
Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 1

Constructing a neighbour list

• In MD simulations (and actually many other applications) one of the central operations is the
calculation of distances between atoms.
• In MD this is needed in the energy and force calculation.

• Trivial calculation of distances between atoms:

do i=1,N

 do j=1,N

if (i==j) cycle

dx=x(j)-x(i);

dy=y(j)-y(i);

dz=z(j)-z(i);

rsq=dx*dx+dy*dy+dz*dz

r=sqrt(rsq)

 enddo

enddo

• This algorithm is O N
2

() , i.e. very slow when N ! "

• But in practice we know the atoms move < 0.2 Å/time step. So a large fraction of the neighbours remain
the same during one time step, and it seems wasteful to recalculate which they are every single time.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 2

Constructing a neighbour list

• Solution: Verlet1 neighbour list:#

rcut
rm

i

“Skin” region

• Make a list which contains for each atom i the indices
of all atoms j which are closer to i than a given distance
r
m

. r
m

r
cut

$, the cutoff distance of the potential#

• The list is updated only every N
m

 time steps.

• r
m

 and N
m

 are chosen such that#

#

 r
m

r
cut

– N
m

v%t$,#

#

where v is a typical atom velocity and %t the time step

1. Loup Verlet, Phys. Rev. 159 (1967) 98.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 3

Constructing a neighbour list

• An even better way to choose when to update the interval: after the neighbour list has been
updated, keep a list of the maximum displacement of all atoms:

• Make a separate table dxnei(i)
• When you move atoms, also calculate dxnei(i)=dxnei(i)+dx
• Calculate the two maximal displacements of all atoms:

drneimax=0.0; drneimax2=0.0

do i=1,N

drnei=sqrt(dxnei(i)*dxnei(i)+dynei(i)*dynei(i)+dznei(i)*dznei(i))

if (drnei > drneimax) then

drneimax2=drneimax

drneimax=drnei

else

if (drnei > drneimax2) then

drneimax2=drnei

endif

endif

enddo

• Now, when drneimax+drneimax2 ! r
m

r
cut

–" the neighbour list has to be updated.

• When the update is done, do dxnei(i)=0.0

• This alternative has two major advantages: the simulation does not screw up if one atom suddenly starts
to move much faster than the average, and if the system cools down, the neighbour list update interval
keeps increasing.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 4

Constructing a neighbour list

• In practice the neighbour list can look e.g. like the following:#

neighbours of atom 1 neighbours of atom 2 neighbours of atom N

NNei1 j1 j2 j3 jNNei
1
NNei2 j1 j2 NNeiN j1 j2 j3 jNNei

N
jNNei

2

• Here NNeii is the number of neighbours of atom i.

• j1, j2, ... are the indices of neighbouring atoms (different for different atoms).

• So, if we would have a 64 atom system, where every atom has 4 neighbours, the neighbour list could look
like this:

4 2 3 63 64 4 1 3 4 5

neighbours of atom 1

4 1 61 62 63

neighbours of atom 2 neighbours of atom 64

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 5

Constructing a neighbour list

• A practical implementation of creating the list:

nlistbeg=1

do i=1,N

nnei=0
Periodic boundaries
omitted for brevity.

do j=1,N

if (i==j) cycle

dx=x(j)-x(i)

dy=y(j)-y(i)

dz=z(j)-z(i)

rsq=dx*dx+dy*dy+dz*dz

if (rsq <= rskincutsq) then

nnei=nnei+1

nlist(nlistbeg+nnei)=j

endif

enddo

nlist(nlistbeg)=nnei ! Write in number of i’s neighbours into list

nlistbeg=nlistbeg+nnei+1 ! Set starting position for next atom

enddo

• With the neighbour list, we can achieve a savings of a factor N
m

 in calculating the distances to

neighbours.

• But even using the neighbour list, our algorithm is still O N2! " .

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 6

Constructing a neighbour list

• Remedy: linked list / cell method

• Using a linked list and cellular division of the simulation cell, we can make the algorithm truly
O N! " :

• Let’s divide the MD cell into smaller subcells: M M# M# cells

• The size of one subcell l is chosen so that

 l
L

M
----- r

m
$= ,

where L = the size of the MD cell, and r
m is as above.

• Now when we look for neighbours of atom i we only have to look through

the subcell where i is, and its neighbouring subcells, but not the whole sim-

ulation cell. For instance if atom i is in cell 13:

1 2 3 4 5

6 10

11 15

16 20

21 22 23 24 25

7 8 9

12 14

17 18 19

13

The average number of atoms in a subcell is N
c

N M3%= .

& We have to go through 27NN
c
 atom pairs instead of N N 1–! " .

• For some interaction potentials (symmetric ij pairs) it is actually enough to

calculate every second neighbour pair (e.g. i j$) whence the number of
pairs is further reduced by a factor of 2.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 7

Constructing a neighbour list

• A practical implementation:

HEAD

0 1 0 3 2 4 5 7 6 9LIST

8 10

1 2 3 4 5 6 7 8 9 10

• array HEAD:

• size = M3

• contains pointers to the table LIST

• tells where the neighbours in subcell m
start

• array LIST:

• size = N

• element j tells where the next atom index of atoms in this cell is

• So the example below means that subcell 2 contains atoms 10, 9, 6, 4, and 3

• This representation is indeed enough to give all the atoms in all cells.

• A two dimensional array would of course also work, but would require much more memory, or dynamic
allocation, both of which are less efficient.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 8

Constructing a neighbour list

• Building the list:
• assume a cubic case:

HEAD

0 1 0 3 2 4 5 7 6 9LIST

8 3

1 2 3 4 5 6 7 8 9 10

• MD cell size = size(3)
• size of subcell =size()/M
• MD cell centered on origin

do i=1,N

head(i) = 0

enddo

do i=1,N

icell = 1 + int((x(i)+size(1)/2)/size(1)*M) &

 int((y(i)+size(2)/2)/size(2)*M) * M &

 int((z(i)+size(2)/2)/size(3)*M) * M * M

list(i) = head(icell)

head(icell) = i

enddo

• So the list LIST is filled in reverse order to the picture above.

• The above algorithm requires periodic boundaries. If the boundaries are open, an atom may get outside the cell bor-
ders, and the icell may point to the wrong cell.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 9

Constructing a neighbour list

• To account for possibly open boundaries properly things get a bit trickier:

• MD Cell size size(3)
• MD cell centered on origin
• Number of cells in different dimensions Mx, My, Mz

• Cell range 0 — Mx-1 and same in y and z

do i=1,N

dx=x(i)+size(1)/2

! Check that we are really inside boundaries

if (periodic(1) == 1 .and. dx < 0.0) dx=dx+size(1)

if (periodic(1) == 1 .and. dx > size(1)) dx=dx-size(1)

ix=int((dx/size(1))*Mx)

! If not periodic, let border cells continue to infinity

1 2 3 4 5

6 7 8 9 10

11 12 14 15

16 17 18 19 20

21 22 23 24 25

13

if (periodic(1) == 0) then

if (ix < 0) ix=0

if (ix >= Mx) ix=Mx-1

endif

(and same thing for y and z)

icell=(iz*My+iy)*Mx+ix

list(i)=head(icell)

head(icell)=i

enddo

• So the subcells at open boundaries continue out to infinity:

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 10

Constructing a neighbour list

• Usually the linked list (LIST, HEAD) is used to generate a Verlet list

• Decoding a linked list into a Verlet-list, as pseudocode:
• Cell size size(3)
• Number of cells Mx, My, Mz

do i=1,N

do (Loop over 27 neighbouring cells: inx iny inz)

icell=(inz*My+iny)*Mx+inx

! Get first atom in cell

j=head(icell)

do

if (j==0) exit ! exit from innermost loop

(get distance r between atoms i and j)

if (r <= rneicut) then

(accept neighbour)

endif

j=list(j)

enddo

enddo

enddo

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 11

MD code mdmorse

• A simplified MD code mdmorse has been written for this course:

• mdmorse simulates atom motion in a variety of metals (but only one metal at a time) with a simple Morse
pair potential model.

 V r! " D e
2# r r0–! "–

2e
r r

0
–! "–

–$ %=

• The code has a Verlet neighbour list (but not a linked list) and the equations of motion are solved with the
velocity Verlet method.

• The code is given in Fortran90 and C.

• The code can be downloaded from the course web page. (I’ll email the exact location later.)

• The code has the input parameter and output routines included.
• Physically interesting subroutines have been removed from the code, so it does not work.

• During the next few exercise sessions, you get the task of writing the missing subroutines.
• Solutions will be provided and explained during the exercise sessions.
• You may either use your own or the provided solutions afterwards.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 12

Structure of the mdmorse code

• Program files:

main.f90 Main program
inout.f90 Miscellaneous input and output stuff
modules.f90 Global variables
physical.f90* Calculating T and E , and random number generators
neighbourlist.f90* Getting the neighbour list
solve.f90* Solving the equations of motion
forces.f90* Calculating the forces

Makefile Makefile
(If you have used Unix or Linux systems you should know how to make programs.)

• Files marked with * contain the subroutines which will be filled up during the exercises

• C version: *.c & *.f90
 modules.f90 & global.h

• Compiling the code:

make

• This has been tested to work at least on Linux systems with a GNU compilers (gfortran and gcc).
• You may have to change the compiler command in Makefile.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 13

Structure of the mdmorse code

• Input files (file names are hardcoded):

mdmorse.in Miscellaneous parameters
atoms.in Atom coordinates in XYZ format

• Running the program:

./mdmorse (or if you don’t want to disturb other users nice ./mdmorse)

• Should be done in the same directory where the input files are.

• Output files:

standard output T , E , P and other interesting output
atoms.out Atom coordinates at regular intervals

• Note also that during the program running, the code writes out a large number of atom coordinates to a
file atoms.out, which may grow very large.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 14

Structure of the mdmorse code

• Input file mdmorse.in

Sample input file for mdmorse md program

File format: $identifier, then value. Rest is arbitrary comments

Lines which do not begin with "$" are all ignored

Identifier Value Comment

---------- ------------- ---------------------------------

$initialT 600.0 Initial temperature

$desiredT 0.0 Variables for temperature control

$btctau 300.0 If btctau=0 no effect

$bpctau 0.0 Variables for pressure control

$bpcbeta 7.0e-4 If bpctau=0 no effect

$desiredP 0.0

$mass 63.546 For Cu

$xsize 18.126900793 Box size in each dimension

$ysize 18.126900793

$zsize 18.126900793

$periodicx 1 1=periodic, 0=open

$periodicy 1

$periodicz 1

$morseDe 0.3429 Morse potential parameters

$morsealpha 1.3588 These values are for Cu

$morseRe 2.866

$rpotcut 5.0 Potential cutoff

$rskincut 6.0 Neighbour list cutoff

$nupdate 5 Number of steps between n-list updates

$nmovieoutput 100 Interval between atom movie output

$deltat 2.0 Time step in simulation in fs

$tmax 10000.0 Total simulation time

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 15

Structure of the mdmorse code

• Input file atoms.in

• The file is a normal XYZ atom coordinate file:

500

FCC cell made by makeFCC with a= 3.615 n= 5 5 5

Cu -8.13375 -8.13375 -8.13375

Cu -6.32625 -6.32625 -8.13375

...and so forth the remaining 498 atom coordinates....

Cu 6.32625 8.13375 8.13375

Cu 8.13375 6.32625 8.13375

• Note that the cell is centered on the origin.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 16

Structure of the mdmorse code

• Standard output (for the working code; F90 version):
--------------- mdmorse06 1.0F --------------------

Read in parameter $initialT value 300.000

Read in parameter $desiredT value 300.000

Read in parameter $btctau value 300.000

Read in parameter $bpctau value 500.000

Read in parameter $bpcbeta value 0.700000E-03

Read in parameter $desiredP value 0.00000

Read in parameter $mass value 63.5460

Read in parameter $xsize value 18.1269

Read in parameter $ysize value 18.1269

Read in parameter $zsize value 18.1269

Read in parameter $periodicx value 1.00000

Read in parameter $periodicy value 1.00000

Read in parameter $periodicz value 1.00000

Read in parameter $morseD value 0.342900

Read in parameter $morsealpha value 1.35880

Read in parameter $morser0 value 2.86600

Read in parameter $rpotcut value 5.00000

Read in parameter $rskincut value 6.00000

Read in parameter $nupdate value 5.00000

Read in parameter $nmovieoutput value 100.000

Read in parameter $deltat value 2.00000

Read in parameter $tmax value 10000.0

Read in parameter $seed value 0.873440E+07

Using periodics (1=on, 0=off) 1 1 1

Morse potential parameters: D alpha r0 0.342900 1.358800 2.866000

Movie output selected every 100 steps

Doing Berendsen temperature control with tau T 300.000 300.000

Doing Berendsen pressure control with tau beta 500.000 0.001

Reading in 500 atoms described as FCC Cu; boxsize 18.1000 18.1000

 Initial atom temperature is 605.224802743929

Neighbour list update found 78.000 neighbours per atom

ec 2.000 605.225 0.07738 -3.03989 -2.96251 164.34551

Outputting atom movie at t = 2.000

ec 4.000 594.069 0.07538 -3.03868 -2.96330 163.82195

bpc 4.000 18.132452 18.132452 18.132452 5961.69346 163.82195 1.00015

ec 6.000 574.307 0.07233 -3.03638 -2.96405 163.49694

. . .

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 17

Structure of the mdmorse code

• And so on. Here most things are self-explanatory.
• The “ec” and “bpc” lines contain the physically most interesting stuff in the following format:

time(fs) T (K) E
kin

/at. E
pot

/at. E
tot

/at. P (kbar) (energies in eV)

ec 4.000 594.069 0.07538 -3.03868 -2.96330 163.82195

time(fs) b
x

(Å) b
y

(Å) b
z
(Å) V (Å3) P (kbar)

Berendsen

bpc 4.000 18.132452 18.132452 18.132452 5961.69346 163.82195 1.00015!

• Output file atoms.out
• This file is in the XYZ format, but with the exception that column 5 contains the atom potential energy:

500

mdmorse atom output at time 2.000 fs boxsize 18.1269 18.1269 18.1269

Cu -9.053407 -9.061041 -9.048299 -3.085270

Cu -7.236810 -7.239921 -9.048988 -3.033905

Cu -7.241191 -9.049845 -7.246436 -3.035222

Cu -9.038484 -7.238137 -7.241429 -3.031141

.

.

.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 18

Structure of the mdmorse code

• Testing the incomplete code:

• Even though the code is not complete, it should compile and run in the intermediate stages.
• The output should look something like:

!

Reading in 500 atoms described as FCC Cu; boxsize 18.1000 18.1000

Initial atom temperature is 0.000000000000000

Neighbour list update found 0.26928E+06 neighbours per atom

ec 2.000 0.000 0.00000 0.00000 0.00000 0.00000

Outputting atom movie at t = 2.000

ec 4.000 0.000 0.00000 0.00000 0.00000 0.00000

• I.e. the number of neighbours is nonsense, and the temperature is 0.

• When you start doing the exercises, this should change and interesting things will start to happen.

• Note: Old versions of mdmorse are not compatible with the new one.

Introduction to atomistic simulations 2008 3. Neighbor lists and code mdmorse 19

• Structure of the program

Main program

main.f90

ReadParams

inout.f90

ReadAtoms
WriteAtoms

SetTemperature

physical.f90

GetTemperature
GetEnergies

gaussianrand

uniformrand
UpdateNeighbourlist

neighbourlist.f90

GetForces

forces.f90

Solve1

solve.f90

Solve2

Routines printed in magenta
are written in exercises.

Warning: Remember that although routine and
variable names here have small and capital let-
ters, Fortran is case insensitive. I.e. symbols

 SetTemperature
 settemperature

refer to same routine (or variable).

