Pressure in hot QCD – how non-perturbative is it?

Kari Rummukainen, 19 November 2003, CERN

In collaboration with:

A. Hietanen, M. Laine, K. Kajantie, Y. Schroeder

- "QCD is perturbative when $T, \mu \gg \Lambda_{QCD}$ "
- \Rightarrow Weakly interacting gas of quarks and gluons, *quark-gluon plasma*
 - Can apply perturbation theory
 - But: *infrared singularities* ⇒ perturbation theory breaks down at finite order! Linde 1980
 - Pressure p = -F/V at $T \gtrsim 4T_c$
 - This is where standard lattice QCD data stops
 - Use 3d effective theory
 - explicit Lat $\leftrightarrow \overline{MS}$ connection
 - use P.T. as much as you can (all calculable contributions)
 - rest non-perturbatively
 - Heavy-Ion collisions, Cosmology, ...
 - Resummation techniques

Andersen, Braaten, Petitgirad, Strickland;

Blaizot, Iancu, Rebhan;

Parwani, Peshier, Cvetic, Kögerler ...

Lattice QCD

Standard lattice QCD works very well when $T \leq 5-10T_c$:

- Pure gauge $N_f = 0$: $p(T \le T_c) \approx 0$ since glueballs heavy
- $N_f = 2, 3$: at $T < T_c$ gas of (light) pions
- $p'(T_c)$ discontinuous \Rightarrow genuine 1st order phase transition (\exists for pure gauge QCD)

Lattice QCD runs out of steam at $T \sim 5-10T_c$!

• Free energy on a lattice

 $e^{-fV/T} = \int [dU] e^{-S[U]}$

is finite and (in principle) calculable.

- However, it is UV divergent ("cosmological constant").
- Solution: subtract f from T = 0 lattice

 $p_{\text{phys.}}(T) = -\lim_{a \to 0} [f_{\text{lat}}(T, a) - f_{\text{lat}}(T = 0, a)]$

- Lattice spacing $a \ll 1/T$
- T=0 means size of the lattice $L\gg 1/T_c\sim 1/\Lambda_{\rm QCD}$
- Wide range of scales: $a \ll 1/T \ll 1/T_c \ll L$, all included in T = 0 lattice! Very expensive at high T.
- Still a substantial difference to the free Stefan-Bolzmann behaviour.
- What is the relation to perturbation theory?

Pressure in perturbation theory

The perturbative expression for the pressure is now fully known:

 $p/p_{\rm SB} = 1$ Stefan-Boltzmann $+q^2$ **2-loop** (Shuryak 78) $+q^3$ resummed 2-loop (Kapusta 79) $+g^4 \ln 1/g$ resummed 2-loop (Toimela 83) $+q^4$ resum 3-loop (Arnold, Zhai 94) $+q^5$ resum 3-loop (Kastening, Zhai 95) $+g^6 \ln 1/g$ resum 4-loop (Laine, Kajantie, K.R., Schroeder 02) $+g^6$ not computable in P.T! (Linde 80) $+q^7\ldots$

$$p_{\rm SB} = \frac{\pi^2 T^4}{45} \left(8 - \frac{21N_f}{4}\right)$$

However, P.T. alone does not provide the answer:

- Generally bad convergence
- Non-perturbative effects [parametrized here with $g^6 \times (const.)$] can be very significant!

Why is g^6T^4 non-perturbative?

1) Finite T ensemble: euclidean metric with imaginary time extent 1/T, with (anti)periodic b.c for bosons (fermions) \Rightarrow

$$\frac{1}{p^2} \longrightarrow \frac{1}{\bar{p}^2 + \omega_n^2}, \quad \omega_n = \begin{cases} 2n\pi T & n \in Z \text{ Bosons} \\ (2n+1)\pi T & n \in Z \end{cases}$$
 Fermions
$$\int \frac{d^4p}{(2\pi)^4} \longrightarrow T \sum_n \int \frac{d^3p}{(2\pi)^3}$$

Thus, all $n \neq 0$ Bosonic modes and all Fermionic modes acquire a "mass" $\sim \pi T$. Clearly, only bosonic n = 0 modes are infrared sensitive.

2) Let us consider a vacuum gauge diagram at finite T, where we add a mass term m to keep track of the scale: Linde 80

 $N \text{ loops} \rightarrow \begin{cases} (N-1) & \text{4-vertices} \\ (2N-2) & \text{propagators} \end{cases}$

$$[T\int d^3p]^N (g^2)^{N-1} \left[\frac{1}{q^2+m^2}\right]^{2N-2} = \# \times g^6 T^4 \left[\frac{g^2T}{m}\right]^{N-4}$$

If $m = g^2 T$ ("magnetic" scale), all orders of the loop expansion contribute to pressure at g^6 !

Perturbatively m = 0 for magnetic gauge field modes \Rightarrow IR singularity at 4 or larger loop order

Note: for

 $m \sim \pi T$ (hard scales, $n \neq 0$)

 $m \sim gT$ (Debye, electric scales)

the loop expansion is OK.

3d effective theory

We obtain a hierarchy of effective theories Braaten, Nieto 95

- Integrate over $\pi T \Rightarrow$ 3-dim. effective theory $\mathcal{L}_{\rm E}$ for gT, g^2T -modes
- Integrate over $gT \Rightarrow$ 3-dim. effective theory \mathcal{L}_{M} for $g^{2}T$ -modes

("integrate" = 2-loop optimized matching of theories)

Effective theory $\mathcal{L}_{\rm E}$ is 3d adjoint Higgs model:

$$\mathcal{L}_{\rm E} = \frac{1}{2} \operatorname{Tr} F_{ij}^2 + \operatorname{Tr} [D_i, A_0]^2 + m_D^2 \operatorname{Tr} A_0^2 + \lambda_A (\operatorname{Tr} A_0^2)^2$$

For $N_f = 0$ (pure gauge), the couplings are

$$g_3^2 = g^2 T = \frac{8\pi^2}{11\ln(6.742T/\Lambda_{\overline{\text{MS}}})} T$$
$$m_D^2 \sim g^2 T^2$$
$$\lambda_A \sim g^4 T$$

 $\mathcal{L}_{\rm E}$ can be analyzed using perturbation theory or lattice simulations. No problems in going to (almost) arbitrarily high T! (renormalization on the lattice can be done perturbatively)

 \mathcal{L}_{M} is just 3d QCD:

$$\mathcal{L}_{\mathrm{M}} = rac{1}{2} \operatorname{Tr} F_{ij}^2$$

with coupling constant $g_3^2 \approx g^2 T$.

The relation between physical pressure and 3d free energy is (Braaten, Nieto)

$$\frac{p}{p_{\rm SB}} = 1 - \frac{5}{2} \frac{\lambda_A}{g_3^2} - \frac{45}{8\pi^2} \left(\frac{g_3^2}{T}\right)^3 (\mathcal{F}_E + (\text{known}))$$

where

$$\mathcal{F}_E = -\frac{1}{Vg_3^6} \ln \int [dA] \exp[-\int d^3x \mathcal{L}_E]$$

 \mathcal{F}_E can now be calculated

- perturbatively $\mapsto g^6 \ln \frac{1}{q}$
- non-perturbatively \mapsto higher order

4-loop graphs for $g^6 \ln \frac{1}{g}$:

of diagrams \sim 3:6:47:490 at 1:2:3:4 loops

One 4-loop diag. with 6 3-point vertices and 9 propagators contains $\sim 24 \times 10^6$ terms, to be integrated over! ($2^9 \times (3 \times 2)^6$)

Computer algebra program is a *must* to sort out the integrals (FORM)

$$(skeletons) = \frac{1}{12} \bigoplus_{-1}^{-1} \bigoplus_{-1}^{-1} \bigoplus_{-1}^{-1} \bigoplus_{+1}^{-1} \bigoplus_{-1}^{-1} \bigoplus_{-1$$

Non-perturbative contributions

The cleanest way to obtain the genuinely 3-dimensional g^6T^4 contribution is to use \mathcal{L}_M , i.e. 3d QCD. g^6 -term is directly related to the condensate $\langle F_{ij}^2 \rangle$. (Braaten, Nieto 95),(Karsch, Lütgemeier, Patkos, Rank 96)

This can be determined on the lattice. However, this requires 4-loop lattice⇔continuum matching:

$$\begin{split} \langle F_{ij}^2 \rangle &= \frac{1}{a^3} + \frac{g^2 T}{a^2} + \frac{(g^2 T)^2}{a} \\ &+ (g^2 T)^3 (\ln \frac{1}{g^2 T a} + [\text{matching coeff.}] + [\text{non-pert. physics}]) \end{split}$$

This has not yet been done (stochastic perturbation theory?)

Use \mathcal{L}_E to calculate \mathcal{F}_E :

We cannot calculate the 3-dim. free energy \mathcal{F}_E directly from lattice simulation. However, we can calculate *derivatives* of it:

$$\frac{d\mathcal{F}_E}{dy} = \frac{\partial\mathcal{F}_E}{\partial y} + \frac{\partial x}{\partial y}\frac{\partial\mathcal{F}_E}{\partial x} = \langle A_0^2 \rangle + C \langle A_0^4 \rangle$$

where $y \equiv m_D^2/g_3^4$, $x \equiv \lambda_A/g_3^2$ are dimensionless coupling constants. Condensates $\langle A_0^2 \rangle$ and $\langle A_0^4 \rangle$ are measurable from the lattice. \mathcal{F}_E is obtained from integral

$$\mathcal{F}_E = \int dy \frac{d\mathcal{F}_E}{dy} + \text{const.}$$

The integration constant is precisely the "Linde term"! We can estimate it by fitting to 4-dim. data.

We drop the condensate $\langle A_0^4 \rangle$ here:

- its contribution is very small (parametrically and numerically)
- we don't know all lattice counterterms for it

Strategy:

- Measure $\langle A_0^2 \rangle(a)$, subtract *lattice counterterms* (known) and extrapolate to continuum
- Subtract perturbative contributions
- Integrate, result gives $g^7 + g^8 + \ldots$ contributions to p
- add perturbative parts of p
- Tune g^6 term, until happy with the fit

- Bare $\langle A_0^2 \rangle_{\text{latt}}$ has to be determined very precisely: 2 large subtractions! Accuracy to 4–5 decimal digits \rightarrow large volumes (up to 200^3), large statistics.
- Reliable *continuum extrapolation:* wide range of small lattice spacings $a = 0.37 \dots 0.05 g_3^{-2}$

Adjoint Higgs phase diagram

 $- \exists$ phase transition, order parameter $\operatorname{Tr} A_0^3$.

Effective theory must be in the symmetric phase.
However, the line which corresponds to QCD lies in the broken phase!

- Solution: the symmetric phase is strongly *metastable*. In practice is not a problem.

JHEP 9811

Continuum extrapolation

 $y = m_D^2/g_3^4 \sim 1/g^2 = 1.14 - 6.39$, corresponding to $T \sim 100 - 10^{20} \Lambda_{\overline{\text{MS}}}$.

Non-perturbative part of the condensate

Integrate the condensate with an interpolating fit

Wed Nov 19 09:53:43 2003

Pressure

Tune g^6 coefficient to match 4d lattice:

Blue lines on the RHS plot: conservative error estimates for the g^6 coefficient

We can now write estimate the full $O(g^6 + g^7 + ...)$ contribution to p/p_{SB} as

$$0.0373g^{6}(\frac{1}{2}\ln\frac{1}{g}+C) - 0.015g^{7} + \dots$$

where we estimate $C = -0.05 \dots 0.15$. This is a very small value!

The coefficient of the g^7 -term is not to be taken literally: it matches the data well, but the accuracy is not sufficient to disentangle the higher power coefficients separately.

Pressure, with full perturbative and non-perturbative contributions:

Conclusions

• Full expression for pressure in pure gauge QCD:

 $p(T) = p_{\text{pert.}}(T) + p_{\text{non-pert}}(T)$

- When perturbative expansion is organized as here, the coefficient of g^6T^4 -term is very small.
- Smallness of the g^6T^4 coefficient here does not imply that the free energy of \mathcal{L}_M , 3d QCD, is small! The coefficient is a sum of purely magnetic modes (\mathcal{F}_M) and other contributions, some perturbative, some not.
- The method used here relies on the accuracy of a) 4d lattice results, and b) \mathcal{L}_E down to $T \sim 4T_c$.

However, even allowing for quite conservative errors, the conclusions do not change qualitatively.

• Direct determination of the g^6T^4 contribution \mathcal{L}_M is not restricted by these limitations.