Duality and scaling in type II superconductor phase transition

Kari Rummukainen, CERN and University of Oulu, Finland

In collaboration with: M. Laine, T. Neuhaus, A. Rajantie, K. Kajantie

- Ginzburg-Landau theory (U(1)-gauge + scalar Higgs) in 3 dimensions: model for superconductor phase transition.
 - Coulomb phase $T > T_c$: photon mass $m_{\gamma} = 0$.
 - Superconducting Higgs phase $T < T_c$: $m_{\gamma} > 0$, London penetration length $\lambda = 1/m_{\gamma}$
- Cosmology: GUT, cosmic strings ...
- In type II region, the transition is of 2nd order.
- *Duality* conjecture: transition is in the same universality class as 3d XY model, but with inverse temperature axis.
- Has been difficult to see in experiments and in numerical lattice simulations
- Here: numerical evidence for duality.

Ginzburg-Landau theory

Action of the Ginzburg-Landau (GL) theory, U(1)-gauge + complex scalar:

$$S_{GL} = \int d^3x \left[\frac{1}{4} F_{ij}^2 + |D_i\phi|^2 + m^2 |\phi|^2 + \lambda |\phi|^4 \right]$$

Here ϕ is complex scalar field, $F_{ij} = \partial_i A_j - \partial_j A_i$, and $D_i = \partial_i + ieA_i$. The parameters m, e^2 and λ have dimension GeV.

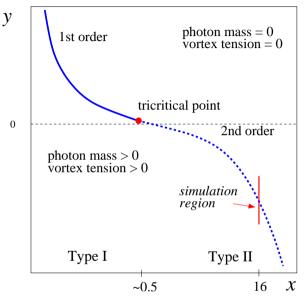
Theory is defined by the dimensionless couplings

$$x \equiv \frac{\lambda}{e^2}, \quad y \equiv \frac{m^2}{e^4}$$

 m^2 is the temperature-like parameter:

- $m^2 < m_c^2$: Superconducting "broken" phase, ($\langle |\phi| \rangle > 0$)
- $m^2 > m_c^2$: Coulombic "symmetric" phase ($\langle |\phi| \rangle = 0$, suitably defined and renormalized).

Phase diagram

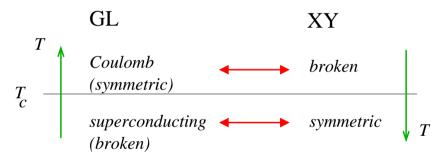


- $x \equiv \lambda/e^2 \lesssim 0.5$: 1st order (type I) $x \gtrsim 0.5$: 2nd order (type II)
- No *local* order parameter (like $\langle |\phi| \rangle$ in non-gauged scalar theory).
- Some *non-local* order parameters:
 - photon mass m_{γ} (= $1/\lambda$, the inverse London penetration length)
 - Abrikosov-Nielsen-Olesen vortex tension T (\equiv $H_{c,1}$, critical magnetic field)

Duality

It has been argued that the transition in type II region is in the same universality class as 3-dim XY model (or complex scalar theory with O(2) symmetry), but with *inverted* temperature.

Peskin 78; Banks, Myerson, Kogut 77; Dasgupta, Halperin 81; Kleinert 82; Kovner, Rosenstein, Eliezer 91; Kiometzis, Kleinert, Schakel 95, Herbut, Tesanovic 96...



Massless degrees of freedom: *photon* (GL, symmetric phase) ⇔ *Goldstone mode* (XY, broken phase)

Critical exponents of the GL theory \equiv critical exponents of the XY model.

Duality expected to be valid at very close proximity to the critical point.

Physical observables

Ginzburg-Landau theory		XY model
photon: $1/m_{\gamma} = \lambda$	\leftrightarrow	current-current correlation length
Abrikosov vortex tension $T = H_{c,1}$	\leftrightarrow	scalar mass $m_{\rm XY}$
-charged scalar mass?	\leftrightarrow	vortex tension?
charge-anticharge potential	\leftrightarrow	vortex-antivortex potential

Duality maps fundamental d.o.f:s of one theory to non-local topological objects in the other.

In this talk I shall concentrate on

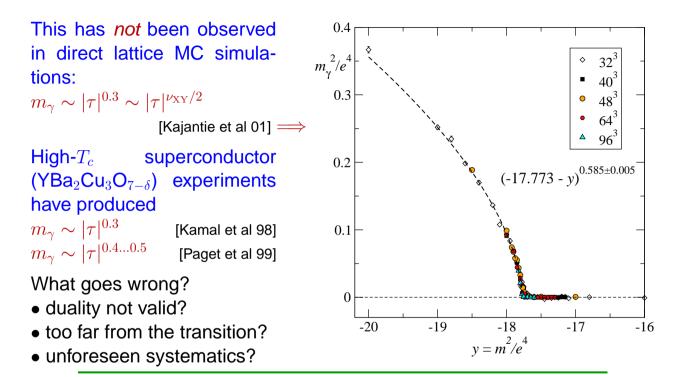
a) Vortex tension $T \leftrightarrow m_{XY}$ scalar mass.

b) Photon mass $m_{\gamma} \leftrightarrow$ current correlator. (Im $[\phi^* \partial_i \phi]_{XY}$).

As the transition is approached from the broken phase, duality implies that

 $T \sim |\tau|^{\nu_{\rm XY}}, \qquad m_{\gamma} \sim |\tau|^{\nu_{\rm XY}} \qquad \nu_{\rm XY} \approx 0.6723$

where $\tau = m^2 - m_c^2$ is the "temperature" parameter, and $\nu_{\rm XY}$ is the wellknown XY model critical exponent.



On the other hand, in the London limit ($\lambda \to \infty$), where the duality is on a firmer footing, lattice simulations using indirect methods suggest $m_{\gamma} \sim$ $|\tau|^{\nu_{XY}}$ [Olsson, Teitel 98; Hove, Sudbø 00]

Frozen superconductor

In order to elucidate the issue, we performed lattice simulations with a particular limit of the GL theory, frozen superconductor. This model is *exactly* dual to the XY model in the Villain form.

[Peskin 78; Thomas, Stone 78; Banks, Myerson, Kogut 77]

- 1) Discretize GL on the lattice (using non-compact gauge)
- 2) Take limits $\lambda \to \infty$, "hopping parameter" $\kappa \to \infty$
- ⇒ Integer-valued gauge theory, frozen superconductor:

$$\mathcal{Z}_{\mathrm{FZS}}(eta) = \sum_{\{I_{ec{x},i}\}} \exp\left(-rac{eta}{2}\sum_{ec{x},i>j}F_{ec{x},ij}^2
ight) \,,$$

where $F_{\vec{x},ij} = I_{\vec{x},i} + I_{\vec{x}+i,j} - I_{\vec{x}+j,i} - I_{\vec{x},j}$ and $I_{\vec{x},i} \in Z$.

XY model in the Villain form:

$$\begin{aligned} \mathcal{Z}_{\rm XY}(\kappa) &= \int D\theta \exp\left(-\kappa \sum_{\vec{x},i} s(\theta_{\vec{x}+i} - \theta_{\vec{x}})\right), \\ \text{where} \quad s(x) &= -\ln \sum_{k=-\infty}^{\infty} \exp\left(-\frac{1}{2}(x - 2\pi k)^2\right). \end{aligned}$$

Exact duality:

It is straightforward to show that

$$\mathcal{Z}_{\mathrm{FZS}}(\beta) = \mathcal{Z}_{\mathrm{XY}}(\frac{1}{\beta})$$

Even more usefully, we can couple FZS to an external (integer-valued) magnetic field $H_{\vec{x},i}$ in the usual way, using coupling

$$\sum_{\vec{x},i} \vec{B}_{\vec{x}} \cdot \vec{H}_{\vec{x}}, \qquad B_i \equiv \frac{1}{2} \epsilon_{ijk} F_{jk}$$

Duality relation now becomes

$$\mathcal{Z}_{ ext{FZS}}(eta,ec{H}_{ec{x}}) = \mathcal{Z}_{ ext{XY}}(rac{1}{eta},ec{H}_{ec{x}})$$

where $\vec{H}_{\vec{x}}$ couples to the XY model Noether current $(j_i(\vec{x}) \sim (\theta_{\vec{x}+i} - \theta_{\vec{x}}),$ corresponding to Im $\phi^* \partial_i \phi$ in continuum).

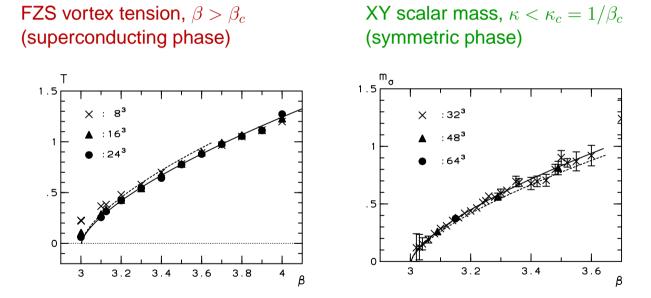
This enables us to relate physical observables of the two theories. For example, photon correlation function

$$\langle B_i(x)B_j(y)\rangle = \frac{\delta^2 \ln \mathcal{Z}_{\text{FZS}}(\beta, \vec{H})}{\delta H_i(x)\delta H_j(y)} = \frac{\delta^2 \ln \mathcal{Z}_{\text{XY}}(\beta, \vec{H})}{\delta H_i(x)\delta H_j(y)} = \langle j_i(x)j_j(y)\rangle$$

Likewise, we can show that Abrikosov vortex tension = mass of the scalar

Results

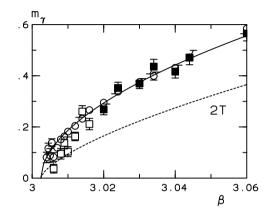
Indeed, Abrikosov vortex tension T in the frozen superconductor and the scalar mass are exactly dual to each other:



Measured critical exponent $\nu \approx 0.66$

[Neuhaus, Rajantie, Rummukainen 02]

However, the photon mass measurement in FZS gives again something different:



Measured critical exponent: $\nu_{\gamma} \approx 0.5 \neq \nu_{XY}$.

This cannot be the final value, because photon can decay into 2 vortices $\nu_{\gamma} \rightarrow \nu_{XY}$.

Culprit for difficulties in photon mass measurements: large anomalous exponent $\eta_A = 1$ in the photon propagator

Constructing dual theory for the Ginzburg-Landau model

[Kajantie, Laine, Neuhaus, Rajantie, Rummukainen 04]

- Ginzburg-Landau \leftrightarrow O(2) symmetric scalar theory ("S") duality
- In order to relate physics, we must consider the coupling to an external source (magnetic) field *H_i*.
- The duality conjecture now states that $\mathbb{Z}_{GL}(H_i) = \mathbb{Z}_{S}(H_i)$ near the phase transition point.

GL theory: the standard coupling to the magnetic field is

$$\mathcal{Z}_{\rm GL}(H_i) = \int \mathcal{D}A \,\mathcal{D}\phi^* \,\mathcal{D}\phi \,\exp\left[-S_{\rm GL}\right]$$
$$S_{\rm GL} = \int d^3x \left[\frac{1}{4}F_{ij}^2 + |D_i\phi|^2 + m^2|\phi|^2 + \lambda|\phi|^4 + \frac{B_i}{H_i}\right]$$

where $B_i = \frac{1}{2} \epsilon_{ijk} F_{jk}$. Because $\partial_i B_i = 0$, action is invariant under transformations

 $H_i(x) \mapsto H_i(x) - i\partial_i \alpha(x)$

where $\alpha(x)$ is an arbitrary real function. This generates a local U(1) symmetry.

Scalar theory: we fix the coupling to H_i by requiring that the action respects the above U(1) symmetry. In the scalar theory, it is natural to assume that this couples to the phase of the complex scalar; i.e. we assume that the dual field transforms as

$$\tilde{\phi} \mapsto e^{i\tilde{e}\alpha}\tilde{\phi}, \quad \tilde{\phi}^* \mapsto e^{-i\tilde{e}\alpha}\tilde{\phi}^*,$$

where $\tilde{e} = 2\pi/e$ (quantization, boundary conditions). Now we can fix the dual scalar theory as

$$S_{\rm S} = \int d^3x \Big\{ [(\partial_i - \tilde{e}H_i)\tilde{\phi}^*] [(\partial_i + \tilde{e}H_i)\tilde{\phi}] + \tilde{m}^2 \tilde{\phi}^* \tilde{\phi} + \tilde{\lambda} (\tilde{\phi}^* \tilde{\phi})^2 + \frac{1}{4} \tilde{z} \tilde{F}_{ij}^2 + \dots \Big\}$$
$$\mathcal{Z}_{\rm S}(H_i) = \int \mathcal{D}\tilde{\phi} \mathcal{D}\tilde{\phi}^* \exp{-S_{\rm S}}$$

where $\tilde{F}_{ij} \equiv \partial_i H_j - \partial_i H_j$.

- H_i couples to the scalar current $j_i = \text{Im}[\tilde{\phi}^* \partial_i \tilde{\phi}].$
- Relation between GL couplings (m², λ) and scalar couplings m
 ², λ are not fixed.
- We can still compare critical properties, which are not sensitive to parameter values

 Constant GL magnetic field H_i → chemical potential in the scalar theory (in 2+1 dim. language) [Son 02]

The duality allows us to give the GL critical quantities in terms of scalar (XY) critical exponents:

- Magnetic permeability (Coulomb phase) $\chi \equiv \partial B / \partial H \sim |\tau|^{\nu_{\rm XY}}$
- Anomalous exponent $\eta = 1$
- At the critical point, $\frac{\partial}{\partial au} p C^{-1}(p) \sim p^{-1/\nu_{\rm XY}}$
- Vortex tension $T \sim |\tau|^{\nu_{\rm XY}}$
- Photon mass in superconducting phase (pole of the propagator) $m_{\gamma} \sim |\tau|^{\nu_{\rm XY}}$
- . . .

Photon propagator

GL theory: photon correlation function

 $C_{ij}(x-y) = \langle B_i(x)B_j(y)\rangle$

Fourier transform of C has the structure

$$C_{ij}(p) = \left(\delta_{ij} - \frac{p_i p_j}{p^2}\right) \frac{p^2}{p^2 + \Sigma}$$

In the superconducting phase ($m^2 < m_c^2$), $\Sigma = m_{\gamma}^2$, and at the critical point

 $\Sigma(p) = A|p|^{2-\eta} + \dots$

 $\eta = \text{anomalous exponent.}$

Scalar theory: using the duality, we obtain the photon correlation function fully in terms of the scalar theory quantities:

$$C_{ij}(p) = -\tilde{z}p^2 + 2\tilde{e}^2 \left\langle \tilde{\phi}^* \tilde{\phi} \right\rangle - \tilde{e}^2 \frac{1}{V} \left\langle j_i(p) j_j(-p) \right\rangle$$

Magnetic permeability and anomalous exponent

Consider magnetic permeability

$$\chi \equiv \frac{\partial B}{\partial H} = \frac{1}{V} \frac{\partial^2}{\partial H^2} \ln \mathcal{Z}_{\text{GL}} = \lim_{p \to 0} C(p)$$

in the Coulomb (symmetric) phase of the GL theory.

In the scalar theory we are in the broken phase. Thus, as $p \rightarrow 0$, the current correlator is dominated by the Goldstone mode:

$$\langle j_i(p)j_j(-p)\rangle \sim \frac{p_i p_j}{p^2} \tilde{e}^2 \langle \tilde{\phi}^* \tilde{\phi} \rangle$$

Thus, we obtain

$$\chi \propto \langle \tilde{\phi}^* \tilde{\phi} \rangle \sim \xi \sim |\tau|^{\nu_{\rm XY}}$$

where ξ is the scalar model correlation length. Note: $\langle \phi^* \tilde{\phi} \rangle \propto$ helicity modulus of the scalar theory.

[Son 02]

Anomalous exponent can now be obtained by simple finite volume analysis:

- Consider $p \sim 1/L$, L system size
- If $L \gg \xi$, we are essentially at infinite volume and $C(p) \approx \chi \sim \xi$
- If $L \ll \xi$, we are effectively at critical point and $C(p) \approx p^2/(A|p|^{2-\eta}) \sim |p|^{-\eta} \sim L^{\eta}$
- Continuity at $L \sim \xi$:

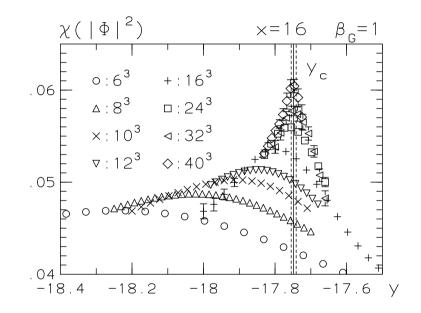
$$\begin{aligned} \xi &\sim \xi^{\eta} \\ \Rightarrow & \eta = 1 \end{aligned}$$

[Son 02; Appelquist, Pisarski 81; Bergerhoff, Freire, Litim, Lola, Wetterich 95; Herbut, Tesanovic 96]

Simulations of the GL theory

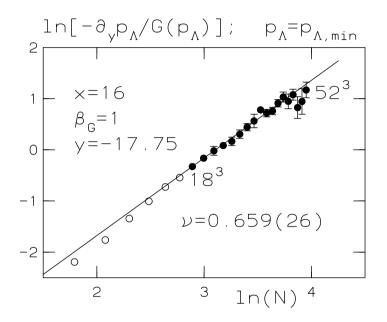
- Non-compact gauge action
- We use lattice spacing a = 1/e ($\beta = 1$) only not a problem for critical phenomena
- (theory superrenormalizable: continuum limit would not be a problem)
- we use $x \equiv \lambda/e = 16$, well within type II

We determine the critical point from the maximum location of the susceptibility of $\phi^*\phi$:



 $y_c \equiv m_c^2/e^4 \approx -17.75$

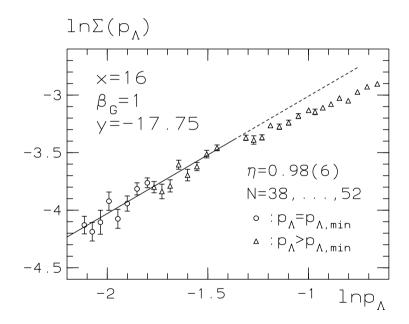
 $\frac{\partial}{\partial \tau} p C^{-1}(p) \sim p^{-1/\nu} \sim L^{1/\nu}$ at the critical point:



Fitted exponent $\nu = 0.659 \pm 0.026$ perfectly agrees with the XY model exponent $\nu_{\rm XY} \approx 0.67155$

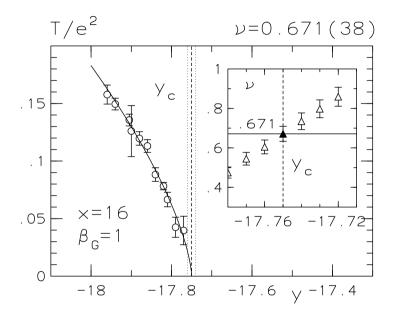
Anomalous dimension at the critical point:

$$C(p) \approx \frac{p^2}{p^2 + \Sigma}, \quad \Sigma \approx A|p|^{2-\eta}$$



Measured $\eta = 0.98 \pm 0.06$

Abrikosov-Nielsen-Olesen vortex tension in the superconducting phase:



critical exponent $\nu = 0.671 \pm 0.038$

Why photon mass is difficult?

The inverse propagator is

$$p^{2}C^{-1}(p) = p^{2} + \Sigma = p^{2} + m_{\Sigma}^{2} + A|p|^{2-\eta} + \dots$$

where $\eta = 1$, and $m_{\Sigma}^2 \sim |\tau|^{\nu_{\mathrm{XY}}}$.

In order to see the "right" critical behaviour, the propagator must be dominated by the anomalous term:

 $p^2 \ll A|p|^{2-\eta} \approx 0.13e^2|p|$ (in our case)

In this case the photon mass can be obtained from the pole,

 $m_{\rm pole} \sim |p| \sim m_{\Sigma}^2 \sim |\tau|^{\nu_{\rm XY}}$

If this is *not* the case and the propagator is dominated by the p^2 -term,

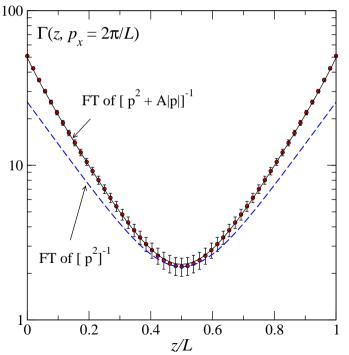
$$m_{\rm pole} \sim |p| \sim m_{\Sigma} \sim |\tau|^{\nu_{\rm XY}/2} \sim |\tau|^{0.33}$$

which is just what has been observed!

The correct critical behaviour requires:

- large volume $L \sim 2\pi/p \gg 50$ lattice units in our case
- small pole mass $m_{\gamma} \sim p$, i.e. close enough to the critical point.

Propagator at the critical point:



Conclusions

- Simulation results are a perfect match with XY-duality conjecture
- Magnetic field \leftrightarrow chemical potential
- Anomalous exponent of the gauge field propagator $\eta = 1$ explains the difficulties seen in lattice simulations and experiments(?)
- Experiments still too far away from the critical point?