Higgs mechanism without a Higgs? ... using extra dimensions

Kari Rummukainen, 4 March 2003, Helsinki

In collaboration with:

Mikko Laine, Harvey Meyer and Misha Shaposhnikov

Results published in JHEP 01 (2003) 068 [hep-ph/0211149]

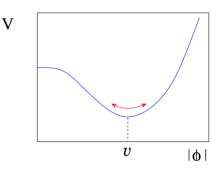
Higgs mechanism

• Spontaneous symmetry breaking: Higgs field expectation value $|\phi| = v \approx 246 \,\text{GeV}.$

$$|D_{\mu}\phi|^2 = |(\partial_{\mu} + igA_{\mu})\phi|^2$$

$$\rightarrow \ldots + m_W^2 A_{\mu}^2$$

where $m_W \sim gv$.

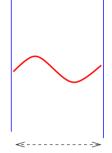


- Fermion masses through Yukawa couplings: $g_Y \phi \bar{\psi} \psi \rightarrow m_F \bar{\psi} \psi$
- Only known renormalizable massive vector theory (in 4d)

Kaluza-Klein modes in extra dimensions

- Extra dimensions \rightarrow massive modes in lower dimensions.
- For example, if we have one extra periodic dimension of length $L,\,(d+1)\text{-}\mathrm{dim}$ propagator

$$\Delta_{d+1} = \frac{1}{k_{d+1}^2} \to \frac{1}{k_d^2 + (2\pi n/L)^2}$$



looks like a massive propagator in d-dim. if $n \neq 0$.

• Is it possible to arrange things so that *all* masses > 0, and preferably the smallest mass $m_0 \ll m_i$? Yes!

Massive vectors from extra dimensions

[Shaposhnikov and Tinyakov, Phys. Lett. B 515 (2001) 442, hep-th/0102161]

• Let us now consider *Abelian* gauge field action in d + 1-dim.

$$S_{d+1} = \int d^d x \int dz \ \Delta(z) \ \frac{1}{4} F_{AB} F_{AB}$$

where $F_{AB} = \partial_A A_B - \partial_B A_A$ (capital letters denote d+1-dim. indices, Greek letters d-dim. indices). I shall use z as the coordinate of the extra dimension.

- Symmetric "weight" function $\Delta(z) > 0$ breaks the Lorentz invariance in d + 1 -dimensions. Effectively $\Delta \sim 1/g^2$, i.e. the gauge coupling varies as a function of z.
- Expand the gauge field in orthogonal functions:

$$A_B(x,z) = \sum_n A_B^n(x) \ \psi_n(z)$$

We can choose ψ_n to satisfy 2nd order Sturm-Liouville -type equation:

$$-\frac{1}{\Delta}\partial_z[\Delta\;\partial_z\psi_n] = m_n^2\psi_n$$

with normalization

$$\int dz \ \Delta \ \psi_n \psi_m = \delta_{mn} \qquad \qquad \sum_n \psi_n(z) \psi_n(z') = rac{1}{\Delta} \delta(z-z').$$

- $m^2 \in R$ (hermitean), $m^2 \ge 0$.
- Integrating over z, in gauge $A_z = 0$ action becomes

$$S_{d+1} = \int d^d x \sum_n \left[\frac{1}{4} F_{\mu\nu}^n F_{\mu\nu}^n + \frac{1}{2} m_n^2 (A_{\mu}^n)^2 \right]$$

i.e. sum of massive *d*-dimensional vectors, if $m_n^2 \neq 0!$

- We would like to have:
 - 1. $m_0^2 > 0$, massive vectors, and
 - 2. $m_0^2 \ll m_{i>0}^2$, no extra low-energy states.

How to achieve $m_0^2 > 0$ *:*

• m = 0 solutions of the Sturm-Liouville eqn

$$-\frac{1}{\Delta}\partial_z[\Delta \ \partial_z\psi] = m^2\psi_0$$

 $\psi = \text{const.} \text{ and } \psi = \int^z \Delta^{-1}.$

• If we choose $\Delta(z)$ so that it is not integrable, i.e.

$\int dz \Delta(z),$

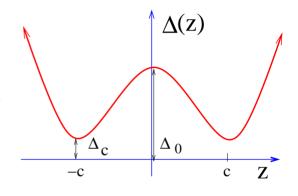
diverges, solutions $\psi = \text{const.}$ and $\psi = \int^z \Delta^{-1}$ are not normalizable. Thus, the lowest mass value $m_0 > 0$.

How about $0 < m_0 \ll m_{(i>0)}$?

Achieved with $\Delta(z)$ which has:

- local maximum Δ_0 at z = 0
- minimum $\Delta_c \ll \Delta_0$ at $z = \pm c$
- diverges at least exponentially as $|z| \rightarrow \infty$

It turns out that $m_0^2 \sim rac{\Delta_c}{\Delta_0} m_i^2$



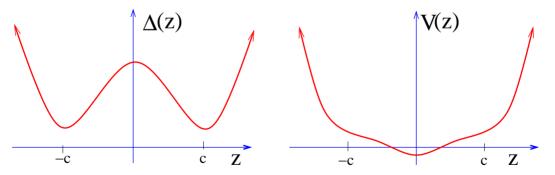
The wave functions and eigenvalues can be analyzed by transforming the equation to Schrödinger form:

defining $\chi = \Delta^{1/2} \psi$,

$$-\frac{a}{dz^2} + V(z) \bigg] \chi = m^2 \chi$$

with $V = W^2 - W'$, and $W = -\frac{\Delta'}{2\Lambda}$.

V is bounded from below, if Δ grows at least exponentially.



Potential V dips just below 0, and the equation has a solution with $m \gtrsim 0$.

Non-abelian gauge fields

With abelian gauge fields everything is solvable (numerically or analytically, depending on what we choose Δ to be).

However, with non-abelian $A_B^a(x,z) = \sum_n A_B^{a,n}(x)\psi_n(z)$:

A) Action S_{d+1} cannot be decomposed in independent *n*-modes: there will be interaction terms of type $(\partial_{\mu}A_{\nu}^{n})A_{\mu}^{m}A_{\nu}^{k}$, $A_{\mu}^{m}A_{\nu}^{n}A_{\mu}^{k}A_{\nu}^{l}$.

 \Rightarrow Light modes couple to heavy modes. These *should* decouple from the action.

B) The quadratic part of the effective theory for the light modes

$$S_{\text{eff.}} = \int d^d x \Big[\frac{1}{4} F^{a,0}_{\mu\nu} F^{a,0}_{\mu\nu} + \frac{1}{2} m_0^2 A^{a,0}_{\mu} A^{a,0}_{\mu} \Big]$$

is (at least superficially) gauge *non-invariant*. Non-renormalizable \mapsto the heavy modes may not decouple?

C) The original d + 1 -dim. theory is manifestly gauge invariant. Since local symmetries cannot *really* be spontaneously broken, the lowenergy theory should be gauge invariant too. This we can achieve by writing the effective theory as a gauge + Higgs theory! Since the Higgs is not a d.o.f. in our system, the effective Higgs mass must be very large ($\sim \infty$). This kind of Higgs sector is strongly coupled and non-perturbative

 \mapsto Need to study the problem non-perturbatively: lattice simulations.

• Note: the weight $\Delta(z)$ localizes the light mode around z = 0. Thus, the lower-dimensional world lives on the z = 0 "brane". Various localizations on planar defects are very well known in condensed matter physics.

Simulations

- Work in 2+1 dimensions (3d theory renormalizable, easy to manipulate).
- Use U(1) (to compare with analytical calculations) and SU(2).
- We measure the *static force* between heavy fundamental chargeanticharge pair: *Wilson loop* of size (R, T) at constant z:

$$W(R,T;z) = \left\langle \operatorname{Re}\operatorname{Tr} \mathcal{P} \exp\left[i\oint A_{\mu}dx_{\mu}\right]\right\rangle$$
$$= \left\langle \operatorname{Re}\operatorname{Tr} \mathcal{P} \exp\left[i\sum_{n}\psi_{n}(z)\oint A_{\mu}^{n}dx_{\mu}\right]\right\rangle.$$

The last expression is strictly speaking valid only for abelian theory.

The static potential V(R,z) and the force F(R,z) is then obtained from

$$V(R,z) = -\lim_{T \to \infty} \frac{1}{T} \log W$$
 $F(R,z) = \frac{\partial V(R,z)}{\partial R}$

For abelian theory, the force can be calculated exactly:

$$F(R,z) = \frac{1}{2} \sum_{n} \psi_n^2(z) e^{-m_n R}$$

Thus, if

$$-m_0 = 0$$
: $F(R, z) \to \frac{1}{2}\psi_0^2(z)$ as $R \to \infty$ ("area law")

 $-m_0 > 0$: $F(R, z) \rightarrow 0$ ("perimeter law")

We expect this to remain valid (modulo normalization) for nonabelian gauge.

• In the non-abelian case, we can also look at the cubic and quartic self-interactions of the light mode:

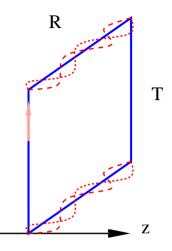
$$\alpha_3 \equiv \frac{1}{\psi_0(0)} \int dz \ \Delta(z) \psi_0^3(z) , \qquad \alpha_4 \equiv \frac{1}{\psi_0^2(0)} \int dz \ \Delta(z) \psi_0^4(z) .$$

For the effective theory to be "close" to a gauge theory, we should have $\alpha_3 \approx \alpha_4 \approx 1$. Remember: if $m_0 = 0$, $\psi_0 = \text{const.}$ and then $\alpha_3 = \alpha_4 = 1$.

Measurements

We perform simulations in U(1) and SU(2) gauge theory in 2+1 -dim. The force is measured using Wilson loops, where the numerical noise is minimized using – *link integration* of links to *T*-direction

- *smearing* of links to R-direction Mostly we measure at z = 0, where the light modes are localized.



3 weight functions:

1. Gaussian: $\Delta(z) = \Delta_0 \exp\left[-\frac{1}{2}m^2z^2\right]$ 2. Sharp: $\Delta(z) = \Delta_0 \exp\left[-M|z| + \frac{1}{2}m^2z^2\right]$ 3. Smooth: $\Delta(z) = \Delta_0 \exp\left[-\frac{1}{2}M^2z^2 + \frac{1}{4}m^4z^4\right]$ 1. Gaussian weight function

$$\Delta(z) = \Delta_0 \exp\left[-\frac{1}{2}m^2 z^2\right]$$

• Normalizable $\rightarrow m_0 = 0$, $\psi_0(z) = \text{const.}$

⇒ The effective theory is massless, $F(R) \rightarrow \text{const.}$ Solution in abelian case: $m_n = \sqrt{n}m$.

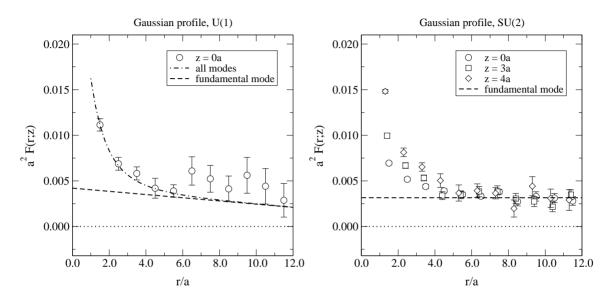
Parameters:

• a = lattice spacing. We want: $m_0 \ll 1/a$, and $a \ll \Delta_0^{-1}$

$$(am)^2 = 0.1,$$
 $\frac{4\Delta_0}{a} = 60.0$

• Lattice sizes: U(1) $48^2 \times 14$, SU(2) $24^2 \times 14$.

In our units $[\Delta] = \text{GeV}^{-1}$; alternatively, if you choose Δ dimensionless (which is equally valid), substitute here $\Delta \mapsto \Delta/g_3^2$.



Force approaches a constant value as $R \to \infty$ in both cases. Lowenergy theories are *confining*.

U(1) is not constant, because F must be *antiperiodic* on a finite lattice.

2. Sharp weight function

$$\Delta(z) = \Delta_0 \exp\left[-M|z| + \frac{1}{2}m^2z^2\right]$$

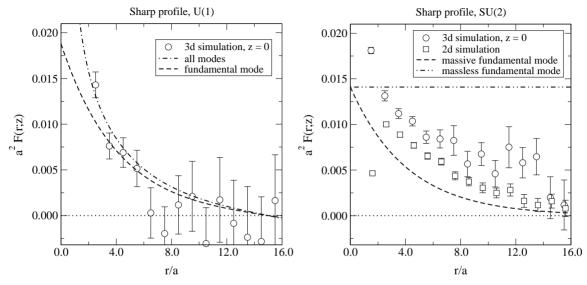
• Not normalizable $\Rightarrow m_0 > 0$?

Parameters:

$$am = 0.50, \qquad aM = 0.75, \qquad \frac{4\Delta_0}{a} = 35.0$$

• U(1) numerical solution: $am_0 \approx 0.24$, $am_1 \approx 0.71$. Thus, $m_0 \ll m_1$ as desired. ($m \ll M \Rightarrow m_0 \ll m_i$)

Cubic and quartic couplings: $\alpha_3 \approx 0.80$, $\alpha_4 \approx 0.75$. These are fairly close to = 1, suggesting that the 2d effective gauge theory should be applicable.



• Clearly, SU(2) force $F \rightarrow 0 \Longrightarrow$ screened (massive) gauge field theory.

• We also compare the results with 2d Higgs model simulation, where the Higgs field expectation value has been set so that the gauge boson mass $= m_0 \ (m_H = \infty \text{ in this case}).$

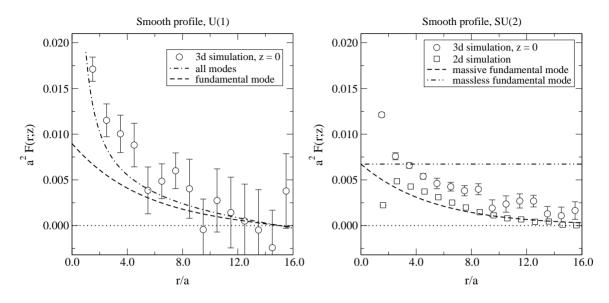
3. Smooth weight function

$$\Delta(z) = \Delta_0 \exp\left[-\frac{1}{2}M^2 z^2 + \frac{1}{4}m^4 z^4\right]$$

Parameters:

$$am = 0.2778, \qquad aM = 0.3889, \qquad \frac{4\Delta_0}{a} = 35.0$$

- U(1) solution: $am_0 \approx 0.19$.
- Cubic and quartic couplings: $\alpha_3 \approx 0.705$, $\alpha_4 \approx 0.695$.



• Again, SU(2) force $F \rightarrow 0 \Longrightarrow$ screened gauge field theory.

Conclusions

• Suitable "weight" function $\Delta(z) \sim 1/g^2$ in (d + 1) dimensions

effective *d*-dimensional theory of vector bosons ("*W*-bosons"), where $0 < m_{\text{vector}} \ll$ higher excitations.

- Light vectors are *localized* on a *d*-dimensional "brane" at z = 0.
- Can be solved analytically for U(1).
- Verified numerically on non-abelian SU(2) theory in 2 + 1 dimensions.
- $SU(2) \times U(1) \rightarrow U(1)$? Not straightforward.
- Fermion Yukawa masses? Not generated through this mechanism.