Set the initial conditions r(¢,)), v,(¢,)

v

Update neighborlist

¢

Get new forces F(r;)

\

Y

Solve the equations of motion numerically over time step A¢:
r(t) orlt,) vt vt)

'

Perform T, P scaling (ensembles)

A
t—>t+ At

1

Get desired physical quantities

'

9
/Ktmax Calculate results
—

and finish

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Solving the equations of motion

[Main source: Allen-Tildesley]
* In MD, what we really want to do is solve the equations of motion of ¥ atoms (or particles in
general) interacting via a potential 1

» Lagrange equations of motion:
dfoL) oL _ .
dr\9q;) 0q, ’

L(q,q) = K(q,9) - ¥(q. q)
q = generalized coordinate

* By using the cartesian coordinates

a4 =7
- 1 2
K(r) = sziri’
i
Vo= V(r),

we get the familiar (Newtonian) form
ml.l:l. = fi’

where f;, = VL = -V 7V is the force acting in atom i

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Solving the equations of motion

* We can also start by considering the Hamiltonian equations of motion
_0H . _ &

E, P; aq.

1

9i

where p, = gi_ is the generalized momentum
q.

1
and H(q,p) = Zqipif[,(q, q) the Hamiltonian function (we assume that 4; can be

1
given as a function of p)

« If ¥ does not depend on the velocities, we get quickly back to the familiar form

H(q,p) = K(p)+V(q)
and if we again use cartesian coordinates the equations of motion will be:

P;
m;

r;

Pi = —VriV = fi

» So we have two alternatives:)
1. Solve a system of 3N 2" order ODE's (ml.ri = fi) derived from the Lagrangian or Newtonian formalism

2. Solve a system of 6N 15 order ODE'’s derived from the Hamiltonian formalism

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Numerical solution of equations of motion

* Finite difference method: from a system configuration (atom positions, velocities etc.) at time ¢
we calculate the configuration at time ¢ + ¢
* ¢ can be constant or variable
« initial conditions r(0), v(0) have to be known (initial value problem)

» As an example a predictor-corrector -algorithm:

» Use a Taylor series to predict the system configuration at time ¢ + 8¢ using the
small deviation &¢:

1.2 1.3
Pt +50) = r(1) +81v(1) + 381 a(1) + 3 b(0) + ... Equations of motion
not (yet) used.

V(e +81) = V(t)+6ta(t)+%6t2b(t)+

aP(1+68¢) = a(t) +8tb(0) + ...
bP(t+81) = b(6) + ...

* v, a and b are higher time derivatives of r:
v = velocity, a = acceleration and b = the time derivative of acceleration.

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Numerical solution of equations of motion

* We can instead of b also use information from previous time steps:
{r(t),v(t), v(t—95¢),v(t—201)}
or r(¢),v(t),a(r),a(t—0ot)

* Correction step: we now have rp, from which we can get the forces at

Equations of motion
t+ ot

now used.

. C
= accurate corrected accelerations a (¢ + 8¢)

= error in accelerations Aa(z+d¢t) = ac(t +0t) — ap(t +9¢)

» Using this known error, one can calculate corrected positions, velocities and so on

r(t+381) = 1P (1+80)+ cyAa(r+ 1)
ve(r+381) = VP(t+ 1)+ c Aa(r+81)
a’(1+381) = aP(1+81) + cyha(r+31)

bE(¢+38t) = bP(1+80) +c;Aa(t+ 8r)

* The constants c; depend on how many derivatives of r we include and the degree of the equation, etc.

» The correction can also be iterated

* But no in MD: calculating the forces expensive = use an algorithm requiring only one evaluation of the
force per time step (one correction)

« If the correction is not iterated, an obvious choice is cy = 1.

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Numerical solution of equations of motion

» Thus we reach the following approach to solving the MD equations of motion:

(a) predict r, v and a for the time ¢ + 3¢ using the present values
of the same variables

(b) calculate forces and hence a = f/m from the new r
(c) correct the predicted r, v and a etc. using the new a

* Requirements for a good MD algorithm

(a) fast (not that important)
(b) takes little memory (important)
(b) allows a long time step 3¢ (important)
(c) reproduces the correct path (see below)
(d) conserves energy (and is reversible:
5t — -8t = back to original state) (very important)
(f) easy to implement (not that important)
(g) only one force evaluation/time step (important for complex 1)

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Numerical solution of equations of motion

* Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time.
Since all computers have limited floating-point precision, a small round-off error will eventually grow to a
large difference (Lennard-Jones system; in reduced units p* = 0.6, 7* = 1.05):

g 1p @ (®)

“8‘ OA%W 107

T i time steps .

= 10 ‘}/——_—_I,_’ 3 ol . tlm? steps

8 w0 5 0! 500 1000

c L

5 L

o ~ —0.4%% 3

u— 10 21

o 0.4% 106 3

o 2

P - E

‘é’ B 10°° k] time steps 2

Ar 10 0 i+ +

o 3 s0 100 2

ha - c

8 Initial o
. —0.4%"% 2

§ 1w0° displacement 40/0_ 10° 5

@ A% £

© « I

© time steps

S 0¥ S 0 . °

% 500 1000

®»

3 i

g 107 e Source: Allen-Tildesley

[a

* A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccura-
cies.

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Common algorithms

* In the following we present some of the most common MD algorithms:

* Verlet
* Derived from the following two Taylor series:

r(t+8¢) = r(t)+6tv(t)+%8tza(t)+

r(t—81) = r(t)—61v(t)+%8t2a(t)+
» Sum them up and rearrange:

r(t+80) + r(1— 1) = 2r() + 512 a(d)
—r(t+80) = 2r(f) - r(1— 81) + 8°a(t)

» So we have an algorithm which essentially does:
{r(1),a(t), r(t-0t)} > {r(¢t+31),a(t+3¢)}.

» However, the velocities are missing; these can be calculated from
V(1) = r(t+6t)—r(t—6t)_
268t

* The error per iteration O(8t4); in the velocities 0(8t2).

* Memory requirement: 9N.
» Numerical problems, fluctuates heavily

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Common algorithms

* Leap-frog
» Mathematically equivalent with Verlet (not numerically)

{r(t), a(t), V(tf %5:) } N {r(t +80), a(i+ 80, v[1+ %8:)}

v(t+ %az) - v(t—%St) + 8ta(1)
r(t+56) = r(t)+6tv(t+%8t)

* Velocity
v(t) = %[V(f* %St) + v(t+ %Stﬂ

for energies etc.
» Advantage: explicit v.
* Memory requirement 9N .

* But still velocities at different time than the positions.

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Common algorithms

* Velocity Verlet
* Eliminates the half-step velocity problem

{r(t),v(t),a(t)} > {r(t+ 1), v(t+6¢),a(t+ 1)}
r(t+98¢t) = r(t)+8tv(t)+%6t2a(t)

V(1 +581) = V(t)+%6t[a(t)+a(t+8t)]

* If we would eliminate v we would get back to normal Verlet

* This can also be considered to be a simple predictor-corrector-algorithm:

(same as three stage Gear with r correction = 0):
1. Predictor stage:
r(t+3¢t) = r(t) +orv(e) + %Stza(t)
vp(z+ 1&) = V(1) + Lsta(n)
2 2
2. Corrector stage:

c . U | 1
Ve(t+5t) = v (t+25z) +280a(1+50)

* Memory requirement 9N.

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Common algorithms

» Schematic illustration of the progress of different Verlet algorithms:

O e S S Sy =t 1t —it ot r+at

Verlet :]
Leap-frog :I L1 1 ||1_|_7||| il[l_t?]l Illrl—I'l
=T'LT1 Bl] [B) [B |

(c)

. ‘[T=]
Velocity-Verlet v
a ¥

Source: Allen-Tildesley

 Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accu-
rate.

Introduction to atomistic simulations 2008 4. Solving the equations of motion 1

Common algorithms

* Velocity Verlet as pseudocode:

do i=1,N
x(1)=x(1)+deltat*vx (i)+0.5*deltat**2*ax (i)
vx (1)=vx (1)+0.5*deltat*ax (1)
((and same for y and z))

enddo

((get new forces F and accelerations ax(i)))

do i=1,N
vx (1)=vx (1)+0.5*deltat*ax (1)

((and same for y and z)) 2.9 L L L
enddo 291 HOTfs Velocity Verlet |
Verlet
ook OIS 4
20 fs
. 2.93 i
» Comparison of performance S
* 500 Cu atoms at 300 K © 294 .
* Euler: r(¢+8¢) = r(z)+3tv(t E
(t+380) = r(1) + 51v(1) & 505 _

v(t+8t) = v(t)+8ta(r)

2.97 §

298 | 7

0 10 20 30 40 50

Introduction to atomistic simulations 2008 4. Solving the equations of motion 12

Common algorithms
* Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.)

* Equivalent with Verlet if v eliminated, but velocity more accurate

{r(t),v(e),a(t),a(t—06t)} - {r(¢t+56¢), v(t+06t),a(t+31)} :
r(t+86) = r(f)+8ev(e) + §8tza(t) - éStza(t— 51)

V(t+58) = v(t)+ %Sta(t L5+ §8ta(t) _ éSta(t— 5¢)

* Memory requirement 12N

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Common algorithms
* lon irradiation physics
* Initially £ ~1-100 keV ;
*Intheend E ~kgT = variable time step

*Letusmarkr, = r(z,);r = r(t, +31)

n+1
» Smith & Harrison (Computers in Physics 3 (1989) 68):

{r,v,a.,a | }—>{r

wonwnwn- n+1’Vn+1’an+1}'

2 3
o1, ' o1, 4
= rn+vn8tn+an-—2-—+an 5 +0(5¢7,)

*Taylor:r, .

. Estimate 2 = 2211 o5
S aea”*—"é"l:*""'"l"— (}171)
L

= Predictor for positions:

r =r,tv,ot, +[(3+R)a, —Ra, _

n+1

Velocity:
2 3

8t 8t 4
+a" 6” +0(8t,")

n

2

j— '
Voil = Vn+an81n+an

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Time step ratio
81’1

)

l"171

Common algorithms

* Force calculation from r,qt

2 2
. a, ., —Ra _|+(R -Da,

n 8¢, (1 +R)
a —Ra__ +(R+1)a
aunzzR{ n+1 l; 1 ni|
8t, (1 +R)

* Let's insert these into the Taylor series of v, , ;:

2
(3+2R)a, R™a,
:>vn+1=vn+{ 7 +(3+R)a, — TR

* Algorithm:

(a) calculate new positions r, , using equation (1)

(b) calculate new accelerations a, , ,

(c) calculate velocities using equation (2)

* Memory 12N, error 0(61n4).

ot

|

_n
6

(2)

[(d) correct the positions using

2
2+R R
w+(4+1¢)a _ra
1+R "

n—1

1+R

r =r,+v,00+

n+1

but this demands two force evaluations per time step]

)

2
dt,,

12

» With a constant time step this reduces to the fairly simple form.

2
Stn
= Tt :rn+vn6tn+[4anfan71]7’

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Common algorithms

v

n+1

= Vn+[5a

ot

n
8an7an71]ﬁ

n+1+

« Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD'.

(i)_

, where r

() s i
* Using the notation: r; = w
12

ro(t+81)

rll)(t+ o1)

o |Eh(r+ 1)

we get the predictor r; :

vy (¢ +81)

(=R - = e
S OO O = =

rZ(t+ ot)

ro(1+80)

i

_'r

ot

S OO = N =

O O = W W =

S = B~ N b~ =

* Note that the triangle is simply a Pascal’s triangle matrix.

« For 2" order (Newtonian) equations of motion, error term is dr, =

1— _r()(t)_
5 rl(t)
10| 2(0)
10} |r5()
f ry (1)
‘_rs(t)_

p
I'Z*l'z.

1. G. W. Gear, Numerical initial value problems in ordinary differential equations, (Prentice-Hall, Englewook Cliffs, NJ, USA) 1971; Allen-Tildesley

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Common algorithms

3/16 0.1875

251/360 0.6972

. Corrector:rft = r5+ adr,, o = 1 _ [1.0000
11/18 0.6111

1/6 0.1667

| 1/60 | 10.0167]

* Note that if the forces may depend on the velocities, we should have o, = 3/20 instead.

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Common algorithms

ot
3 2 1
» The fluctuations in energy of different 1? 1? 1?
algorithms as a function of the time step
is illustrated on the right X
(Lennard-Jones system; in reduced units 10
p* = 0.6, T* = 1.05)
—1072
« So the ‘better’ algorithms have much less 107
fluctuations for very short timesteps.
10
Velocity Verlet
-107°
10
Gear4
—107
Gearb Gear6
Source: Allen-Tildesley

Introduction to atomistic simulations 2008 4. Solving the equations of motion

1/ 4

t0t>

(E

Common algorithms
» Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K.
Potential = EAM

1.5
— 10fs

— 8fs
— 6fs
— 4fs
1.0 Gear5 2fs

<
wn

Velocity Verlet

AE,/atom (10° eV)

AE, /atom (107 eV)

0 Velocity Verlet
Y b J

R
o

o AN AN " "
A Y) Lig A

0 1 2 3 4 6 7 8 9 10

5
t (ps)

Curves are shifted in y direction in order
to make the figures clearer.

Introduction to atomistic simulations 2008 4. Solving the equations of motion

Newer algorithms
* Tuckerman, Berne and Martyna have recently developed new reversible MD-algorithms using a
Trotter factorisation of Liouville propagators.

» The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms
[Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]

* It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accu-
racy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

» New algorithms = not much experience.

» So, what algorithm should one use?
* A quick solution which works well with short time steps: velocity Verlet.
* If one wants minimal oscillations in the total energy: Gear5.

* If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.

Introduction to atomistic simulations 2008 4. Solving the equations of motion 20

