Particle physics with gravitational waves

Kari Rummukainen University of Helsinki and Helsinki Institute of Physics

Daniel Cutting, Jani Dahl, Elba Granados Escartin, Mark Hindmarsh, Stephan Huber, Anna Kormu, David Weir

LIGO 2/2016: Gravitational waves observed!

- 14.9.2015 at 11:50:45 German time: the first observation of gravitational waves!
- A collision of 2 black holes, with 36 and 29 solar masses
- A new window to the universe

Gravitational wave window has opened!

Sources of gravitational waves

- Astrophysics
 - Binary compact object mergers
 - black holes (now several collisions)
 - ★ neutron stars (1!)
 - Supernovae

• Primordial gravitational waves

- Violent processes in the early Universe can produce gravitational waves
- The Standard Model of particle physics "known physics" – cannot produce gravitational waves
- ⇒ Observation of primordial gravitational waves: signal of "new physics", physics beyond the Standard Model
 - Complementary with the particle accelerators (LHC)

Gravitational waves and dense nuclear matter

- The single LIGO binary neutron star event already restricts neturon star mass - R -relation (red region)
- Dense nuclear matter equation of state, notoriously hard to study theoretically

[Annala et al., 2017]

LISA mission 2034 Arm length \sim 2.5e6 km

K. Rummukainen (Helsinki)

8

-

LISA orbit

LISA

- Frequency window of LISA is right for gravitational waves from the electroweak and above -eras.
- LISA Cosmology Working Group science case for cosmology
- LISA Pathfinder: technology demonstrator, launched Dec. 2015

[Moore,Cole,Berry, gwplotter.com]

Astrophysical objects seen by LISA

[Lisa mission proposal, 2017]

Cosmological signal stochastic: need to understand the "foreground"

Sources of primordial gravitational waves

- Inflation (Bicep...)
- Cosmic strings
- Ist order phase transitions
 - Do not exist in the Standard Model (QCD or EW)
 - Strong phase transition is possible in many extensions of the SM: many Higgses, SUSY, compositeness ...
- Primordial GWs give a direct snapshot of the universe at the time they were generated!
- Stochastic signal, expected frequency $\sim\!\!mHz$

A watched pot never boils ...

 $\ensuremath{\textbf{Water}}$ has a strong 1st order liquid-vapour transition at 1 ATM pressure:

- Transition temperature 100° C.
- However, pure water can remain *metastable* up to 330° C! [Cho et al, PRL112 (2014)]
- At 110 $^{\circ}$ C, metastability \gtrsim age of the Universe!
- When superheated water finally boils, it is a violent process.
- $\rightarrow\,$ 1st order transitions can have dramatic consequences.

No true phase transitions in the Standard Model:

- QCD phase transition at $\, T \sim 170 \, {
 m MeV}$
 - Age of the universe $t \sim 10 \mu {
 m s}$
 - Hadrons \leftrightarrow quark-gluon plasma
 - Smooth cross-over → no GWs produced
 - Lattice QCD simulations necessary
- Electroweak phase transition at $T = T_c \approx 160 \text{ GeV}$
 - ▶ $t \sim 10^{-11} s$
 - Higgs expectation value v becomes non-zero
 - Smooth cross-over \rightarrow no GWs
 - ► At T > T_c, baryon number is not conserved!

Standard Model pressure

[Laine, Schröder 2006]

• Massless ideal gas:

$$\frac{p}{T^4} = g_* \frac{\pi^2}{90}$$

with $g_*=n_B+\frac{7}{8}n_F=106.75$ for the SM

- Perturbation theory + Lattice QCD + hadron resonance gas
- Lattice QCD: lots of results
- EW transition here featureless

Zooming in on EW cross-over

[D'Onofrio, K.R. 2015]

First order electroweak phase transition?

 In some beyond the Standard Model extensions (BSM) the electroweak phase transition (or a new transition above the EW scale) can be of first order → bubble nucleation, growth and merger:

- \Rightarrow Primordial gravitational waves?
 - ullet If bubble separation \sim Hubble scale, now frequency \sim mHz \rightarrow LISA
 - No sign of BSM physics in experiments yet
 - LHC has killed off many models, but many remain

1st order phase transitions

A first order phase transition proceeds through

- a) supercooling
- b) critical bubble nucleation
- c) bubble growth and collision ightarrow
- d) generation of sound, shocks, turbulence \rightarrow gravitational waves

If the latent heat of the transition and supercooling are large, the process is violent (cf. superheated water)

[Hindmarsh et al.]

Goal: take a set of Beyond-the-Standard-Model candidates (MSSM, 2HDM, ...) and calculate the gravitational wave spectrum observed @ LISA Conversely: how to use LISA to constrain BSM models?

Calculating the gravitational wave production

We need to know, for a theory candidate:

- i) Thermodynamics (\checkmark)
 - equation of state, latent heat
- ii) Critical bubble nucleation rate (\checkmark)
 - Determines degree of supercooling, characteristic length scale
- iii) Bubble wall fluid interaction (?)
 - bubble wall velocity

Microscopic QFT computation (analytical, numerical lattice)

iv) Growth & collision of the bubbles, sound, shocks, turbulence ($\sqrt{?}$)

- Requires numerical simulations
- Relativistic hydrodynamics + scalar field, effective order parameter
- Large dynamical range, large volumes
- Only a few relevant parameters: T_c , strength of the transition α , duration of the transition β , bubble wall velocity v_W , # of dof's g
- $\checkmark\,$ Coupling to gravity: transverse-traceless part of ${\cal T}^{\mu\nu}$

Generation of gravitational waves

Single bubble does not radiate, need quadrupole moments

- Bubble collisions
 - Subleading source, short duration
 - Can also be estimated by *envelope approximation* [Kosowski, Turner, Watson 92 + many].
 - ★ Only field, fluid ignored
 - * Semi-analytical, ∃ lots of quantitative results
- Turbulence
 - [Caprini et al., Kahniasvili et al.]
 - (Magnetic fields?)
- Sound [Hogan 86]
 - Bubbles push fluid, compression waves: sound
 - Sound remains active long after bubbles have vanished
 - ⇒ Our discovery: sound is the *dominant source for GWs* [Hindmarsh, Huber, KR, Weir 2014–15]
 - \blacktriangleright Develops into turbulence at time $\propto \ell/v_{\rm fluid}$, where ℓ is the length scale

Ingredients for simulations:

- Scalar field ϕ (with potential $V(\phi, T)$) coupled to
- Relativistic fluid with energy density $\epsilon(T)$ and pressure p(T)

$$\begin{split} -\ddot{\phi} + \nabla^2 \phi - \frac{\partial V}{\partial \phi} &= \eta W(\dot{\phi} + v^i \partial_i \phi) \\ \dot{E} + \partial_i (Ev^i) + p[\dot{W} + \partial_i (Wv^i)] - \frac{\partial V}{\partial \phi} W(\dot{\phi} + v^i \partial_i \phi) &= \eta W^2 (\dot{\phi} + v^i \partial_i \phi)^2 \\ \dot{Z}_i + \partial_j (Z_i v^j) + \partial_i p + \frac{\partial V}{\partial \phi} \partial_i \phi &= -\eta W (\dot{\phi} + v^j \partial_j \phi) \partial_i \phi. \end{split}$$

- *W*: relativistic γ -factor, v^i : fluid 3-velocity, $E = W\epsilon$ fluid energy density, $Z_i = W^2(\epsilon + p)v_i$ fluid momentum density
- η : field-fluid coupling (rhs of equations) [Ignatius et al 94; Kurki-Suonio and Laine 98]
- In addition, keep track of the metric perturbation:

$$\ddot{h}_{ij} - \nabla^2 h_{ij} = 16GT_{ij}^{TT}$$

Some movies

Energy density slice [David Weir] Transparent box "Runaway transition" [Daniel Cutting] See vimeo.com channel "Cosmic Defects" for some more

Results: power spectra

Characteristic shape of the GW power spectrum \rightarrow possibility for obtaining thermodynamic parameters of the theory!

Direct probe of BSM physics

Results: LISA discovery potential

Acoustic generation dominates on a wide range of parameters [Hindmarsh et al.] Plot done with the nifty PTPlot tool which includes our current best knowledge of GW spectra and SNR (David Weir) http://www.ptplot.org/ptplot/

Status so far:

- We know how to obtain accurate results for
 - i) Thermodynamics
 - ★ Done for version of MSSM
 - ii) Bubble nucleation rate
 - * Done only for a "toy model"
- iii) Bubble wall friction calculation needs development (ongoing)
- Given parameters obtained from i) iii), we can fix the parameters of the iv) bubble growth + collision code
- This chain is not yet completed for any microscopic model!
- Only weak and medium-strength transitions studied in iv) so far
 - Results very promising

Breakthrough potential

- Gravitational waves give us unique window to the early Universe
- New physics: complementarity with HL-LHC and dark matter searches
- LISA has much higher "energy reach" than accelerators
- Theoretical understanding of 1st order PTs increasing
- Simulations very successful
- Unanticipated source for GWs: sound waves
- GW amplitude can be orders of magnitude larger than in earlier estimates,
- Very good news for observation @ LISA or other proposed detectors (DECIGO (Japan), TianQuin (China), Taiji (China))

Beyond/besides LISA:

- TianQuin (China): Earth-centered triangle, $\sim 10^5~{\rm km}$ Before 2030?
- DECIGO (Japan): 4 interferometers, 12 satellites $\sim 10^4$ km in 2030's?
- Big Bang observer (ESA): 4 interferometers $\sim 10^5$ km

