Phase transitions, gravitational waves and 2-Higgs doublet model

Kari Rummukainen University of Helsinki and Helsinki Institute of Physics

Kimmo Kainulainen, Venus Keus, Lauri Niemi, Tuomas V.I. Tenkanen, Ville Vaskonen Helsinki Gravitational wave cosmology / computational field theory groups

Electroweak symmetry breaking

- Electroweak symmetry breaking at $T \gtrsim 100 \text{ GeV}$ (in the Standard Model $T_c \approx 160 \text{ GeV}$).
- What is the order of the transition?
 - In the SM smooth cross-over
 - In some extensions of the SM a 1st order transition is possible
- Why 1st order phase transition is interesting?
 - Electroweak baryogenesis (EWBG)
 - Gravitational waves
 - ★ Possibly observable with future GW detectors
 - * ESA/NASA LISA (Laser Interferometer Space Antenna) mission, launch 2034
 - * A new probe for BSM physics and cosmology
- In this talk:
 - How phase transitions can produce gravitational waves
 - How to use 3-d effective theory simulations to study phase transitions
 - Show results from 2-Higgs doublet study

No genuine phase transitions in the Standard Model:

- QCD phase transition at $\, T \sim 170 \, {\rm MeV}$
 - Age of the universe $t \sim 10 \mu {
 m s}$
 - Quark-gluon plasma \leftrightarrow hadrons
 - \blacktriangleright Smooth cross-over \rightarrow no GWs produced
 - Lattice QCD simulations

 $T = T_c \approx 160 \, {
m GeV}$

- $t \sim 10^{-11} s$
- Higgs expectation value v becomes non-zero
- Smooth cross-over \rightarrow no GWs
- At $T > T_c$, baryon number is not conserved!
- Lattice effective theory simulations

LIGO/Virgo 2016: Gravitational waves observed!

- 14.9.2015 at 11:50:45 German time: the first observation of gravitational waves.
- A collision of 2 black holes, with 36 and 29 solar masses.
- A new window to the universe!
- Now about 50 events reported.

Gravitational waves and dense nuclear matter

- The single LIGO binary neutron star merger event already restricts neutron start mass - R -relation (red region)
- Dense QCD matter equation of state, notoriously hard to study theoretically

[Annala et al., 2017]

Peek into the early Universe with gravitational waves

Peek into the early Universe with gravitational waves

Future gravitational wave detectors

Laser interferometers on Earth: *Einstein Telescope*, 10km triangle (Europe); *Cosmic Explorer*, 40km L-shape (USA)

Laser interferometers in space: LISA (2034, ESA/NASA) TianQuin & Taiji (China); DECIGO (Japan)

> Pulsar timing arrays: EPTA, NANOgrav, IPTA (now) Square Kilometer Array (SKA)

LISA gravitational wave mission

- "Free-flying" laser interferometer
- Strain sensitivity $\sim 10^{-21}$ @ 0.01 Hz (~ 1 pm over 2.5 million km!)
- Launch 2034

LISA

- Frequency window of LISA is right for gravitational waves from the electroweak and above -eras.
- LISA Cosmology Working Group science case for cosmology ۰
- ۲ LISA Pathfinder: technology demonstrator, launched Dec. 2015

[Moore, Cole, Berry, gwplotter.com]

Phase transition in 2HDM

Sources of gravitational waves in the early universe

- Inflation (Bicep...)
- Cosmic strings
- 1st order phase transitions
 - Do not exist in the Standard Model (QCD or EW)
 - Strong phase transition is possible in many extensions of the SM: many Higgses, SUSY, compositeness, dark sector ...
- Cosmological GWs give a direct snapshot of the universe at the time they were generated!
- Stochastic signal, expected frequency \sim mHz

1st order phase transitions

A first order phase transition proceeds through

- a) supercooling
- b) critical bubble nucleation
- c) bubble growth and collision \rightarrow gravitational waves
- d) sound waves, shocks, turbulence \rightarrow gravitational waves

If the latent heat of the transition and supercooling are large, the process is violent (cf. superheated water)

[Hindmarsh et al.]

Goal: take a set of Beyond-the-Standard-Model candidates (MSSM, 2HDM, ...) and calculate the gravitational wave spectrum observed @ LISA Conversely: how to use LISA to constrain BSM models?

Calculating the gravitational wave production

We need to know, for a theory candidate:

- i) Thermodynamics (\checkmark)
 - equation of state, latent heat, speed of sound
- ii) Critical bubble nucleation rate (\checkmark)
 - ▶ Determines degree of supercooling, characteristic length scale → frequency of the gravitational radiation

Microscopic QFT computation (analytical, numerical lattice)

- iii) Bubble wall fluid interaction (?)
 - bubble wall velocity

iv) Growth & collision of the bubbles, sound, shocks, turbulence (\checkmark ?)

- Requires numerical simulations
- Relativistic hydrodynamics + scalar field, effective order parameter
- Large dynamical range, large volumes
- Only a few relevant parameters: T_c, strength of the transition α, duration of the transition β, bubble wall velocity v_W, # of dof's g
- $\checkmark\,$ Coupling to gravity: transverse-traceless part of ${\cal T}^{\mu\nu}$

GW signal at LISA:

Peak location, height, and shape of the spectrum depend on the transition parameters [Hindmarsh et al.]. Plot done with the nifty PTPlot tool which includes our current best knowledge of GW spectra and SNR (David Weir) http://www.ptplot.org/ptplot/

Effective theory simulations

- 3d effective theory simulations can be used to calculate static thermodynamic quantities: *critical temperature, equation of state, latent heat, speed of sound* ...
- Real-time quantities phase transition wall propagation, critical bubble nucleation rate, sphaleron transition rate can be calculated in related effective theories/methods (not discussed here).

3d effective theory

- Phase transition in the SM and its extensions (MSSM, multiple Higgses) is at weak gauge coupling.
- However: at non-zero T infrared modes become non-perturbative for $k \lesssim g^2 T \rightarrow$ perturbation theory accuracy limited. [Linde 80]
- \rightarrow 3d effective theory
- Tool for perturbative and lattice computations
- Modes $p > g^2 T$ are perturbative (at weak coupling): can be integrated out in stages:
 - 1. $p \gtrsim T$: fermions, non-zero Matsubara frequencies
 - \rightarrow 3d theory (dimensional reduction)

- 2. Electric modes $p \sim gT$
- Obtain a "magnetic theory" for modes $p \lesssim g^2 T$. Contains fully the non-perturbative thermal physics.

3d effective theory

Phase diagram of the Standard Model

• Effective theory was used very successfully for the SM 20+ years ago

ightarrow No phase transition at all, smooth "cross-over" for $m_{
m Higgs} \gtrsim$ 72 GeV

K. Rummukainen (Helsinki)

Precision thermodynamics for the SM

- Heat capacity $C_V = e'(T)$
- Speed of sound: $c_s^2 = p'/e'$
- EOS parameter w = p/e

Cross-over well defined, but very soft! Width of the transition region $\sim 3\,\text{GeV}.$

Beyond the Standard Model

First order phase transition has been found in MSSM [Laine, Nardini, K.R. 2013]. However, this is now excluded. Turn instead to 2-Higgs doublet model:

Lagrangian

- $F_{\mu\nu}$: U(1), SU(2) and SU(3) gauge; Ψ : SM fermions
- ϕ_i : two SU(2) scalars with hypercharge +1
- "Type-I" model: Yukawas couple only to ϕ_2 (less constrained than type-II)
- Terms of type $(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2)$ not included: lead to large FCNCs
- Note: μ_{12}^2 , $\lambda_5 \in C$: explicit CP violation. Strongly limited by neutron EDM measurements (ACME) \rightarrow not sufficient for EW baryogenesis.

After 2-loop matching, we obtain 3d

3d effective Lagrangian:

$$\mathcal{L} = \frac{1}{2} \operatorname{Tr}(F_{ij})^2 + D_i \phi^{\dagger} D_i \phi + \bar{\mu}_{11}^2 \phi_1^{\dagger} \phi_1 + \bar{\mu}_{22}^2 \phi_2^{\dagger} \phi_2 + \bar{\mu}_{12}^2 \left(\phi_1^{\dagger} \phi_2 + \phi_2^{\dagger} \phi_1 \right)$$

+ $\bar{\lambda}_1 (\phi_1^{\dagger} \phi_1)^2 + \bar{\lambda}_2 (\phi_2^{\dagger} \phi_2)^2 + \bar{\lambda}_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \bar{\lambda}_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1)$
+ $\frac{\bar{\lambda}_5}{2} \left((\phi_1^{\dagger} \phi_2)^2 + (\phi_2^{\dagger} \phi_1)^2 \right),$

- F_{ij} : SU(2) gauge (U(1) has small effect and can be neglected)
- 3d mass parameters $\bar{\mu}^2 \propto \text{GeV}^2$, couplings g_3^2 , $\bar{\lambda} \propto \text{GeV}$ are dimensionful \rightarrow theory is superrenormalizable
- Parameters depend on 4d Lagrangian parameters and the temperature T.
- Starting point for both perturbative and lattice studies.
- Straightforward to put on the lattice. Superrenormalizability \Rightarrow lattice counterterms (1- and 2-loop) known, rigorous curves of constant physics (up to O(a)). No tuning needed!
- Robust continuum limit (leading errors O(a)). Lattice gauge coupling

$$\beta_G \equiv \frac{4}{g_3^2 a} \approx \frac{4}{g_W^2 a}$$

Symmetry breaking

In the original 4d theory, the symmetry breaking pattern is

$$\phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \quad \phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}} (v_2 + \rho_2 + i\eta_2) \end{pmatrix},$$

Scalar excitations: neutral Higgses h, H, CP-odd A, charged H^{\pm}

$$\begin{split} h &= -\sin \alpha \rho_1 + \cos \alpha \rho_2, & H &= -\cos \alpha \rho_1 - \sin \alpha \rho_2, \\ H^{\pm} &= -\sin \beta \phi_1^{\pm} + \cos \beta \phi_2^{\pm}, & A &= -\sin \beta \eta_1 + \cos \beta \eta_2. \end{split}$$

2 mixing angles $\tan \beta = v_2/v_1$, α . Input parameters – fix the (4d) pole masses:

- G_F , M_W , M_Z , $M_h = M_{\rm Higgs}$, $M_{\rm top}$ (same as in SM)
- M_{H} , M_{A} , $M_{H^{\pm}}$, $\tan\beta$, $\cos(\beta-\alpha)$, μ^2_{12} (New)

In the "alignment limit" $cos(\beta - \alpha) = 0$ the coupling of *h* to the SM particles is exactly as the SM Higgs.

2HDM is less constrained than MSSM by collider phenomenology (but still pretty limited). Strong phase transition \Rightarrow large scalar couplings λ_i

- ightarrow problems in perturbation theory; accuracy of eff. 3d description?
- \rightarrow Landau pole is close

BM1	<i>М_Н</i> 66 GeV	<i>M_A</i> 300 GeV	<i>М_Н±</i> 300 GeV	μ_{12} 0 GeV	$\frac{(\lambda_3+\lambda_4+\lambda_5)/2}{1.07\times10^{-2}}$	λ_1 0.01	Λ ₀ 91 GeV
BM2	<i>М_Н</i> 150 GeV	<i>M_A</i> 350 GeV	<i>М_Н±</i> 350 GeV	μ_{12} 80 GeV	$\cos(eta-lpha) \ -0.02$	tan eta 2.75	Λ ₀ 265.018 GeV

• BM1: "Inert doublet model", studied perturbatively by [Laine, Meyer, Nardini 2017].

- Here $v_1 = 0$ (only ϕ_2 breaks)
- H is a dark matter candidate (long-lived)
- BM2: Approaches model studied by [Dorsch, Huber, Konstandin, No 2017] but with more restricted λ_i . Features a strong transition, possibly producing observable gravitational waves.

BM1					
β_{G}	Volumes, $L_x \times L_y \times L_z$				
10	$18^{2} \times 72$	$20^{2} \times 80$	$24^{2} \times 96$		
12	$20^2 imes 96$	$24^2 imes 96$	$28^2 imes 120$		
14	$28^{2} \times 84$	$28^2 imes 140$			
16	$24^2 imes 96$	$32^2 imes 120$	$32^2 imes 162$		
	$38^2 \times 162$				
20	$24^2 \times 112$	$32^2 imes 132$	$38^2 imes 156$		
24	$34^2 imes 156$	$42^2 imes 172$	$42^2 imes 200$		
32	$42^2 \times 200$	$48^2 imes 192$	$54^2 imes 216$		

	Volum	nes, L_x	$\times L_y$	$\times L_z$	
$32^2 \times$	132	$38^2 \times$	156	42 ² >	× 168
$34^2 \times$	156	$42^2 \times$	172	48 ² :	× 182

 $42^2 \times 168 \quad 48^2 \times 192 \quad 54^2 \times 200$

 $48^2 \times 192 \quad 54^2 \times 216 \quad 58^2 \times 240$

BM2

Large $\beta_G \leftrightarrow$ small lattice spacing *a*. For BM2, some modes are so heavy that large β_G is necessary. *Multicanonical* simulations and cylindrical geometry are used to obtain surface tension σ .

 β_{G}

20

24

28

32

Condensates

Both have a discontinuity in $\langle \phi_2^{\dagger} \phi_2 \rangle$. At $T = 0 \ \langle \phi_2^{\dagger} \phi_2 \rangle / \langle \phi_1^{\dagger} \phi_1 \rangle = \tan^2 \beta \approx 7.5$: slow evolution towards T = 0 value.

Critical temperature

BM1: $T_c = 116.402 \pm 0.005 \text{ GeV}$ BM2: $T_c = 112.454 \pm 0.015 \text{ GeV}$

Order parameter discontinuity

BM1: $\Delta \phi / T = 1.07 \pm 0.02$ BM2: $\Delta \phi / T = 1.09 \pm 0.03$

Order parameter discontinuity

We can also obtain the *latent heat* L and the *surface tension* σ :

$$\begin{split} \frac{L}{T^4} &= \frac{T^2}{V} \Delta \left(\frac{\partial}{\partial T} \ln Z \right), \\ &= -\frac{1}{VT^2} a^3 \Delta \left\langle \Phi_1^{\dagger} \Phi_1 \frac{dm_{11}^2}{dT} + \Phi_2^{\dagger} \Phi_2 \frac{dm_{22}^2}{dT} + \Phi_1^{\dagger} \Phi_2 \frac{dm_{12}^2}{dT} + \text{h.c.} + (\Phi_1^{\dagger} \Phi_1)^2 \frac{d\bar{\lambda}_1}{dT} + \dots \right\rangle, \end{split}$$

$$rac{\sigma}{T} = rac{1}{2A} \ln rac{P_{\mathsf{max}}}{P_{\mathsf{min}}} + \mathsf{finite} \; \mathsf{volume} \; \mathsf{corrections},$$

where P_{max} is the maximum of probability distribution and A area.

	L/T_c^4	σ/T_c^3	
BM1	0.603 ± 0.023	0.0270 ± 0.0013	
BM2	0.807 ± 0.051	0.0204 ± 0.0045	

Probablity distributions

Comparison with perturbative calculations

	Method	$T_c/{ m GeV}$	L/T_c^4	ϕ_c/T_c	$L/{ m GeV^4}$
BM1	1-loop Parwani resum.	134.0 ± 8.75	0.396 ± 0.002	1.01 ± 0.06	1.27×10^8
	1-loop A-E resum.	142.4 ± 6.88	0.33 ± 0.02	1.00 ± 0.07	$1.37 imes 10^8$
	2-loop V_{eff} in 3d	111.6 ± 2.30	0.57 ± 0.10	0.98 ± 0.09	$0.89 imes 10^8$
	3d lattice	116.40 ± 0.005	0.60 ± 0.02	1.08 ± 0.02	1.11×10^8
BM2	1-loop Parwani resum.	142.6 ± 18.0	0.29 ± 0.04	0.91 ± 0.06	1.19×10^8
	1-loop A-E resum.	162.5 ± 21.0	0.20 ± 0.03	0.88 ± 0.05	1.36×10^8
	2-loop V_{eff} in 3d	104.9 ± 2.30	0.61 ± 0.10	0.97 ± 0.06	$0.74 imes 10^8$
	3d lattice	112.5 ± 0.01	0.81 ± 0.05	1.09 ± 0.03	1.29×10^8

- $\bullet~V_{\rm eff}$ in 3d relies on the same 3d effective theory than 3d lattice
- Lattice does not suffer from IR problems: much smaller errors.
 - ▶ Note: errors do not include theoretical errors due to truncation or parameter uncertainty
- Lattice is needed to reduce the uncertaintly in perturbative analysis

Conclusions:

- Gravitational waves provide a new way to probe the early Universe and BSM physics.
- Phase transitions are a powerful source of gravitational waves.
- 3d effective theory simulations can be used to study thermodynamics of the transition
- $\rightarrow\,$ Part of the mapping out the theory space of suitable BSM theory candidates.
- Standard Model: no transition
- Strong transitions seen in MSSM (excluded by now), 2HDM
- Effective theory method applicable to many "Higgs-like" models