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Higgs mechanism

e Spontaneous symmetry breaking: Higgs
field expectation value |[¢| = v =

246 GeV. \Y;

’Du¢’2 = |(8u+i914u)¢|2
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where my ~ gv.

v lol
e Fermion masses through Yukawa cou-
plings: gy pvy) — mpy)

e Only known renormalizable massive vector theory (in 4d)




Kaluza-Klein modes in extra dimensions

e Extra dimensions — massive modes in lower di-

mensions.
e For example, if we have one extra periodic dimen-
sion of length L, (d + 1)-dim propagator /\/
1 1
A pr—
T2 T KB+ (2nn/L)? L )
looks like a massive propagator in d-dim. if n #£ 0. L

e Is it possible to arrange things so that all masses > 0, and preferably
the smallest mass my < m;? Yes!




Massive vectors from extra dimensions

[Shaposhnikov and Tinyakov, Phys. Lett. B 515 (2001) 442, hep-th/0102161]

e Let us now consider Abelian gauge field action in d + 1-dim.

1
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where Fup = 04Ap—0pA 4 (capital letters denote d+ 1-dim. indices,
Greek letters d-dim. indices). | shall use z as the coordinate of the
extra dimension.

e Symmetric “weight” function A(z) > 0 breaks the Lorentz invariance
in d + 1 -dimensions. Effectively | A ~ 1/4?|, i.e. the gauge coupling
varies as a function of z.

e Expand the gauge field in orthogonal functions:

n




We can choose 1, to satisfy 2nd order Sturm-Liouville -type equa-
tion:

—%82 (A 0.1, = m2h,

with normalization

1
[ dz A i = 6 S wn(2)un() = K0(z = ),
e m? € R (hermitean), m? > 0.

e Integrating over z, in gauge A, = 0 action becomes

Sdﬂ—/de[ F'F" —|—1m (A”)]
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i.e. sum of massive d-dimensional vectors, if m?2 # 0!




e We would like to have:
1. m? > 0, massive vectors, and
2. mi < m?_, no extra low-energy states.

How to achieve m2 > 0:

e m = 0 solutions of the Sturm-Liouville egn

L[ D9] =

Y =const. and ¢ = [# AL,
e If we choose A(z) so that it is not integrable, i.e.
/dzA(z),

diverges, solutions v =const. and ¢y = [* A~! are not normalizable.
Thus, the lowest mass value mg > 0.




How about 0 < my < my;~0)?

Achieved with A(z) which has:

e local maximum Agat z =0
e Minimum A, < Ag at z = +c¢

e diverges at least exponentially as
2] = o0

2
1

A.
It turns out that m; ~ —“m
Ag

A(2)




The wave functions and eigenvalues can be analyzed by transforming
the equation to Schrédinger form:
defining y = A2y,

{—@ + V(z)} X =m°x

. A/
withV =W?2 —-W and W = ——.
2A

V' is bounded from below, if A grows at least exponentially.
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Potential ' dips just below 0, and the equation has a solution with m>0.




Non-abelian gauge fields

With abelian gauge fields everything is solvable (numerically or analyti-
cally, depending on what we choose A to be).

However, with non-abelian A% (z, 2) = > A% (2),(2):

n

A) Action S;,; cannot be decomposed in independent n-modes: there
will be interaction terms of type (9, A}) AT Ay, Al Ay A Al

= Light modes couple to heavy modes. These should decouple
from the action.

B) The quadratic part of the effective theory for the light modes

S| 1
S, = [ d'x| FLIFLD 4+ Smy AL AL

Is (at least superficially) gauge non-invariant. Non-renormalizable
— the heavy modes may not decouple?




C) The original d + 1 -dim. theory is manifestly gauge invariant. Since
local symmetries cannot really be spontaneously broken, the low-
energy theory should be gauge invariant too. This we can achieve
by writing the effective theory as a gauge + Higgs theory! Since the
Higgs is not a d.o.f. in our system, the effective Higgs mass must
be very large (~ oo). This kind of Higgs sector is strongly coupled
and non-perturbative

— Need to study the problem non-perturbatively: lattice simulations.

e Note: the weight A(z) localizes the light mode around z = 0. Thus,
the lower-dimensional world lives on the z = 0 “brane”. Various
localizations on planar defects are very well known in condensed
matter physics.




Simulations

e Work in 2+ 1 dimensions (3d theory renormalizable, easy to manip-
ulate).

e Use U(1) (to compare with analytical calculations) and SU(2).
e We measure the static force between heavy fundamental charge-
anticharge pair: Wilson loop of size (R, T) at constant z:
W(R,T;z) = <Re Tr P exp [z / Audxub
P 0(z) f Ajd, > |

The last expression is strictly speaking valid only for abelian theory.

= <Re Tr'Pexp

The static potential V (R, z) and the force F'(R, z) is then obtained
from
OV (R, z)

1
V(R,z):—jliilgcilogw F(R,z) = OR




For abelian theory, the force can be calculated exactly:

F(R,2) = 3 S gi()e ™"

Thus, if

—my = 0: F(R, z) — 313(z) as R — oo (“area law”)

—my > 0: F(R, z) — 0 (“perimeter law”)

We expect this to remain valid (modulo normalization) for non-
abelian gauge.

In the non-abelian case, we can also look at the cubic and quartic
self-interactions of the light mode:

1 1
o = dz A(2)3(2) | ay=—— [ dz A(2)U3(2) .
For the effective theory to be “close” to a gauge theory, we should

have a3 ~ a4 ~ 1. Remember: if my = 0, ¥y =const. and then
Qa3 = 0y = 1.




Measurements

We perform simulations in U(1) and SU(2)
gauge theory in 2+1 -dim. The force is mea-
sured using Wilson loops, where the numeri-
cal noise is minimized using

— link integration of links to 7’-direction

— smearing of links to R-direction

Mostly we measure at z = 0, where the light
modes are localized.

e

3 weight functions:
. 1
1. Gaussian: A(z) = Agexp l—§m2221

1
2. Sharp: A(z) = Agexp l—M\z\ + §m222

3. Smooth:  A(z) = Agexp

1 1
e L




1. Gaussian weight function

1
_m22
2

A(z) = Agexp

e Normalizable — my = 0, ¥y(z) =const.

= The effective theory is massless, F/(R) —const.
Solution in abelian case: m,, = /nm.

Parameters:
e o = lattice spacing. We want: m, < 1/a, and a < Ay?
4A
(am)* = 0.1, =% = 60.0
a

e Lattice sizes: U(1) 482 x 14, SU(2) 24? x 14.

In our units [A] = GeV™'; alternatively, if you choose A dimensionless (which is
equally valid), substitute here A — A/g2.




Gaussian profile, U(1) Gaussian profile, SU(2)
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Force approaches a constant value as R — oo in both cases. Low-
energy theories are confining.

U(1) is not constant, because F' must be antiperiodic on a finite lattice.




2. Sharp weight function

1
A(z) = Agexp |—M|z| + §m222

e Not normalizable = mgy > 0?

Parameters:

AN
am =050,  aM = 0.75, 70 —35.0

e U(1) numerical solution: amg ~ 0.24, am; =~ 0.71.
Thus, my < m; as desired. (m < M = my < my;)

Cubic and quartic couplings: a3 ~ 0.80, ay =~ 0.75. These are fairly
close to = 1, suggesting that the 2d effective gauge theory should be
applicable.




Sharp profile, U(1)

Sharp profile, SU(2)
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e Clearly, SU(2) force ' — 0 = screened (massive) gauge field theory.

e We also compare the results with 2d Higgs model simulation, where
the Higgs field expectation value has been set so that the gauge boson
mass = my (my = oo in this case).




3. Smooth weight function
1

1
A(z) = Agexp —§M222 + Zm4z4

Parameters:

4A
am = 0.2778,  aM =0.3889, —2 =350
a

e U(1) solution: amg ~ 0.19.

e Cubic and quartic couplings: a3 ~ 0.705, ay ~ 0.695.
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Smooth profile, U(1)
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Smooth profile, SU(2)

e Again, SU(2) force FF — 0 = screened gauge field theory.




Conclusions

e Suitable “weight” function A(z) ~ 1/¢*in (d + 1) dimensions
—

effective d-dimensional theory of vector bosons (“IV-bosons”),
where 0 < myector <K higher excitations.

e Light vectors are localized on a d-dimensional “brane” at z = 0.
e Can be solved analytically for U(1).

e Verified numerically on non-abelian SU(2) theory in 2 + 1 dimen-
sions.

e SU(2)xU(1) — U(1)? Not straightforward.

e Fermion Yukawa masses? Not generated through this mechanism.




