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e “QCD is perturbative when 7', u > Agep”
= Weakly interacting gas of quarks and gluons, quark-gluon plasma
e Can apply perturbation theory

e But: infrared singularities = perturbation theory breaks down at finite
order! Linde 1980

Pressure p = —F/V at T'>4T,

This is where standard lattice QCD data stops

Use 3d effective theory

— explicit Lat <~ MS connection

— use P.T. as much as you can (all calculable contributions)
— rest non-perturbatively

Heavy-lon collisions, Cosmology, ...

Resummation techniques
Andersen, Braaten, Petitgirad, Strickland;

Blaizot, lancu, Rebhan;
Parwani, Peshier, Cvetic, Kdgerler ...



Lattice QCD

Standard lattice QCD works very well when 7"<5-107.:
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e Pure gauge Ny = 0: p(T' < T;) = 0 since glueballs heavy
o Ny =23 atT < T, gas of (light) pions

e p/'(T.) discontinuous = genuine 1st order phase transition (3 for pure
gauge QCD)



Lattice QCD runs out of steam at 7" ~ 5-107.!

e Free energy on a lattice
e IVIT = /[dU] e Sl
Is finite and (in principle) calculable.
e However, it is UV divergent (“cosmological constant”).
e Solution: subtract f from 7" = 0 lattice
pphys-(T) = = Cl,ll% e (T, a) = fiae(T = 0,a)]
e Lattice spacing a < 1/T
e 7' = ( means size of the lattice L > 1/7T,. ~ 1/Aqcp

e Wide range of scales: « <« 1/T <« 1/T, < L, all included in 7" = 0
lattice! Very expensive at high 7.

— Still a substantial difference to the free Stefan-Bolzmann behaviour.
— What is the relation to perturbation theory?



Pressure in perturbation theory

The perturbative expression for the pressure is now fully known:

p/psg =1 Stefan-Boltzmann
+¢? 2-loop (Shuryak 78)
+q° resummed 2-loop (Kapusta 79)
+¢'In1/g resummed 2-loop (Toimela 83)
+g* resum 3-loop (Arnold, Zhai 94)
+q° resum 3-loop (Kastening, Zhai 95)
+¢°In1/g resum 4-loop (Laine, Kajantie, K.R., Schroeder 02)
+4° not computable in P.T! (Linde 80)
+g7 .
24
ps = 7r4§ (8- %Nf)



However, P.T. alone does not provide the answer:
Laine, Kajantie, K.R, Schroeder 02
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e Generally bad convergence
e Non-perturbative effects [parametrized here with ¢° x (const.)] can be

very significant!



Why is g7 non-perturbative?

1) Finite T' ensemble: euclidean metric with imaginary time extent 1/7,
with (anti)periodic b.c for bosons (fermions) =

i 1 | 2nxT n € Z Bosons
p? P2+ w?’ (2n+ 1)7T n € Z Fermions

d'p d’p
— T

/(27T)4 Zn:/ (2m)3

Thus, all n # 0 Bosonic modes and all Fermionic modes acquire a

“mass” ~ wT. Clearly, only bosonic n = 0 modes are infrared sensi-
tive.

uT




2) Let us consider a vacuum gauge diagram at finite 7', where we add a
mass term m to keep track of the scale: Linde 80
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If |m = ¢*T| (“magnetic” scale), all orders of the loop expansion con-
tribute to pressure at ¢!

Perturbatively m = 0 for magnetic gauge field modes = IR singularity
at 4 or larger loop order

Note: for

m ~ 7’1" (hard scales, n # 0)

m ~ g1 (Debye, electric scales)
the loop expansion is OK.



3d effective theory

Energy scales: g2T | gT nT

- ! ! >~
non—perturbative perturbative
- QCD

<< _
- | 3D "electric" theory

i , 1_2
- . 3D "magnetic" theory L= 2 F i

We obtain a hierarchy of effective theories Braaten,Nieto 95

e Integrate over =T = 3-dim. effective theory Ly for ¢T, ¢°T -modes
e Integrate over ¢7' = 3-dim. effective theory £y for ¢>T -modes

(“integrate” = 2-loop optimized matching of theories)



Effective theory L is 3d adjoint Higgs model:

1
L = 5 Tr Fjj + Te[D;, AgJ* + mi, Tr Af + Aa(Tr Af)?

For N; = 0 (pure gauge), the couplings are

2
9 9 8

= ¢ T = g
93 g 111In(6.742T"/ Ayg)

Ly can be analyzed using perturbation theory or lattice simulations. No
problems in going to (almost) arbitrarily high 7! (renormalization on the
lattice can be done perturbatively)

. 1
Lyisjust3d QCD: | Ly = 3 Tr F;,

with coupling constant g3 ~ ¢*T.



Pressure:

pert. theory|
i—1+g +9° —I—gln +d'+"+¢"In=+ "+ g +.
DPsB g g T

»CE >

Ly

The relation between physical pressure and 3d free energy is (Braaten,Nieto)

p 5)\,4 45 g§
where
1
=———In[[dA — | d*zL
Fr =~y n [[dA] exp|— [ d*zLe]

Fr can now be calculated
— perturbatively — ¢° lné
— non-perturbatively — higher order
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Non-perturbative contributions

The cleanest way to obtain the genuinely 3-dimensional ¢%7* contribution
is to use Ly, i.e. 3d QCD. ¢°-term is directly related to the condensate

<F3> (Braaten, Nieto 95),(Karsch, Litgemeier, Patkos, Rank 96)

This can be determined on the lattice. However, this requires 4-loop
lattice<—continuum matching:

1 ¢°T  (¢°T)
2 _
<F“> N $+ a? * a

+ (¢°T)*(In + [matching coeff.] + [non-pert. physics])

g*Ta

This has not yet been done (stochastic perturbation theory?)



Use Lz to calculate Fg:

We cannot calculate the 3-dim. free energy Fx directly from lattice simula-
tion. However, we can calculate derivatives of it:

AFg _ 0Fg | 0vdFp

dy Oy Oy Ox

= (A7) + C (Ay)

where y = m% /g3, = \a/g5 are dimensionless coupling constants.

Condensates (A7) and (A]) are measurable from the lattice. Fx is obtained
from integral

dFg
Fr = | dy—— + const.
E / Yy dy +
The integration constant is precisely the “Linde term”! We can estimate it
by fitting to 4-dim. data.

We drop the condensate (A3) here:
— its contribution is very small (parametrically and numerically)
— we don’t know all lattice counterterms for it



Strategy:

e Measure (A?)(a), subtract lattice counterterms (known) and extrapo-
late to continuum

e Subtract perturbative contributions

e Integrate, result gives ¢’ + ¢° + ... contributions to p
e add perturbative parts of p

e Tune ¢° term, until happy with the fit

— Bare (A3)1.i; has to be determined very precisely: 2 large subtractions!
Accuracy to 4-5 decimal digits — large volumes (up to 200%), large
statistics.

— Reliable continuum extrapolation:
wide range of small lattice spacings a = 0.37...0.05 g3~



Adjoint Higgs phase diagram

— J phase transition, order
parameter Tr A.

— Effective theory must be
in the symmetric phase.
However, the line which
corresponds to QCD lies in
the broken phase!

— Solution: the sym-
metric phase is strongly
metastable. In practice is
not a problem.
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Continuum extrapolation

y=m% /g3 ~ 1/g*> = 1.14 — 6.39, corresponding to 7' ~ 100 — 10% A55-

IIIIIIIIIIIIIIIIIIIIIIIIIIIII
y=114
y =196
y =298
y =3.86
y =512
y =6.39

7

0.01

|/||||||/1|||||

,
g
—o
/I/
¢ o m 4 D> e

pert
tof
po!

15
o

o
j//"lll
,
A
-y
,
5
o
,
y

at
IIIIIIIII
P
< 4
////
[Py "
,
,

’
N ~
}IIII1\IIIIIIIIIIIIIIIIIIIIIII

2 2
<A >I -<A>

)
o
=
1

/‘/ o ’/ ,Kf
| |
/w/

e e _:

-0.02

01 0.2

OIIIIIIIIIIIIII

Sun Nov 16 18:31:58 2003



Non-perturbative part of the condensate

Integrate the condensate with an interpolating fit
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Pressure

Tune ¢° coefficient to match 4d lattice:
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Blue lines on the RHS plot: conservative error estimates for the ¢° coeffi-
cient



We can now write estimate the full O(g° + ¢" + .. .) contribution to p/psg as
1.1
0.0373g(””(5 In—+C) —0.015¢" + ...
9

where we estimate C' = —0.05...0.15. This is a very small value!

The coefficient of the ¢’-term is not to be taken literally: it matches the data
well, but the accuracy is not suf-
ficient to disentangle the higher
power coefficients separately.
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Pressure, with full perturbative
and non-perturbative contribu-
tions:




Conclusions

e Full expression for pressure in pure gauge QCD:
p(T) — ppert.(T) + Prnon—pert (T)

e When perturbative expansion is organized as here, the coefficient of
¢%T* -term is very small.

e Smallness of the ¢°7* coefficient here does not imply that the free en-
ergy of £,;, 3d QCD, is small! The coefficient is a sum of purely mag-
netic modes (F,,) and other contributions, some perturbative, some
not.

e The method used here relies on the accuracy of a) 4d lattice results,
and b) Lr downto T ~ 4T..

However, even allowing for quite conservative errors, the conclusions
do not change qualitatively.

e Direct determination of the ¢57* contribution £,; is not restricted by
these limitations.



