Searching for asymptotic safety in large- N_f gauge theory

Viljami Leino, Tobias Rindlisbacher, <u>Kari Rummukainen</u>, Francesco Sannino, Kimmo Tuominen

University of Helsinki and Helsinki Institute of Physics CP3-Origins and DIAS, University of Southern Denmark Technische Universität München

The standard picture:

Consider 2-loop perturbative β -function of SU(N) + N_f fermions:

$$\beta(g) = \mu \frac{dg}{d\mu} = -\beta_0 \frac{g^3}{16\pi^2} - \beta_1 \frac{g^5}{(16\pi^2)^2}$$

- Small N_f: β₀ > 0, β₁ > 0 running coupling, confinement and χSB (QCD-like)
- Medium N_f : $\beta_0 > 0$, $\beta_1 < 0$ IR fixed point, no χ SB [Banks,Zaks]: conformal window
- Large N_f: β₀ < 0 Asymptotic freedom lost
 - \rightarrow Landau pole?
 - \rightarrow Asymptotic safety?

What really happens at large N_f ?

Consider SU(N) gauge with N_f (fundamental) fermions:

- Standard lore: as the asymptotic freedom is lost, theory has a Landau pole.
- However: $N_f \rightarrow \infty$ calculations suggest that there appears an UVFP (Asymptotic safety) [Antipin,Sannino 17], see also [Gracey 96]

In this talk: first attempts to study the behaviour on the lattice

- SU(2) gauge with $N_f = 24$ and 48 at $m_{\text{fermion}} = 0$
- Measure the evolution of the coupling constant
- Use similar methods as used earlier within the conformal window

Conformal window in SU(N) gauge

- Upper edge of band: asymptotic freedom lost
- Lower edge of band: ladder approximation
- Walking can be found near the lower edge of the conformal window: large coupling, non-perturbative - lattice simulations needed!
- Building BSM models using higher reps: easier to satisfy EW constraints [Sannino,Tuominen,Dietrich] → recent interest

Walking coupling

• Just below the conformal window β -function may get close to zero at finite coupling

- Building blocks for strongly coupled BSM scenarios
- CP3-Origins very active!

Large N_f:

Let $A = N_f \frac{\alpha}{2\pi}$ (for fundamental fermions). At large N_f :

$$\frac{3}{2}\frac{\beta(A)}{A} = 1 + \frac{H_1(A)}{N_f} + \frac{H_2(A)}{N_f^2} + \dots$$

 $H_1(A)$ has a logarithmic singularity at A = 3 $\Rightarrow \beta$ -function vanishes, UVFP. [Antipin, Sannino 17; Gracey 95; Litim, Sannino 14]

SU(2) with $N_f = 24$ (top) and 48 (bottom): $_{\beta(A)}$ Large- N_f result compared with 2-loop and 5-loop \overline{MS} .

How to study the system on the lattice?

We use methods successfully used to study conformal window in SU(2) + $N_f = 6$ and 8:

- Wilson-clover action with HEX smearing
- Oirichlet boundary conditions in time:
 - Allows $m_{\text{fermion}} = 0$
 - Tuned using axial Ward identity

- Measure coupling through gradient flow [Fritzsch, Ramos]:
 - Cool

$$\partial_t A_\mu = D_\nu F_{\nu\mu}$$

smooths gauge over radius $r \approx \sqrt{8t}$. We use $\sqrt{8t} = cL$, with c = 0.3 (+ other values).

Define the gradient flow coupling as

$$g_{
m GF}^2 = rac{t^2}{\mathcal{N}} \langle E(t)
angle$$

where
$$E = -\frac{1}{4} \langle F_{\mu\nu} F_{\mu\nu} \rangle$$
.

4 Step scaling function:

$$\Sigma(u, s, L/a) = \left. g_{\mathrm{GF}}^2(g_0^2, sL/a) \right|_{g_{\mathrm{GF}}^2(g_0^2, L/a) = u}$$
(1)
$$\sigma(u, s) = \lim_{a/L \to 0} \Sigma(u, s, L/a),$$
(2)

Step scaling tells us how much the coupling evolves as length scale is increased by a constant factor s.

System size is increased by the same factor: finite volume effects cancel

Example: what happens at $N_f = 8$?

$N_f = 8$ Interpolation to continuum

Works well! Let us now try the same method for large N_f

What to expect at large N_f ?

Perturbative $\overline{MS} \beta$ -function for $N_f = 48$:

At 4 loops, there appears an UVFP, at 5 loops Landau pole. We can take these as "toy models" for UVFP and Landau pole

What to expect at large N_f ?

Integrate the 5- and 4-loop β -functions to obtain evolution as a function of length scale L:

 \Rightarrow On the lattice: if there is UVFP, expect dramatic change in behaviour if the short-distance (bare) coupling is large enough.

Big difference vs. lattice QCD:

On the lattice gauge action (plaquette action) is parametrized with inverse bare coupling

$$\beta_L = \frac{4}{g_0^2}$$

Large coupling \rightarrow small β_L .

Wilson fermions make the effective coupling weaker [DeGrand, Hasenfratz].

 \rightarrow compensate at large N_f by making bare *beta*_L smaller, even negative!

K. Rummukainen (Helsinki)

Step scaling at $N_f = 48$

Dramatic difference to $N_f=8!$ All $\beta_L=-1\ldots+1$ points cluster together at very weak coupling

Step scaling at $N_f = 48$

Looking at the gradient flow coupling as a function of the "smoothing radius" $L = \sqrt{8t}$ we get the idea of what is going on:

- at small *L* the lattice artifacts (irrelevant lattice operators) have not yet been removed by the gradient flow
- at large $L g_{\rm GF}^2$ becomes small rapidly
- can match with perturbation theory there
- g_{GF}^2 in practice independent of the bare gauge coupling (β_L)
- ⇒ Looks like a Landau pole, but we cannot be sure because the effective coupling is small

Step scaling at $N_f = 24$

At $N_f = 24$ the situation is similar

Effective "bare" lattice coupling

We can also obtain a measure of the effective lattice $\beta_{L,\text{eff}} = 4/g_{0,\text{eff}}^2$ by measuring the plaquette and "inverting" its value to pure gauge β_L , i.e. comparing to pure gauge simulation which gives the same plaquette:

• At $eta_L = -1$ the effective bare coupling is $g^2_{0,{
m eff}} \sim 15$

- Location of the UVFP in $N_f \to \infty$ calculation: $g_{\rm FP}^2 \approx \frac{24\pi^2}{N_f} \approx 4.9$
- \Rightarrow in the right ballpark (but numbers are not comparable, different scheme)

Conclusions

- In these initial studies, behaviour compatible with a Landau pole both at $N_f = 24$ and 48.
- However:
 - Coupling strong at short distances, weak at large distances: this is not an application to which lattice methods have been developed and tuned!
 - coupling cannot be reliably defined at very small (in lattice units) distances
 - Larger lattice scale (short distance) effective couplings required
- UVFP cannot be excluded
- Further development: optimize the lattice action and measurements?