
Introduction to atomistic simulations 2008 4. Solving the equations of motion 1

Set the initial conditions , r
i

t
0

 ! v
i

t
0

 !

Get new forces F
i
r

i
 !

Solve the equations of motion numerically over time step :

"t
r

i
t
n

 ! r
i

t
n 1+

 !# v
i

t
n

 ! v
i

t
n 1+

 !#

t t "t+#

Get desired physical quantities

t t
max

 ?$ Calculate results

and finish

Update neighborlist

Perform , scaling (ensembles)T P

Introduction to atomistic simulations 2008 4. Solving the equations of motion 2

Solving the equations of motion

[Main source: Allen-Tildesley]

• In MD, what we really want to do is solve the equations of motion of N atoms (or particles in

general) interacting via a potential V %

• Lagrange equations of motion:%

td

d

q· i
&
&L

' (
) *
+ ,

qi
&
&L

– 0= ;%

L q q
·- ! K q q

·- ! V q q
·- !–= %

q = generalized coordinate%

• By using the cartesian coordinates %
q

i
r
i

= %

K r
· !

1

2
---m

i

i

. r·
i

2
= ,%

V V r != , %
we get the familiar (Newtonian) form%

m
i
r

i
··

f
i

= , %

where f
i

/
ri

L /
ri

V–= = is the force acting in atom i %

Introduction to atomistic simulations 2008 4. Solving the equations of motion 3

Solving the equations of motion

• We can also start by considering the Hamiltonian equations of motion

q·
i p

i
!

!H
= , p·

i q
i

!

!H
–= ,

where p
i q·

i
!

!L
= is the generalized momentum

and H q p"# $ q·
i
p

i

i

% L q q
·

"# $–= the Hamiltonian function (we assume that q·
i
 can be

given as a function of p)

• If V does not depend on the velocities, we get quickly back to the familiar form

H q p"# $ K p# $ V q# $+=

and if we again use cartesian coordinates the equations of motion will be:

r
·
i

p
i

m
i

------=

p
·

i &
ri

V– f
i

= =

• So we have two alternatives:
1. Solve a system of 3N 2nd order ODE’s (m

i
r
··

i f
i

=) derived from the Lagrangian or Newtonian formalism

2. Solve a system of 6N 1st order ODE’s derived from the Hamiltonian formalism

Introduction to atomistic simulations 2008 4. Solving the equations of motion 4

Numerical solution of equations of motion

• Finite difference method: from a system configuration (atom positions, velocities etc.) at time t

we calculate the configuration at time t 't+

• 't can be constant or variable

• initial conditions r 0# $, v 0# $ have to be known (initial value problem)

• As an example a predictor-corrector -algorithm:

• Use a Taylor series to predict the system configuration at time t 't+ using the

small deviation 't :

r
p

t 't+# $ r t# $ 'tv t# $
1

2
---'t

2
a t# $

1

6
---'t

3
b t# $ (+ + + +=

v
p

t 't+# $ v t# $ 'ta t# $
1

2
---'t

2
b t# $ (+ + +=

a
p

t 't+# $ a t# $ 'tb t# $ (+ +=

Equations of motion

not (yet) used.

b
p

t 't+# $ b t# $ (+=

• v , a and b are higher time derivatives of r :

v = velocity, a = acceleration and b = the time derivative of acceleration.

Introduction to atomistic simulations 2008 4. Solving the equations of motion 5

Numerical solution of equations of motion

• We can instead of b also use information from previous time steps:

r t! " v t! " v t #t–! " v t 2#t–! "$ $ $% &

 or r t! " v t! " a t! " a t #t–! "$ $ $ &

• Correction step: we now have r
p

, from which we can get the forces at

t #t+

' accurate corrected accelerations a
c

t #t+! "

' error in accelerations (a t #t+! " a
c

t #t+! " a
p

t #t+! "–=

Equations of motion

now used.

• Using this known error, one can calculate corrected positions, velocities and so on

r
c

t #t+! " r
p

t #t+! " c
0
(a t #t+! "+=

v
c

t #t+! " v
p

t #t+! " c
1

(a t #t+! "+=

a
c

t #t+! " a
p

t #t+! " c
2

(a t #t+! "+=

b
c

t #t+! " b
p

t #t+! " c
3
(a t #t+! "+=

• The constants c
i
 depend on how many derivatives of r we include and the degree of the equation, etc.

• The correction can also be iterated

• But no in MD: calculating the forces expensive ' use an algorithm requiring only one evaluation of the

force per time step (one correction)

• If the correction is not iterated, an obvious choice is c
2

1= .

Introduction to atomistic simulations 2008 4. Solving the equations of motion 6

Numerical solution of equations of motion

• Thus we reach the following approach to solving the MD equations of motion:

(a) predict r , v and a for the time t #t+ using the present values

of the same variables

(b) calculate forces and hence a f m)= from the new r

(c) correct the predicted r , v and a etc. using the new a

• Requirements for a good MD algorithm

(a) fast (not that important)

(b) takes little memory (important)

(b) allows a long time step #t (important)

(c) reproduces the correct path (see below)

(d) conserves energy (and is reversible:

#t #t–* ' back to original state) (very important)

(f) easy to implement (not that important)

(g) only one force evaluation/time step (important for complex V)

Introduction to atomistic simulations 2008 4. Solving the equations of motion 7

Numerical solution of equations of motion

• Fulfilling (c) completely is not possible: any small deviation somewhere will grow exponentially with time.

Since all computers have limited floating-point precision, a small round-off error will eventually grow to a

large difference (Lennard-Jones system; in reduced units * 0.6= , T* 1.05=):

Source: Allen-Tildesley

 Initial
displacement

K
in

e
ti
c
 e

n
e
rg

y
 d

if
fe

re
n
c
e

P
h

a
s
e

 s
p
a

c
e

 d
is

ta
n

c
e

 f
ro

m
 t

h
e

 r
e

fe
re

n
c
e

 t
ra

je
c
to

ry

• A reversible algorithm has in principle no drift in energy, except for that induced by numerical inaccura-

cies.!

Introduction to atomistic simulations 2008 4. Solving the equations of motion 8

Common algorithms

• In the following we present some of the most common MD algorithms:

• Verlet
• Derived from the following two Taylor series:!

r t "t+# $ r t# $ "tv t# $
1

2
---"t

2
a t# $ %+ + += !

r t "t–# $ r t# $ "tv t# $–
1

2
---"t

2
a t# $ %+ +=

• Sum them up and rearrange: !

r t "t+# $ r t "t–# $+ 2r t# $ "t
2
a t# $+= !

&r t "t+# $ 2r t# $ r t "t–# $– "t
2
a t# $+= !

• So we have an algorithm which essentially does:!

r t# $ a t# $ r t "t–# $' '() r t "t+# $ a t "t+# $'()* .!

• However, the velocities are missing; these can be calculated from!

v t# $
r t "t+# $ r t "t–# $–

2"t
---= .!

• The error per iteration O "t
4

$; in the velocities O "t
2

$.

• Memory requirement: 9N .

• Numerical problems, fluctuates heavily

Introduction to atomistic simulations 2008 4. Solving the equations of motion 9

Common algorithms

• Leap-frog
• Mathematically equivalent with Verlet (not numerically)

r t! " a t! " v t
1

2
---#t–$ %

& '((
) *
+ ,
- .

r t #t+! " a t #t+! " v t
1

2
---#t+$ %

& '((
) *
+ ,
- .

/

v t
1

2
---#t+$ %

& ' v t
1

2
---#t–$ %

& ' #ta t! "+=

r t #t+! " r t! " #tv t
1

2
---#t+$ %

& '+=

• Velocity

v t! "
1

2
--- v t

1

2
---#t–$ %

& ' v t
1

2
---#t+$ %

& '+=

for energies etc.

• Advantage: explicit v .

• Memory requirement 9N .

• But still velocities at different time than the positions.

Introduction to atomistic simulations 2008 4. Solving the equations of motion 10

Common algorithms

• Velocity Verlet
• Eliminates the half-step velocity problem

r t! " v t! " a t! "((0 1 r t #t+! " v t #t+! " a t #t+! "((0 1/

r t #t+! " r t! " #tv t! "
1

2
---#t

2
a t! "+ +=

v t #t+! " v t! "
1

2
---#t a t! " a t #t+! "+2 3+=

• If we would eliminate v we would get back to normal Verlet

• This can also be considered to be a simple predictor-corrector-algorithm:
(same as three stage Gear with r correction 0=):

1. Predictor stage:

r t #t+! " r t! " #tv t! "
1

2
---#t

2
a t! "+ +=

v
p

t
1

2
---#t+$ %

& ' v t! "
1

2
---#ta t! "+=

2. Corrector stage:

v
c

t #t+! " v
p

t
1

2
---#t+$ %

& ' 1

2
---#ta t #t+! "+=

• Memory requirement 9N .

Introduction to atomistic simulations 2008 4. Solving the equations of motion 11

Common algorithms

• Schematic illustration of the progress of different Verlet algorithms:

Source: Allen-Tildesley

Verlet

Leap-frog

Velocity-Verlet

• Velocity Verlet is a very popular algorithm because it is simple, reversible, yet reasonably accu-

rate.

Introduction to atomistic simulations 2008 4. Solving the equations of motion 12

Common algorithms

• Velocity Verlet as pseudocode:

do i=1,N

x(i)=x(i)+deltat*vx(i)+0.5*deltat**2*ax(i)

vx(i)=vx(i)+0.5*deltat*ax(i)

((and same for y and z))

enddo

((get new forces F and accelerations ax(i)))

do i=1,N

vx(i)=vx(i)+0.5*deltat*ax(i)

((and same for y and z))

enddo

• Comparison of performance
• 500 Cu atoms at 300 K

• Euler: r t !t+" # r t" # !tv t" #+=

v t !t+" # v t" # !ta t" #+=

Introduction to atomistic simulations 2008 4. Solving the equations of motion 13

Common algorithms

• Beeman algorithm (D. Beeman, J. Comp. Phys. 20 (1976) 130.)

• Equivalent with Verlet if v eliminated, but velocity more accurate

r t! " v t! " a t! " a t #t–! "$ $ $% & r t #t+! " v t #t+! " a t #t+! "$ $% &' :

r t #t+! " r t! " #tv t! "
2

3
---#t

2
a t! "

1

6
---#t

2
a t #t–! "–+ +=

v t #t+! " v t! "
1

3
---#ta t #t+! "

5

6
---#ta t! "

1

6
---#ta t #t–! "–+ +=

• Memory requirement 12N

Introduction to atomistic simulations 2008 4. Solving the equations of motion 14

Common algorithms

• Ion irradiation physics

• Initially E
max

1 100 keV–(;

• In the end E
max

k
B

T() variable time step

• Let us mark r
n

r t
n

! "= ; r
n 1+

r t
n

#t+! "=

• Smith & Harrison (Computers in Physics 3 (1989) 68):

r
n
v

n
a

n
a

n 1–
$ $ $% & r

n 1+
v

n 1+
a

n 1+
$ $% &' :

• Taylor : r
n 1+

r
n
v

n
#t

n
a

n

#t
n

2

2
---------- a'

n

#t
n

3

6
---------- O #t

n

4
! "+ + + +=

Time step ratio

 R
#t

n

#t
n 1–

---------------=

• Estimate a'
n

a
n
a

n 1–
–

#t
n 1–

------------------------- O #t
n 1–

! "+=

) Predictor for positions:

r
n 1+

r
n
v

n
#t

n
3 R+! "a

n
Ra

n 1–
–* +

#t
n

2

6
----------+ += (1)

Velocity:

v
n 1+

v
n
a

n
#t

n
a'

n

#t
n

2

2
---------- a''

n

#t
n

3

6
---------- O #t

n

4
! "+ + + +=

Introduction to atomistic simulations 2008 4. Solving the equations of motion 15

Common algorithms

• Force calculation from r
n 1+

:

! a'
n

a
n 1+

R
2
a

n 1–
R
2

1–" #a
n

+–

$t
n
1 R+" #

---=

a''
n

2R
a

n 1+
Ra

n 1–
R 1+" #a

n
+–

$t
n

2
1 R+" #

--=

• Let’s insert these into the Taylor series of v
n 1+

:

! v
n 1+

v
n

3 2R+" #a
n 1+

1 R+
----------------------------------- 3 R+" #a

n

R
2
a

n 1–

1 R+
--------------------–+

$t
n

6
-------+= (2)

• Algorithm:

(a) calculate new positions r
n 1+

 using equation (1)

(b) calculate new accelerations a
n 1+

[(d) correct the positions using

but this demands two force evaluations per time step]

rn 1+ rn vn$tn

2 R+" #an 1+

1 R+
------------------------------ 4 R+" #an

R
2
an 1–

1 R+
------------------–+

$tn

2

12
---------+ +=

(c) calculate velocities using equation (2)

• Memory 12N , error O $t
n

4
" # .

• With a constant time step this reduces to the fairly simple form.

! r
n 1+

r
n
v

n
$t

n
4a

n
a

n 1–
–% &

$t
n

2

6
----------+ += , v

n 1+
v

n
5a

n 1+
8a

n
a

n 1–
–+% &

$t
n

12
-------+=

Introduction to atomistic simulations 2008 4. Solving the equations of motion 16

Common algorithms

• Six-value (fifth-order predictor) Gear algorithm (Gear5). This is quite often used in MD1.

• Using the notation: r
i

r
i" #

$t" #
i

i!
--------------------= , where r

i" #

t
i

i

'

'
r=

we get the predictor r
i

p
:

r
0

P
t $t+" #

r
1

P
t $t+" #

r
2

P
t $t+" #

r
3

P
t $t+" #

r
4

P
t $t+" #

r
5

P
t $t+" #

1 1 1 1 1 1

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1

r
0

t" #

r
1

t" #

r
2

t" #

r
3

t" #

r
4

t" #

r
5

t" #

=

• Note that the triangle is simply a Pascal’s triangle matrix.

• For 2nd order (Newtonian) equations of motion, error term is $r
2

r
2
r
2

p
–= .

1. G. W. Gear, Numerical initial value problems in ordinary differential equations, (Prentice-Hall, Englewook Cliffs, NJ, USA) 1971; Allen-Tildesley

Introduction to atomistic simulations 2008 4. Solving the equations of motion 17

Common algorithms

• Corrector:r
n

c
r

n

P
 !r

2
+= ,

3 16"

251 360"

1

11 18"

1 6"

1 60"

0.1875

0.6972

1.0000

0.6111

0.1667

0.0167

= = #

• Note that if the forces may depend on the velocities, we should have
0

3 20"= instead.

Introduction to atomistic simulations 2008 4. Solving the equations of motion 18

Common algorithms

E
to

t

2
$

%1
2"

Source: Allen-Tildesley

!t

Velocity Verlet

Gear4

Gear5 Gear6

• The fluctuations in energy of different

algorithms as a function of the time step

is illustrated on the right#

(Lennard-Jones system; in reduced units

&* 0.6= , T* 1.05=)

• So the ‘better’ algorithms have much less

fluctuations for very short timesteps.#

#

#

Introduction to atomistic simulations 2008 4. Solving the equations of motion 19

Common algorithms

• Another illustration of this: a 10 ps simulation of a 4000 atom Cu lattice at 300 K.

Potential = EAM

Curves are shifted in y direction in order

to make the figures clearer.

Introduction to atomistic simulations 2008 4. Solving the equations of motion 20

Newer algorithms

• Tuckerman, Berne and Martyna have recently developed new reversible MD-algorithms using a

Trotter factorisation of Liouville propagators.

• The method is theoretically very well motivated, and it can be used to derive e.g. the Verlet algorithms

[Tuckerman et al., J. Chem. Phys. 97 (1992) 1990.]

• It can also be used to derive a predictor-corrector-type algorithm which is comparable to Gear4 in accu-

racy but is also time reversible [Martyna and Tuckerman, J. Chem. Phys. 102 (1995) 8071.]

• New algorithms ! not much experience.

• So, what algorithm should one use?

• A quick solution which works well with short time steps: velocity Verlet.

• If one wants minimal oscillations in the total energy: Gear5.

• If one wants great accuracy and minimal energy drift, it is worth looking into Tuckerman’s method.

