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• “QCD is perturbative when T, µ � ΛQCD”

⇒ Weakly interacting gas of quarks and gluons, quark-gluon plasma

• Can apply perturbation theory

• But: infrared singularities ⇒ perturbation theory breaks down at finite
order! Linde 1980

• Pressure p = −F/V at T>
∼4Tc

• This is where standard lattice QCD data stops

• Use 3d effective theory
– explicit Lat ↔ MS connection
– use P.T. as much as you can (all calculable contributions)
– rest non-perturbatively

• Heavy-Ion collisions, Cosmology, . . .

• Resummation techniques
Andersen, Braaten, Petitgirad, Strickland;

Blaizot, Iancu, Rebhan;
Parwani, Peshier, Cvetic, Kögerler . . .



Lattice QCD

Standard lattice QCD works very well when T<
∼5–10Tc:

  0

  1

  2

  3

  4

  5

100 200 300 400 500 600

T [MeV] 

p/T4 pSB/T4

3 flavour
2+1 flavour

2 flavour
pure gauge

Karsch 2001

• Pure gauge Nf = 0: p(T ≤ Tc) ≈ 0 since glueballs heavy

• Nf = 2, 3: at T < Tc gas of (light) pions

• p′(Tc) discontinuous ⇒ genuine 1st order phase transition (∃ for pure
gauge QCD)



Lattice QCD runs out of steam at T ∼ 5–10Tc!

• Free energy on a lattice

e−fV/T =
∫

[dU ] e−S[U ]

is finite and (in principle) calculable.

• However, it is UV divergent (“cosmological constant”).

• Solution: subtract f from T = 0 lattice
pphys.(T ) = − lim

a→0
[flat(T, a) − flat(T = 0, a)]

• Lattice spacing a � 1/T

• T = 0 means size of the lattice L � 1/Tc ∼ 1/ΛQCD

• Wide range of scales: a � 1/T � 1/Tc � L, all included in T = 0
lattice! Very expensive at high T .

– Still a substantial difference to the free Stefan-Bolzmann behaviour.

– What is the relation to perturbation theory?



Pressure in perturbation theory

The perturbative expression for the pressure is now fully known:

p/pSB = 1 Stefan-Boltzmann
+g2 2-loop (Shuryak 78)

+g3 resummed 2-loop (Kapusta 79)

+g4 ln 1/g resummed 2-loop (Toimela 83)

+g4 resum 3-loop (Arnold, Zhai 94)

+g5 resum 3-loop (Kastening, Zhai 95)

+g6 ln 1/g resum 4-loop (Laine, Kajantie, K.R., Schroeder 02)

+g6 not computable in P.T! (Linde 80)

+g7 . . . . . .

pSB =
π2T 4

45
(8 −

21Nf

4
)



However, P.T. alone does not provide the answer:

Laine, Kajantie, K.R, Schroeder 02
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• Generally bad convergence

• Non-perturbative effects [parametrized here with g6 × (const.)] can be
very significant!



Why is g6T 4 non-perturbative?

1) Finite T ensemble: euclidean metric with imaginary time extent 1/T ,
with (anti)periodic b.c for bosons (fermions) ⇒

1

p2
−→

1

p̄2 + ω2
n

, ωn =







2nπT n ∈ Z Bosons
(2n + 1)πT n ∈ Z Fermions

∫ d4p

(2π)4
−→ T

∑

n

∫ d3p

(2π)3

Thus, all n 6= 0 Bosonic modes and all Fermionic modes acquire a
“mass” ∼ πT . Clearly, only bosonic n = 0 modes are infrared sensi-
tive.

1/T 



2) Let us consider a vacuum gauge diagram at finite T , where we add a
mass term m to keep track of the scale: Linde 80

N loops →







(N − 1) 4-vertices
(2N − 2) propagators

[T
∫

d3p]N (g2)N−1
[ 1

q2 + m2

]2N−2

= # × g6T 4





g2T

m





N−4

If m = g2T (“magnetic” scale), all orders of the loop expansion con-
tribute to pressure at g6!

Perturbatively m = 0 for magnetic gauge field modes ⇒ IR singularity
at 4 or larger loop order

Note: for

m ∼ πT (hard scales, n 6= 0)

m ∼ gT (Debye, electric scales)

the loop expansion is OK.



3d effective theory

Energy scales: g T T2g  T π

perturbativenon−perturbative

QCD

3D "electric" theory

3D "magnetic" theory L =     F
ij
2

4
_1

We obtain a hierarchy of effective theories Braaten,Nieto 95

• Integrate over πT ⇒ 3-dim. effective theory LE for gT , g2T -modes

• Integrate over gT ⇒ 3-dim. effective theory LM for g2T -modes

(“integrate” = 2-loop optimized matching of theories)



Effective theory LE is 3d adjoint Higgs model:

LE =
1

2
Tr F 2

ij + Tr[Di, A0]
2 + m2

D Tr A2
0 + λA(Tr A2

0)
2

For Nf = 0 (pure gauge), the couplings are

g2
3 = g2T =

8π2

11 ln(6.742T/ΛMS)
T

m2
D ∼ g2T 2

λA ∼ g4T

LE can be analyzed using perturbation theory or lattice simulations. No
problems in going to (almost) arbitrarily high T ! (renormalization on the
lattice can be done perturbatively)

LM is just 3d QCD: LM =
1

2
Tr F 2

ij

with coupling constant g2
3 ≈ g2T .



Pressure:

p

pSB

= 1 + g2 + g3 + g4 ln
1

g
+ g4 + g5 + g6 ln

1

g
+ g6 + g7 + . . .

LE
-

LM

6

pert. theory�

The relation between physical pressure and 3d free energy is (Braaten,Nieto)

p

pSB

= 1 −
5

2

λA

g2
3

−
45

8π2

(g2
3

T

)3

(FE + (known))

where

FE = −
1

V g6
3

ln
∫

[dA] exp[−
∫

d3xLE]

FE can now be calculated

– perturbatively 7→ g6 ln 1
g

– non-perturbatively 7→ higher order



4-loop graphs for g6 ln 1
g
:
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# of diagrams ∼
3:6:47:490 at 1:2:3:4 loops

One 4-loop diag. with 6 3-point
vertices and 9 propagators con-
tains ∼ 24 × 106 terms, to be in-
tegrated over!
(29 × (3 × 2)6)

Computer algebra program is a
must to sort out the integrals
(FORM)



Non-perturbative contributions

The cleanest way to obtain the genuinely 3-dimensional g6T 4 contribution
is to use LM, i.e. 3d QCD. g6-term is directly related to the condensate
〈F 2

ij〉. (Braaten, Nieto 95),(Karsch, Lütgemeier, Patkos, Rank 96)

This can be determined on the lattice. However, this requires 4-loop
lattice↔continuum matching:

〈F 2
ij〉 =

1

a3
+

g2T

a2
+

(g2T )2

a

+ (g2T )3(ln
1

g2Ta
+ [matching coeff.] + [non-pert. physics])

This has not yet been done (stochastic perturbation theory?)



Use LE to calculate FE:

We cannot calculate the 3-dim. free energy FE directly from lattice simula-
tion. However, we can calculate derivatives of it:

dFE

dy
=

∂FE

∂y
+

∂x

∂y

∂FE

∂x
= 〈A2

0〉 + C 〈A4
0〉

where y ≡ m2
D/g4

3, x ≡ λA/g2
3 are dimensionless coupling constants.

Condensates 〈A2
0〉 and 〈A4

0〉 are measurable from the lattice. FE is obtained
from integral

FE =
∫

dy
dFE

dy
+ const.

The integration constant is precisely the “Linde term”! We can estimate it
by fitting to 4-dim. data.

We drop the condensate 〈A4
0〉 here:

– its contribution is very small (parametrically and numerically)

– we don’t know all lattice counterterms for it



Strategy:

• Measure 〈A2
0〉(a), subtract lattice counterterms (known) and extrapo-

late to continuum

• Subtract perturbative contributions

• Integrate, result gives g7 + g8 + . . . contributions to p

• add perturbative parts of p

• Tune g6 term, until happy with the fit

– Bare 〈A2
0〉latt has to be determined very precisely: 2 large subtractions!

Accuracy to 4–5 decimal digits → large volumes (up to 2003), large
statistics.

– Reliable continuum extrapolation:
wide range of small lattice spacings a = 0.37 . . . 0.05 g−2

3



Adjoint Higgs phase diagram

– ∃ phase transition, order
parameter Tr A3

0.
– Effective theory must be
in the symmetric phase.
However, the line which
corresponds to QCD lies in
the broken phase!
– Solution: the sym-
metric phase is strongly
metastable. In practice is
not a problem.
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Continuum extrapolation

y = m2
D/g4

3 ∼ 1/g2 = 1.14 – 6.39, corresponding to T ∼ 100 – 1020ΛMS.
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Non-perturbative part of the condensate

Integrate the condensate with an interpolating fit
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Pressure

Tune g6 coefficient to match 4d lattice:
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Blue lines on the RHS plot: conservative error estimates for the g6 coeffi-
cient



We can now write estimate the full O(g6 + g7 + . . .) contribution to p/pSB as

0.0373g6(
1

2
ln

1

g
+ C) − 0.015g7 + . . .

where we estimate C = −0.05 . . . 0.15. This is a very small value!

The coefficient of the g7-term is not to be taken literally: it matches the data
well, but the accuracy is not suf-
ficient to disentangle the higher
power coefficients separately.

Pressure, with full perturbative
and non-perturbative contribu-
tions:
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Conclusions

• Full expression for pressure in pure gauge QCD:
p(T ) = ppert.(T ) + pnon−pert(T )

• When perturbative expansion is organized as here, the coefficient of
g6T 4 -term is very small.

• Smallness of the g6T 4 coefficient here does not imply that the free en-
ergy of LM , 3d QCD, is small! The coefficient is a sum of purely mag-
netic modes (FM ) and other contributions, some perturbative, some
not.

• The method used here relies on the accuracy of a) 4d lattice results,
and b) LE down to T ∼ 4Tc.

However, even allowing for quite conservative errors, the conclusions
do not change qualitatively.

• Direct determination of the g6T 4 contribution LM is not restricted by
these limitations.


