THE UNIVERSALITY CLASS OF THE ELECTROWEAK THEORY

K. Kajantie, M. Laine, <u>K. Rummukainen</u>, M. Shaposhnikov, M. Tsypin

TFT 98, Regensburg

• The 1st order electroweak phase transition turns into a regular cross-over at $m_H \sim 72 \,\text{GeV}$

• The universality class at the endpoint?

Effective action: SU(2) gauge + Higgs in 3D:

$$L_{3} = \frac{1}{4} F_{ij}^{a} F_{ij}^{a} + (D_{i}\phi)^{\dagger} (D_{i}\phi) + \frac{m_{3}^{2}}{2} \phi^{\dagger}\phi + \frac{\lambda_{3}}{4} (\phi^{\dagger}\phi)^{2}$$

• Dimensions: $[\phi] = \text{GeV}^{1/2}, [g_3^2] = [\lambda_3] = \text{GeV}$

• Theory is fixed by

$$g_3^2 \qquad x \equiv \frac{\lambda_3}{g_3^2} \qquad y \equiv \frac{m_3^2(g_3^2)}{g_3^4}$$

On the lattice:

• $\Phi = a_0 \mathbf{1} + i a_i \sigma_i, \ \Phi^2 \equiv \frac{1}{2} \operatorname{Tr} \Phi^{\dagger} \Phi$

$$S = \beta_G \sum_{\Box} (1 - \frac{1}{2} \operatorname{Tr} U_{\Box}) - \beta_H \sum_{x,i} \frac{1}{2} \operatorname{Tr} \phi_x^{\dagger} U_{x,i} \phi_{x+i}$$
$$+ \sum_x \Phi^2 + \beta_R \sum_x (\Phi^2 - 1)^2$$
$$= S_{\text{Gauge}} + S_{\text{Hopping}} + S_{\phi^2} + S_{(\phi^2 - 1)^2}$$

• $\beta_G = 4/ag_3^2$, where *a* is the lattice spacing

What kind of universal behaviour we can expect?

- Only 1 light exitation near the endpoint: $scalar |\Phi|$
- Φ has $SU(2)_{gauge} \otimes SU(2)_{isospin}$ symmetry: *unbroken*.
- \mapsto scalar-type universality: ϕ^4 /Ising, mean field, multicritical, ?

In order to study the universality quantitatively, we:

- 1. Locate the $V \to \infty$ critical point $(\beta_H, \beta_R)_{\text{crit.}}$ at a fixed lattice spacing (fixed β_G).
- 2. Determine the critical observables (M-like and E-like directions).

- 3. Finite-size scaling (FSS) analysis \rightarrow critical indices.
- 4. Higher moments: skewness of E.

Locating the critical point:

- Intersection of Binder cumulants works, but cumbersome: 2parameter search (x, y).
- We use the following method:
 - For any $x \sim x_{\text{crit.}}$, find equal weight $y_{\text{eq}}(x)$
 - Find x_R (and $y_{eq}(x_R)$) so that the max/min probability ratio $P_1/P_2 = R$, a fixed value
 - When $V \to \infty$, $(x_R, y_{eq}(x_R)) \to (x, y)_{crit.}$

• Ising model at the critical point: $R \approx 2.17$

Analysis at the critical point:

1. Use a large number of operators O_i

We use up to 6 ops:

$$O_{1} = S_{\text{Gauge}}$$

$$O_{2} = S_{\text{Hopping}}$$

$$O_{3} = S_{\phi^{2}}$$

$$O_{4} = S_{(\phi^{2}-1)^{2}}$$

$$O_{5} = \sum_{x} |\Phi_{x}|$$

$$O_{6} = \sum_{x,i} \frac{1}{2} \text{Tr} V_{x}^{\dagger} U_{x,i} V_{x+i}$$

$$V = \Phi/|\Phi|$$

- 2. Calculate $M_{ij} = \langle (O_i \langle O_i \rangle) (O_j \langle O_j \rangle) \rangle$
- 3. Diagonalize $M_{ij} \longrightarrow \lambda_k$; $V_k = c_{ki}O_i$
- 4. Probability distributions $P(V_i)$, $P(V_i, V_j)$
- 5. Volume dependence: $\lambda_k \propto L^{3+x}$ x = 0 "regular" $x \neq 0$ "critical"

specific heat:

 $\chi_E = \langle (E - \langle E \rangle)^2 \rangle / L^3 \propto L^{\alpha/\nu}$ magnetic susceptibility:

$$\chi_M = \langle (M - \langle M \rangle)^2 \rangle / L^3 \propto L^{\gamma/\nu}$$

Eigenvalues λ_k and eigenvector projections to operators O_i at the critical point (volume 64^3)

	λ	S_{Gauge}	$S_{\mathrm{Hopp.}}$	S_{ϕ^2}	$S_{(\phi^2 - 1)^2}$	O_5	O_6
4 operators:							
M	1.28×10^{10}	0.051	0.725	-0.685	-0.018	—	_
r_1	8.51×10^{5}	0.996	0.008	0.083	0.005	—	—
r_2	2.59×10^{5}	-0.066	0.687	0.722	0.018	—	—
E	1.75×10^{3}	-0.003	0.0004	-0.0262	0.999	—	
6 operators:							
M	1.33×10^{10}	0.050	0.713	-0.674	-0.018	-0.164	-0.085
r_1	8.52×10^{5}	0.995	0.010	0.087	0.005	0.008	-0.037
r_2	2.81×10^{5}	-0.078	0.655	0.687	0.026	0.136	-0.271
E	1.32×10^{5}	0.024	0.233	0.033	-0.105	0.450	0.855
r_3	4.05×10^{3}	1×10^{-5}	-0.091	-0.241	-0.217	0.836	-0.433
r_4	73	-2×10^{-5}	9×10^{-5}	-0.081	0.970	0.229	0.002

Conclusions:

- SU(2)-Higgs shows a *3D Ising universal behaviour:* - critical indices
 - joint probability distributions $P(V_i, V_j)$
 - exitation spectrum
- $x_{crit} = 0.11336(25)$ at $\beta_G = 5$ $x_{crit} = 0.0983(15)$ continuum $\mapsto m_{H,crit} = 72(2)$ GeV in the Standard Model
- The eigenvalue analysis of a *large enough* fluctuation matrix $\langle O_i O_j \rangle$ is a powerful tool in analyzing the critical behaviour.