i)

((and same for y and z))

enddo

((get new forces F and accelerations ax(i)))

do i=1,N

vx(i)=vx(i)+0.5*deltat*ax(i)

((and same for y and z))

enddo

 

 

 

• Comparison of performance 
• 500 Cu atoms at 300 K

• Euler: r t !t+" # r t" # !tv t" #+=   

v t !t+" # v t" # !ta t" #+=
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Common algorithms

• Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.) 

• Equivalent with Verlet if v  eliminated, but velocity more accurate 

 

r t! " v t! " a t! " a t #t–! "$ $ $% & r t #t+! " v t #t+! " a t #t+! "$ $% &'  :  

r t #t+! " r t! " #tv t! "
2

3
---#t

2
a t! "

1

6
---#t

2
a t #t–! "–+ +=  

v t #t+! " v t! "
1

3
---#ta t #t+! "

5

6
---#ta t! "

1

6
---#ta t #t–! "–+ +=  

• Memory requirement 12N  
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Common algorithms

• Ion irradiation physics

• Initially E
max

1 100 keV–(  ; 

• In the end E
max

k
B

T(  ) variable time step 

• Let us mark r
n

r t
n

! "= ; r
n 1+

r t
n

#t+! "=  

• Smith & Harrison (Computers in Physics 3 (1989) 68): 

 

r
n
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n
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n
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$ $ $% & r
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v

n 1+
a

n 1+
$ $% &'  : 

• Taylor : r
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r
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n
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n
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2

2
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n

3

6
---------- O #t

n

4
! "+ + + +=

Time step ratio

 R
#t

n

#t
n 1–

---------------=

 

• Estimate a'
n

a
n
a

n 1–
–

#t
n 1–

------------------------- O #t
n 1–

! "+=  

 

) Predictor for positions: 

r
n 1+

r
n
v

n
#t

n
3 R+! "a

n
Ra

n 1–
–* +

#t
n

2

6
----------+ += (1) 

 

Velocity: 

v
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v
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2
---------- a''

n

#t
n

3

6
---------- O #t
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Common algorithms

• Force calculation from r
n 1+

: 

! a'
n

a
n 1+

R
2
a

n 1–
R
2

1–" #a
n

+–

$t
n
1 R+" #

-------------------------------------------------------------------------=  

a''
n

2R
a

n 1+
Ra

n 1–
R 1+" #a

n
+–

$t
n

2
1 R+" #

--------------------------------------------------------------------=

• Let’s insert these into the Taylor series of v
n 1+

: 

! v
n 1+

v
n

3 2R+" #a
n 1+

1 R+
----------------------------------- 3 R+" #a

n

R
2
a

n 1–

1 R+
--------------------–+

$t
n

6
-------+=  (2) 

• Algorithm: 

(a) calculate new positions r
n 1+

 using equation (1) 

(b) calculate new accelerations a
n 1+

[(d) correct the positions using 

 

      

but this demands two force evaluations per time step]

rn 1+ rn vn$tn

2 R+" #an 1+

1 R+
------------------------------ 4 R+" #an

R
2
an 1–

1 R+
------------------–+

$tn

2

12
---------+ +=

 

(c) calculate velocities using equation (2) 

• Memory 12N , error O $t
n

4
" # .

• With a constant time step this reduces to the fairly simple form. 

!     r
n 1+

r
n
v

n
$t

n
4a

n
a

n 1–
–% &

$t
n

2

6
----------+ += ,        v

n 1+
v

n
5a

n 1+
8a

n
a

n 1–
–+% &

$t
n

12
-------+=
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Common algorithms

• Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD1.

• Using the notation: r
i

r
i" #

$t" #
i

i!
--------------------=  , where r

i" #

t
i

i

'

'
r=  

 

we get the predictor r
i

p
:    

r
0

P
t $t+" #

r
1

P
t $t+" #

r
2

P
t $t+" #

r
3

P
t $t+" #

r
4

P
t $t+" #

r
5

P
t $t+" #

1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1

r
0

t" #

r
1

t" #

r
2

t" #

r
3

t" #

r
4

t" #

r
5

t" #

=  

• Note that the triangle is simply a Pascal’s triangle matrix.

• For 2nd order (Newtonian) equations of motion, error term is $r
2

r
2
r
2

p
–= . 

 

1. G. W. Gear, Numerical initial value problems in ordinary differential equations, (Prentice-Hall, Englewook Cliffs, NJ, USA) 1971; Allen-Tildesley
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Common algorithms

• Corrector:r
n

c
r

n

P
 !r

2
+= ,  

3 16"

251 360"

1

11 18"

1 6"

1 60"

0.1875

0.6972

1.0000

0.6111

0.1667

0.0167

= = #

• Note that if the forces may depend on the velocities, we should have  
0

3 20"=  instead.
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Common algorithms

E
to

t

2
$

%1
2"

Source: Allen-Tildesley

!t

Velocity Verlet

Gear4

Gear5 Gear6

• The fluctuations in energy of different 

algorithms as a function of the time step 

is illustrated on the right#

(Lennard-Jones system; in reduced units 

&* 0.6= , T* 1.05= )

• So the ‘better’ algorithms have much less 

fluctuations for very short timesteps.#

#

#
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Common algorithms

• Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K.  

Potential = EAM

Curves are shifted in y direction in order 

to make the figures clearer.
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Newer algorithms

• Tuckerman, Berne and Martyna have recently developed new reversible MD-algorithms using a 

Trotter factorisation of Liouville propagators.

• The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms 

[Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]

• It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accu-

racy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

• New algorithms ! not much experience.

• So, what algorithm should one use? 

• A quick solution which works well with short time steps: velocity Verlet.

• If one wants minimal oscillations in the total energy: Gear5.

• If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.


