

Energy research Centre of the Netherlands

Delft University of Technology

Calculation method of flux measurements by static chambers

Petra Kroon^{1,2} 1. ECN, Netherlands ; 2. TU Delft, Netherlands

VOL. 5, NO. 9

GEOPHYSICAL RESEARCH LETTERS

SEPTEMBER 1978

A NUMERICAL EVALUATION OF CHAMBER METHODS FOR DETERMINING GAS FLUXES

Allan D. Matthias, Douglas N. Yarger, and Robert S. Weinbeck

Departments of Agronomy and Earth Sciences, Iowa State University, Ames, Iowa, 50011

Abstract. Mathematical simulations of nit oxide (No0) flux from homogeneous soil into a surface chambers have been done for both a c. type of chamber in which soil air is statical collected and an open type of chamber in white ambient air is dynamically drawn across the : surface. Results indicate that chamber-measurface. fluxes over land surfaces may be subject to a siderable uncertainty, due in part to concention gradient changes within the soil profilthat are a function of the type and the size the chamber. Assessment of the uncertaintie chamber flux determinations are reported. For reasonable parameters closed-chamber flux val may be underestimated by as much as 55%. Da analysis procedures are described that can in prove the flux estimates. Use of open chambmay yield better flux estimates than closed (bers because of less disturbance to the natu gas concentration profile within the soil. . application to No0 flux measurements over way also is included.

Trace Gas Emission in Chambers: A Non-Steady-State Diffusion Model

Gerald P. Livingston,* Gordon L. Hutchinson, and Kevork Spartalian

ABSTRACT

Non-steady-state (NSS) chambers are widely u gas emissions from the Earth's surface to the a nately, traditional interpretations of time-depend trations often systematically underestimate pred rates because they do not accurately represent th ics of diffusive soil gas transport that follows c To address this issue, we formally derived a time model applicable to NSS chamber observations a formance using simulated chamber headspace CC generated by an independent, three-dimensional model. Using nonlinear regression to estimate th we compared the performance of the non-stead estimator (NDFE) to that of the linear, quadra diffusion models that are widely cited in the liter sensitivity to violation of the primary assumption

and addressed some of the practicalities of its N2O flux estimation contrast to the other models, NDFE proved an from a long-term st estimator of trace gas emissions across a wide sandy soil in souther

design, and deployment scenarios.

CHAMBER MEASUREMENT OF SOIL-ATMOSPHERE GAS EXCHANGE: LINEAR VS. DIFFUSION-BASED FLUX MODELS

W. H. ANTHONY, G. L. HUTCHINSON,* AND G. P. LIVINGSTON

Nutr Cycl Agroecosyst (2008) 82:175-186 We compared lii DOI 10.1007/s10705-008-9179-x

RESEARCH ARTICLE

Although they repre The importance of reducing the systematic error this group included magnitude and dyna due to non-linearity in N₂O flux measurements 263 fluxes >10 g N h application of a line: by static chambers

represents a potenti

criteria established (flux estimates that a

influence not only ? larger scale budgets P. S. Kroon · A. Hensen

P. A. C. Jongejan · A. T

Biogeosciences, 4, 1005-1025, 2007 www.biogeosciences.net/4/1005/2007/ C Author(s) 2007. This work is licensed under a Creative Commons License.

CO₂ flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

L. Kutzbach¹, J. Schneider¹, T. Sachs², M. Giebels³, H. Nykänen⁴, N. J. Shurpali⁴, P. J. Martikainen⁴, J. Alm⁵, and M. Wilmking¹

VOL. 5, NO. 9

GEOPHYSICAL RESEARCH LETTERS

SEPTEMBER 1978

A NUMERICAL EVALUATION OF CHAMBER METHODS FOR DETERMINING GAS FLUXES

Allan D. Matthias, Douglas N. Yarger, and Robert S. Weinbeck

Departments of Agronomy and Earth Sciences, Iowa State University, Ames, Iowa, 50011

What's the most appropriate method?

may be underestimated by as much as 55%. Da analysis procedures are described that can in prove the flux estimates. Use of open chambe may yield better flux estimates than closed (formance using simulated chamber headspace CC bers because of less disturbance to the natu gas concentration profile within the soil. . application to NoO flux measurements over wa also is included

ics of diffusive soil gas transport that follows c To address this issue, we formally derived a time model applicable to NSS chamber observations a generated by an independent, three-dimensional model. Using nonlinear regression to estimate th we compared the performance of the non-stead estimator (NDFE) to that of the linear, quadra

FLUX MODELS

W. H. ANTHONY, G. L. HUTCHINSON,* AND G. P. LIVINGSTON

(2009) 92.175 194

What's the quality of a linear method?

represents a potenti

influence not only P. S. Kroon · A. Hensen P. A. C. Jongejan · A. T

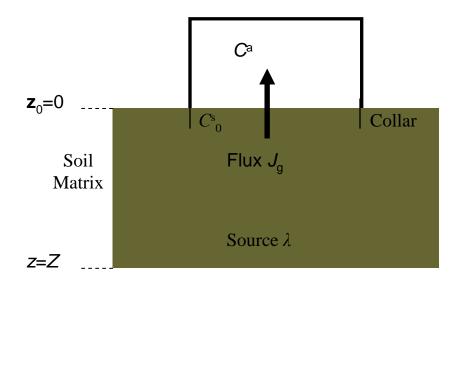
Biogeosciences, 4, 1005-1025, 2007 www.biogeosciences.net/4/1005/2007/ C Author(s) 2007. This work is licensed under a Creative Commons License.

CO₂ flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression

L. Kutzbach¹, J. Schneider¹, T. Sachs², M. Giebels³, H. Nykänen⁴, N. J. Shurpali⁴, P. J. Martikainen⁴, J. Alm⁵, and M. Wilmking¹

Energy research Centre of the Netherlands

www.ecn.nl



Outline

- Theoretical models
- Simplified models
- Comparison of the models
- Arguments for linear model
- Quality of chamber calculation methods
- Summary and recommendations

1D diffusion equation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial z^2} + \lambda(z)$$

Mass balance

$$F_c = \frac{V}{A} \frac{dC^a}{dt} \bigg|_{t=0}$$

Researcher	C ^a	C ^s ₀	J	à
De Mello and Hines (1994)	$C^{\rm a}(0)=C_{\rm air}$	Constant	$J_{g}^{s}(t)$	Constant
Gao et al. (1998)	<i>C</i> ^a (0)=0	Constant	J _g (t)	Constant
Conen and Smith (2000)	C ^a (0)=C _{air}	<i>C</i> ^s ₀ (t)	J _g (t)	Constant
Livingston et al. (2006)	$C^{a}(t) = C^{s}_{0}(t)$ $C^{a}(0) = C^{s}_{0}(0)$	<i>C</i> ^s ₀ (t)	J _g (t)	λ(z)

De Mello and Hines (1994), JGR

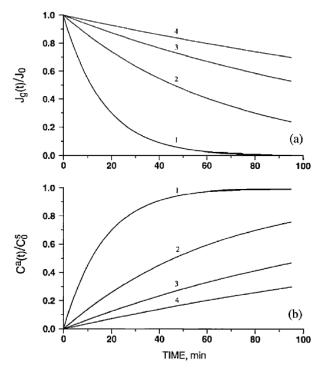
$$C^{a}(t) = C_{0}^{s} - (C_{0}^{s} - C_{t=0}^{a}) \exp\left(-\frac{h_{tc}}{V/A}t\right)$$
$$J_{g}(t) = h_{tc} \left(C_{0}^{s} - C_{t=0}^{a}\right) \exp\left(-\frac{h_{tc}}{V/A}t\right)$$
$$F_{c} = J_{g}(0) = h \frac{dC^{a}}{dt}\Big|_{t=0}$$
$$F_{c} = h_{tc} \left(C_{0}^{s} - C_{t=0}^{a}\right)$$

Gao and Yates (1998), JGR

$$C^{a}(t) = C_{0}^{s} \left[1 - \exp\left(-\frac{h_{tc}}{V/A}t\right) \right]$$

$$J_{g}(t) = h_{tc}C_{0}^{s} \exp\left(-\frac{h_{tc}}{V/A}t\right)$$

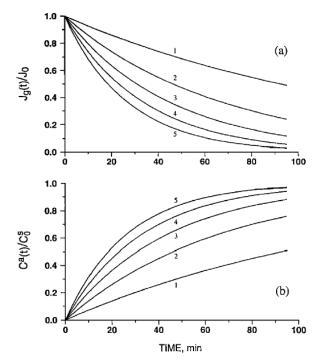
$$F_{c} = J_{g}(0) = h\frac{dC^{a}}{dt}\Big|_{t=0}$$

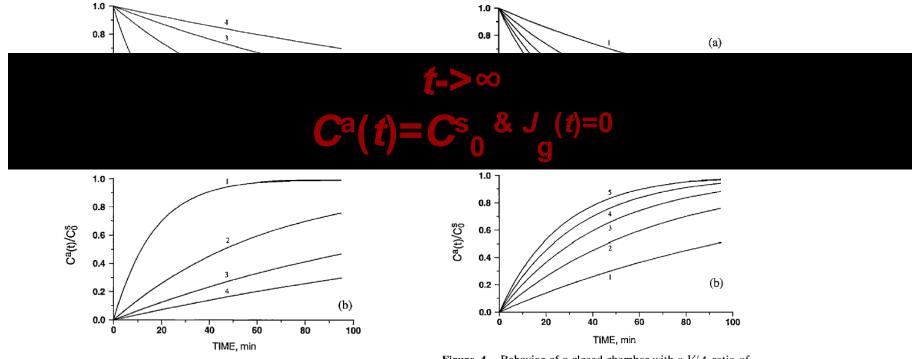

$$F_{c} = h_{tc}C_{0}^{s}$$
With $h_{tc} = \frac{\partial D}{h}$

$$\theta \Rightarrow \frac{m^{3}air}{m^{3}soil}$$

General behaviour of models based on Gao and Yates (1998) and De Mello and Hines (1994)

Figure 3. Behavior of shallow closed chamber with different V/A ratio (H). For curves 1, 2, 3, and 4 in the figure the V/A ratios are 10, 20, 30, and 40 cm, respectively.




Figure 4. Behavior of a closed chamber with a V/A ratio of 20 cm when measuring gases with different D^a . For curves 1, 2, 3, 4, and 5 the D^a values are 0.05, 0.10, 0.15, 0.20, and 0.25 cm² s⁻¹, respectively.

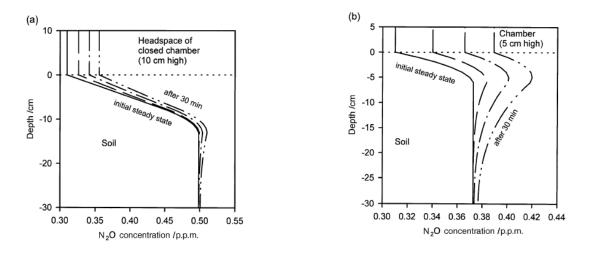
Gao and Yates (1998)

General behaviour of models based on Gao and Yates (1998) and De Mello and Hines (1994)

Figure 3. Behavior of shallow closed chamber with different V/A ratio (H). For curves 1, 2, 3, and 4 in the figure the V/A ratios are 10, 20, 30, and 40 cm, respectively.

Figure 4. Behavior of a closed chamber with a V/A ratio of 20 cm when measuring gases with different D^a . For curves 1, 2, 3, 4, and 5 the D^a values are 0.05, 0.10, 0.15, 0.20, and 0.25 cm² s⁻¹, respectively.

Gao and Yates (1998)


8

Conen and Smith (2000), European Journal of Soil Science

Researcher	Ca	C ^s ₀	J	a
De Mello (1994)	$C^{\rm a}(0) = C_{\rm air}$	Constant	$J_{a}(t)$	Constant
Gao (1998)	$C^{a}(0)=0$	Constant	$J_{a}(t)$	Constant
Conen (2000)	$C^{a}(0)=C_{air}$	$C_{0}^{s}(t)$	$J_{a}(t)$	Constant
Livingston (2005)	$C^{a}(t)=C^{s}_{0}(t)$	$C_{0}^{s}(t)$	$J_{q}(t)$	λ(z)
	$C^{a}(0) = C^{s}_{0}(0)$	-	Ĵ	

Figure 2 Development of N₂O concentration profiles in a soil with 20% air porosity, diffusivity of 1.673×10^{-6} m²s⁻¹, and initially steadystate concentrations at time 0 (continuous line). (a) The N₂O source $(12 \,\mu g \, N_2 O-N \, m^{-2} h^{-1})$ is evenly distributed between 8 and 13 cm depth and the soil is covered with a 10-cm-high chamber. (b) The N₂O source $(12 \,\mu g \, N_2 O-N \, m^{-2} h^{-1})$ is evenly distributed between 0 and 5 cm depth and the soil is covered with a 5-cm-high chamber. As concentrations increase within the headspace of the chamber, they also increase within the entire soil profile. Profiles are shown for 10 min (line with no short dashes), 20 min (line with one short dash), and 30 min (line with two short dashes) after chamber closure.

9

Conen and Smith (2000), European Journal of Soil Science

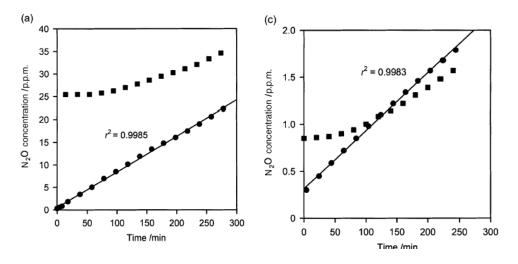


Figure 3 Measured changes in N₂O concentrations below the source of N₂O production (\blacksquare) and in the headspace (\bigcirc) of soil core for (a) wet core with low air-filled porosity; (b) core at intermediate airfilled porosity; (c) relatively dry soil core. A linear regression (continuous line) has been fitted to the headspace concentration over time.

Conen and Smith (2000), European Journal of Soil Science

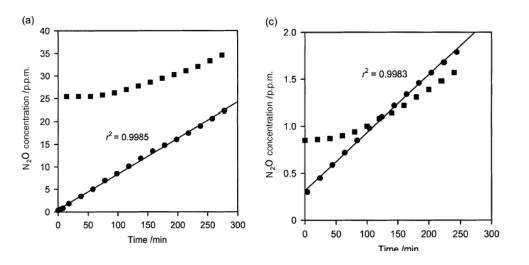


Figure 3 Measured changes in N₂O concentrations below the source of N₂O production (\blacksquare) and in the headspace (\bullet) of soil core for (a) wet core with low air-filled porosity; (b) core at intermediate airfilled porosity; (c) relatively dry soil core. A linear regression (continuous line) has been fitted to the headspace concentration over time.

$$J_{g}(t) = h_{tc} \left(C_{0}^{s}(t) - C^{a}(t) \right)$$

Table 1 Linearity and proportion of total net N₂O production (J_m) measured with chambers of different height and on soils with different air porosity and a total depth of 30 cm

θ 1%	$D / m^2 s^{-1} \times 10^{-6}$	Chamber height /cm	r^{2a}	$J_{ m m}$ /%
20	1.673	5	0.9978	72
20	1.673	10	0.9994	84
20	1.673	20	0.9998	92
20	1.673	30	0.9999	94
10	0.664	5	0.9995	86
10	0.664	10	0.9999	93
10	0.664	20	1	96
10	0.664	30	1	97
5	0.264	5	0.9999	93
5	0.264	10	1	97
5	0.264	20	1	98
5	0.264	30	1	99

^a Of linear regression; concentration over time.

Conen and Smith (2000), European Journal of Soil Science

 $J_{\sigma}(t) = h_{tc} \left(C_0^s(t) - C^a(t) \right)$

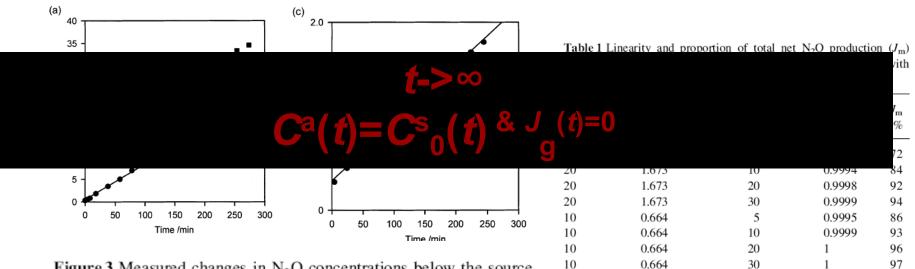


Figure 3 Measured changes in N₂O concentrations below the source of N₂O production (\blacksquare) and in the headspace (\bullet) of soil core for (a) wet core with low air-filled porosity; (b) core at intermediate airfilled porosity; (c) relatively dry soil core. A linear regression (continuous line) has been fitted to the headspace concentration over time.

^a Of linear regression; concentration over time.

5

10

20

30

0.264

0.264

0.264

0.264

5

5

5

5

0.9999

1

1

93

97

98

99

Livingston et al. (2006), Soil science society of America journal

Researcher	C ^a	C⁵₀	J	٦
De Mello (1994)	$C^{\rm a}(0) = C_{\rm air}$	Constant	$J_{a}(t)$	Constant
Gao (1998)	· · ·	Constant	$J_{q}(t)$	Constant
Conen (2000)	$C^{a}(0)=C_{air}$	$C_0^{s}(t)$	$J_{a}(t)$	Constant
Livingston (2006)	$C^{a}(t) = C^{s}_{0}(t)$	C ^s ₀ (t)	$J_{g}(t)$	λ(z)
	$C^{a}(0) = C^{s}_{0}(0)$			

$$C^{a}(t) = C^{a}_{t=0} + J_{o}\tau \left(\frac{A}{V}\right) \left[\frac{2}{\sqrt{\pi}}\sqrt{t/\tau} + e^{t/\tau}\operatorname{erfc}\left(\sqrt{t/\tau}\right) - 1\right]$$
$$\tau = \frac{(V/A)}{h_{tc}}$$

Differences in theoretical models:

• Assumptions -> different equations for $C^{a}(t)$ and $J_{q}(t)$

Researcher	C ^a	C ^s ₀	J _g	٤
De Mello and Hines (1994)	$C^{\rm a}(0) = C_{\rm ari}$	Constant	$J_{\alpha}(t)$	Constant
Gao et al. (1998)	C ^a (0)=0	Constant	$J_{q}(t)$	Constant
Conen and Smith(2000)	$C^{a}(0)=C_{air}$	$C_0^{s}(t)$	$J_{q}(t)$	Constant
Livingston et al. (2006)	$C^{\rm a}(t) = C^{\rm s}_{0}(t)$	$C_0^{s}(t)$	$J_{q}(t)$	$\lambda(z)$
	$C^{a}(0) = C^{s}_{0}(0)$		5	

Similarity in theoretical models:

- $J_q(t)$ is not constant
- No leakage taken into account
- No vegetation taken into account

Kutzbach et al. (2007), Biogeosciences:

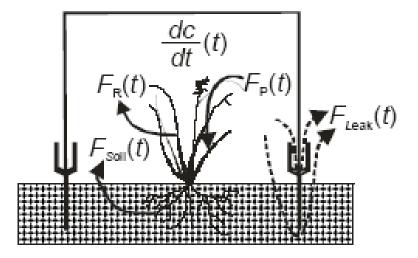


Fig. 1. Schematic of the CO₂ fluxes in the chamber headspace which make up to the net CO₂ flux F_{net} (details in the text, Eq. (1)). $F_{Soil}(t)$ is the diffusive efflux from the soil, $F_P(t)$ is photosynthesis, $F_R(t)$ is aboveground plant respiration, $F_{Leak}(t)$ is leak flux. dc/dt(t) is the CO₂ concentration change over time t in the chamber headspace.

 $F_{c}(t) = F_{soil}(t) + F_{p}(t) + F_{R}(t) + F_{Leak}(t)$ $c(t) = f_{exp}(t) + \varepsilon(t) = p_{1} + p_{2} \exp(p_{3}t) + \varepsilon(t)$ $F_{c}(0) = \frac{V}{A} \frac{dC}{dt} \Big|_{t=0} = \frac{V}{A} p_{2} p_{3}$ $p_{2} = B$ $p_{3} = \left(-\frac{D}{d} + k_{p} - K_{Leak}\right)$

t=0

1309

Simplified models

Linear model:

(e.g. Ruser et al. 1998; Hendriks et al. 2007)

$$c(t) = f_{lin}(t) + \varepsilon(t) = a + bt + \varepsilon(t)$$

Quadratic model:

(e.g. Wagner et al. 1997)

$$c(t) = f_{\text{qua}}(t) + \varepsilon(t) = a + bt + ct^{2} + \varepsilon(t)$$

H-M model:

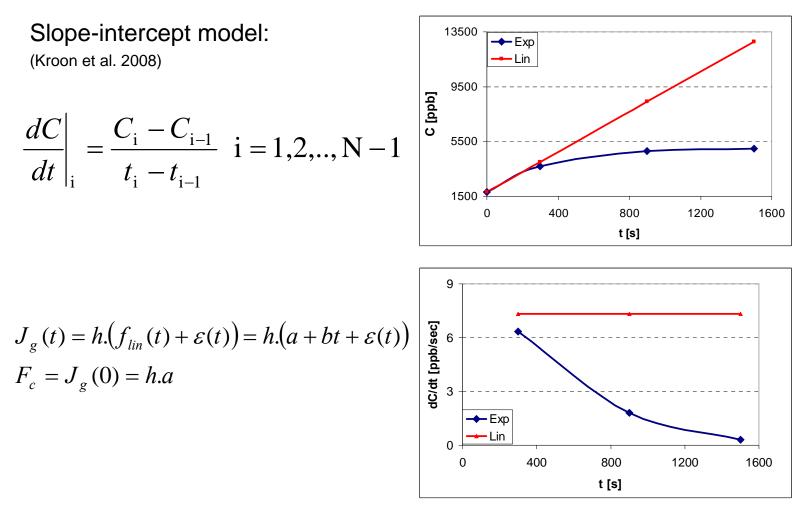
(e.g. Hutchinson and Mosier, 1984)

$$F_{c} = \frac{V(C_{1} - C_{0})^{2}}{A(t_{1} - t_{0})(2C_{1} - C_{2} - C_{0})} \ln \left[\frac{C_{1} - C_{0}}{C_{2} - C_{1}}\right]$$

for $t_{2} = t_{1}$ and $\frac{C_{1} - C_{0}}{C_{2} - C_{1}} > 1$

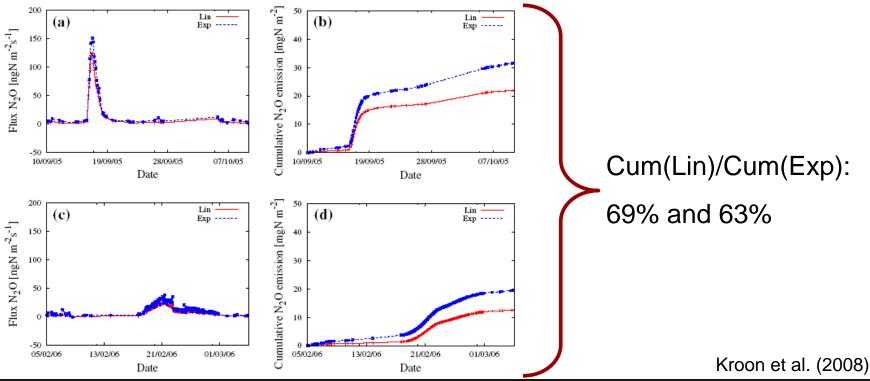
NOTES $C_1 - C_0 > C_2 - C_1 > 0$ $C_2 - C_1 \ge C_1 - C_0 > 0$ $C_1 - C_0 \ge 0 \ge C_2 - C_1$ Type 1 C_2 Type 2 Type 3 C₂ -C₁ -C₁ C1 C2 C0 Co Cn C2. C_1 C1 C1 C2 -Type 4 Type 5 C2 Type 6 $C_1 - C_0 < C_2 - C_1 < 0$ $C_2 - C_1 \le C_1 - C_0 < 0$ $C_1 - C_0 \le 0 \le C_2 - C_2$ Fig. 1. The defining inequality and an example of each of the six possible curve shapes for N₂O accumulation in a non-steady-state chamber during two successive equal periods beginning with chamber deployment.

 $=\frac{V}{A}\frac{dC^{a}}{dt}$


 F_{c}

Anthony et al. (1995)

Simplified models



Based on measurements at Cabauw in the Netherlands

Linear

versus

Conen and Smith (2000)

$$C_i = C_{i-1} + \frac{J_{i-1}A}{V} + C_p$$

Based on model

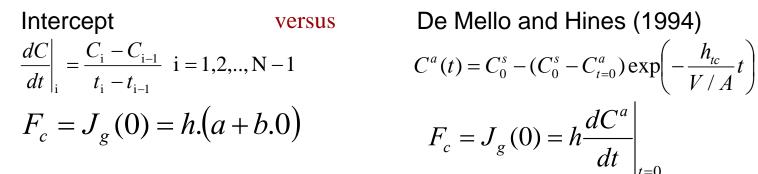
 $c^{a}(t) = a + bt$

Table 1 Linearity and proportion of total net N₂O production (J_m) measured with chambers of different height and on soils with different air porosity and a total depth of 30 cm

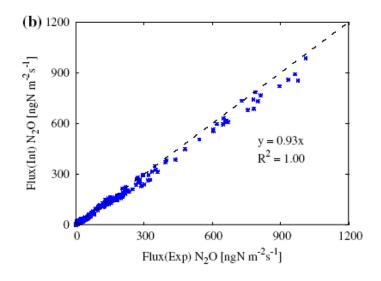
θ 1%	$D / m^2 s^{-1} \times 10^{-6}$	Chamber height /cm	r^{2a}	$J_{ m m}$ /%
20	1.673	5	0.9978	72
20	1.673	10	0.9994	84
20	1.673	20	0.9998	92
20	1.673	30	0.9999	94
10	0.664	5	0.9995	86
10	0.664	10	0.9999	93
10	0.664	20	1	96
10	0.664	30	1	97
5	0.264	5	0.9999	93
5	0.264	10	1	97
5	0.264	20	1	98
5	0.264	30	1	99

(Lin flux)/(Real flux) range: 72% and 99%

^a Of linear regression; concentration over time.


Conen and Smith (2000)

Energy research Centre of the Netherlands

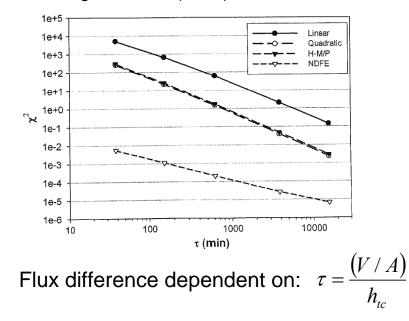

www.ecn.nl

Based on measurements at Cabauw in the Netherlands

Kroon et al. (2008)

Energy research Centre of the Netherlands

www.ecn.nl



What's the most accurate model?

• Determination by goodness-of-fit analyses

$$\chi^2 = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

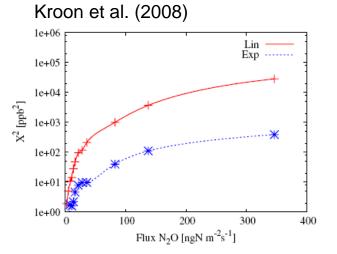
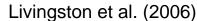
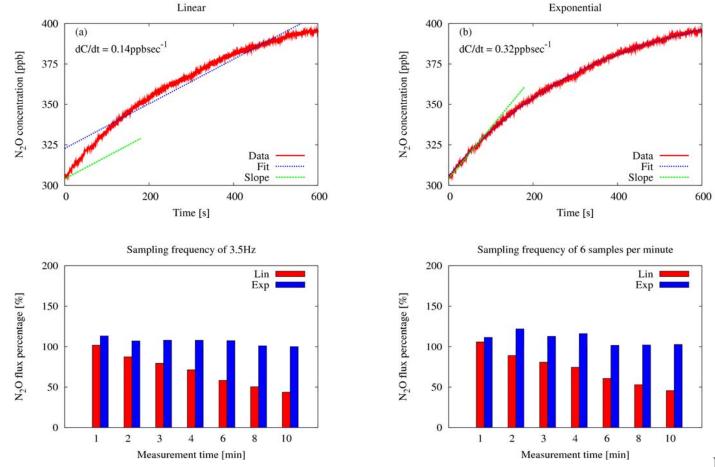



Fig. 7 Goodness-of-fit (χ^2) of linear and exponential regression method to N₂O automatic chamber measurements as a function of the N₂O flux. Data points represent the average goodness-of-fit and average N₂O flux over a bin including hundred N₂O fluxes

Why do most of the people still use a linear regression?

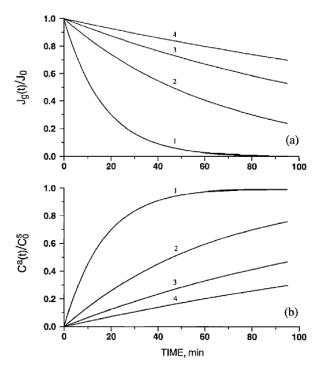

Possible reasons:

- Assumption that conentration behaviour is linear over short measurement times.
- Assumption that non-linear concentration behaviour can only be caused by leakage.
- Assumption that uncertainty due to spatial and temporal variation is much larger than the biases due to linear regression.

Assumption I: Short measurement times

Kroon et al. (2008)

Energy research Centre of the Netherlands


www.ecn.nl

Assumption II: Non-linearity can only occur due to leakage

Based on theoretical Gao model without leakage

Figure 3. Behavior of shallow closed chamber with different V/A ratio (H). For curves 1, 2, 3, and 4 in the figure the V/A ratios are 10, 20, 30, and 40 cm, respectively.

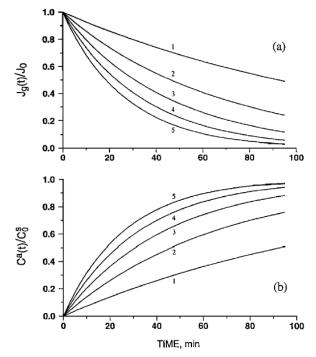
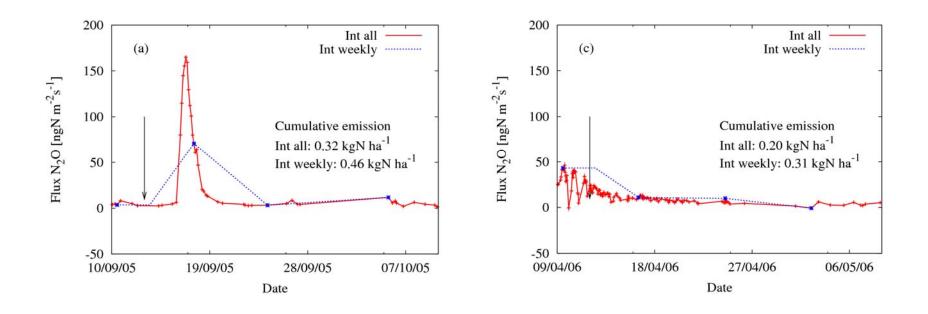


Figure 4. Behavior of a closed chamber with a V/A ratio of 20 cm when measuring gases with different D^a . For curves 1, 2, 3, 4, and 5 the D^a values are 0.05, 0.10, 0.15, 0.20, and 0.25 cm² s⁻¹, respectively.


Gao and Yates (1998)

Assumption III:

Uncertainty due to spatial and temporal variation is much larger than biases due to linear regression

Why do most of the people still use a linear regression?

Possible reasons:

Assumption that conentration behaviour is linear over short
 measurement times

Assumptions are not definitely truth!

caused by leakage.

 Assumption that uncertainty due to spatial and temporal variation is much larger than the biases due to linear regression.

Quality of chamber calculation methods

Rochette and Eriksen-Hamel (2008)

Table 1. Score assigned to each characteristic of non-flow-through, non-steady-state chamber design and deployment. The importance (score) of each characteristic to the quality of N₂O emission data is based on estimated impact of each characteristic on the measurement error.

Chamber characteristics	Symbol	Unit	Very poor (0)	Poor (1)	Good (2)	Very good (3)
			Binary and Non	-numerical Char	acteristics	
Type of chamber	С			push-in		base and chamber
Insulation	i			no		yes
Vent	V			no		yes
Pressurized sample (fixed-volume container only)	p p			no		yes
Quality control sample	qc		no			yes
Time zero sample taken	to			no		yes
Nonlinear model considered	nl		no			yes
Zero slope tested	Z			no	yes	
Temperature corrections	tc			no		yes
Type of sample vial	5		plastic syringe	glass syringe	all other vials	exetainers, vacutainers, Al tubes, gas chromatography in the field, photoacoustic
			Numeri	cal Characteristi	<u>cs</u>	
Height of chamber	h	cm h ⁻¹	<10	10 to <20	20 to <40	≥40
Chamber base insertion+	d	cm h ^{−1}	<5	5 to <8	8 to <12	≥12
Area/perimeter ratio	ар	cm	<2.5	2.6 to <6.25	6.26 to <10	≥10
Duration of deployment	t	min	>60	>40-60	>20-40	≤20
Number of samples	n	no.	1	2	3	>3
plastic syringe			>2	1–2	<1	
Duration of glass syringe	у	d	>4	>2-4	1–2	<1
other	*		>90	>45-90	>15-45	≤15

+ Chamber base insertion in ecosystems with saturated soil conditions such as paddy rice and natural wet ecosystems is assumed as "very good".

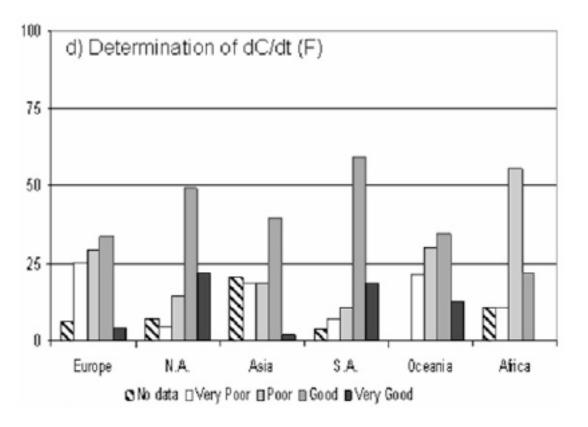
Quality chamber calculation methods

Rochette and Eriksen-Hamel (2008)

Time interval	Studios (p)	Base &	Insulation	Vant	Pressurized	Quality control	Sample taken	Nonlinear model	Zero	Temperature	Qu	ality v	of s ial‡	amp	le
nine interval	studies (II)	chamber	msulation	vent	sample†	sample tested	at time zero		slope tested	corrections	No info	0	1	2	3
							%	§							
1978–1989	34	85	56	56	13 $(n = 8)$	21	74	15	0	35	15	38	15	21	12
1990–1994	28	71	36	43	25 $(n = 12)$	14	61	7	4	21	14	39	0	18	29
1995-1999	102	94	57	52	29 $(n = 51)$	13	56	12	4	25	15	25	4	29	26
2000-2004	127	91	46	44	27 $(n = 51)$	20	72	17	7	36	8	34	2	24	32
2005-2007	65	95	46	48	62 $(n = 37)$	20	71	25	12	46	6	22	0	37	35
All studies	356	90	49	48	35 $(n = 159)$	17	66	16	6	33	11	30	3	27	29

+ Fixed-volume containers only.

‡ The quality of each type of sample vial is reported as very poor (0), poor (1), good (2), or very good (3).


§ Percentages are reported on the number of studies (n) in each time interval except where indicated.

Quality chamber calculation methods

Rochette and Eriksen-Hamel (2008)

Summary

- There are several studies given in the literature for calculating fluxes by static chambers. They are based on the mass equation and diffusion equation. The models are based on different assumptions. However, they all indicate that the fluxes are not constant.
- The concentration behaviour is dependent on the height of the chamber and the air filled porosity. Underestimation increases with decreasing height and increasing air filled porosity.
- There are several simplified models for calculating fluxes by static chambers, like quadratic, linear and H-M model. These simplified models underestimate the flux. The amount of underestimation can be more than 40%.

Summary

- The linear method underestimate the flux even for short measurement times and without leakage of the chamber.
- Using an incorrect method lead to a systematic underestimation which is very significant even in comparison with the spatial and temporal variation.
- The quality of the flux estimation is dependent on the used model, the amount of measurement points and measurement time.

Recommendations

• A non-linear method should be used.

Compare different non-linear methods using a goodness-of-fit analyses to choose the most appropriate method.

Method	References	Model available online
Exp1	De Mello and Hines	
	(1994)	
Exp2	Gao et al. (1998)	
Exp3	Kutzbach et al. (2007)	X*
NDFE	Livingston et al. (2006)	X**
Slope intercept	Kroon et al. (2008)	

- Amount of measurement points should be at least 3.
- The height of the chamber should be at least 40 cmhr⁻¹.

*http://biogeo.botanik.uni-greifswald.de/index.php?id=264 (Lin&Non-linear) **http://arsagsoftware.ars.usda.gov (Excell comparison Lin,Qua&NDFE)

Energy research Centre of the Netherlands

Delft University of Technology

Calculation method of flux measurements by static chambers

Petra Kroon^{1,2} 1. ECN, Netherlands ; 2. TU Delft, Netherlands

