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• Symmetry restoration in the standard model at high T

[Kirzhnitz, Linde, PLB 72 (1972)].

• Cosmology: T ∼ 100 − 200 GeV; t ∼ 10−11 s.

• EW interactions violate the baryon number B.

Electroweak baryogenesis?

– very sensitive to the qualitative and quantitative de-
tails of the transition:

→

accurate and reliable results about the thermodynamics
of the transition are needed!



• What do we know about the transition:

- For small mH , the transition is of 1st order.

- For mH>∼75 GeV there is no transition .

- Transition temperature Tc to an ∼ 1–2% accuracy

- Latent heat L, interface tension σ, Higgs field expec-
tation value v(T ) in the broken phase, metastability
around Tc.

- (screening) mass spectrum in the broken and the
symmetric phases.

• Tools: a 3D effective theory (dimensional reduction)

+ a combination of perturbative and non-perturbative
methods.

• Result: no room for EW baryogenesis in MSM

• → new physics

• In MSSM: maybe



Analytically:

1. Perturbative analysis:

• Perturbation theory works very well at T = 0

• IR regulated by v: mW ∼ 1
2gv

• At high T , IR divergences appear: symmetric phase?

T = 0

T = TC

P.T. works here

P.T. may work here

P.T. does not work hereVeff

φ

• 2-loop Veff(φ) [Arnold and Espinosa, PRD 47 (1993); Fodor and

Hebecker, NPB 432 (1994); Farakos, Kajantie, Rummukainen, Shaposh-

nikov, NPB 425 (1995); Buchmüller, Fodor and Hebecker, NPB 447 (1995)]

• Small mH : strong 1st order transition

• Transition becomes weaker whenmH increases (formally 1st order)

• Fails at mH ∼ 80 GeV even in broken phase



2. Non-perturbative RG flow

[Reuter and Wetterich, NPB 408 (1993);

Bergerhoff and Wetterich, NPB 440 (1995)]:

• Transition 1st order for small mH

• No transition for mH>∼200 GeV (cross-over)

3. ε -expansion [Arnold and Yaffe, PRD 49 (1994)]:

• 3 + ε dimensions

• Transition becomes weaker when mH increases, but remains 1st

order for all mH

• Reliability?

4. 1-loop Schwinger-Dyson equations

[Buchmüller and Philipsen NPB 443 (1995)]:

• 1st order for mH<∼100 GeV

• No transition for mH>∼100 GeV

• Reliability in the symmetric phase?



Matter–antimatter asymmetry and the electroweak phase transition:

• Sphaleron transitions violate B + L number.

• At T = 0, the sphaleron rate is strongly suppressed and unobserv-

able [G. t‘Hooft, PRL 37 (1976)].

• When T > Tc, the rate is not suppressed at all: Γ ∝ T 4.

• → Pre-existing asymmetry is washed out at T > Tc

• When Tc > T > 0, the sphaleron rate is proportional to

Γ ∝ T 4(Esph/T )7 exp[−Esph/T ]

where the energy of the sphaleron Esph ≈ 7 × πg−1v.

• I. Could the asymmetry have been generated during the elec-

troweak phase transition? [Kuzmin, Rubakov, Shaposhnikov, PLB 155

(1985)]

• II. Are sphalerons “frozen” quickly enough after the transition

so that the asymmetry is preserved?

• Freezeout condition:

Esph(Tc)/Tc > 45 → v(Tc)/Tc>∼1.2 .



Matter–antimatter asymmetry (= baryon number B) generation:

Sakharov conditions [Pisma ZhETF 5 (1967)] must be met:

1. CP and P non-conservation

2. baryon number violation (sphalerons)

3. Out of thermal equilibrium

1. and 2. OK for the electroweak transition, 3. OK if the transition is

of first order.

The EW transition occurs at t ∼ 10−11s, T ∼ 200 GeV. The transition

proceeds through bubble nucleation:

φ > 0

antibaryons

baryons

Γ

Γsph

sph > 0 φ = 0

~ 0

• Bubble wall lets preferably baryons through → excess of baryons

inside, antibaryons outside.

• Inside, Γsph ≈ 0, and B is conserved; outside, Γsph > 0, and

antibaryons are converted into baryons.

• → excess of matter over antimatter in the Universe.



Mass scales and dimensional reduction:
In EW theory near the transition temperature, a wide range of mass

scales (weak coupling)

πT ≫ mD ∼ gT ≫ g2T (∼ mH(Tc))

From perturbative analysis, we know that non-perturbative physics is

in light magnetic IR modes ∼ g2T .

→ effective theory for low-energy modes.

Matsubara modes: Bosons: p2 = ~p 2 + (2πnT )2 +m2
0

Fermions: p2 = ~p 2 + (π(n + 1)T )2 +m2
0

→ all n 6= 0 bosonic and all fermionic modes m3 ∼ πT

→ only n = 0 bosonic modes are light (and independent of τ = it).

→ replace the full 4D theory with an effective 3D theory of IR-modes

by “integrating” out all massive modes

1/ T

S4(ϕ4) 7−→ S3(ϕ3)

DR S4(ϕ4) → S3(ϕ3) can be done perturbatively, if

• πT is larger than all relevant mass scales.

• The coupling constants g2, λ are small (weak coupling).

No IR problems in the derivation of S3!



Electroweak Lagrangian (Euclidean, 4D):

L =
1

4
F a
µνF

a
µν +

1

4
BµνBµν + (Dµφ)†(Dµφ)

+
1

2
m2φ†φ + λ(φ†φ)2 + ψ̄(γµDµ + gY φ)ψ

OnlyAa
i , Bi (spatial gauge fields), φ, andAa

0, B0 (adjoint ‘Higgs’ fields)

survive 4D→3D.

We’re interested in the effective theory of scales <∼g
2T : fields Aa

0 and

B0 have Debye mass ∼ gT , g′T , and can be integrated over.

How to get the effective action?

I. Ansatz for (superrenormalizable) Lagrangian

L3 =
1

4
F a
ijF

a
ij +

1

4
BijBij + (Diφ)†(Diφ) +

1

2
m2

3φ
†φ + λ3(φ

†φ)2

II. Green’s function matching: match the 3D 2,(3),4 -point Green’s

functions to the corresponding 4D Green’s functions to the desired

accuracy (We work at 2-loop level form2
3 and 1-loop level for couplings).

• Dimensions: [g2
3] = [g′23] = [λ3] = GeV; field [φ] = GeV1/2

• Superrenormalizable: g3, λ3 do not run; m2
3 has 1-loop linear and

2-loop log-divergences.

Theory is uniquely fixed by

g3, x ≡
λ3

g2
3

y ≡
m2

3(g
2
3)

g4
3

z ≡
g′23
g2

3



The simplest example: connection

4D SU(2) − φ ↔ 3D SU(2) − φ

g2, m2, λ, T ∗ ↔ g2
3, m

2
3, λ3

To simplify the expressions, we use here

g = 2/3 mW = 80.6 GeV

g3 = 0.44015T ∗ (∼ g2T )

x = −0.00550 + 2.27196λ

y = 0.39818 + 2.7981λ

− 0.6156λ2 − 46.45584λ
(mW

T ∗

)2

To give a better intuitive feeling, the results here are often in terms of

T ∗, m∗
H , where

λ =
1

8
g2





m∗
H

mW





2

NOTE:m∗
H and T ∗ are only ‘tree-level’ T , mH : in order to get physical

values, pole mH , mW are needed (for a particular 4D model). For 4D

SU(2)-Higgs the differences are small.



Lattice action

SU(2) + Higgs in 3D:

L3 =
1

4
F a
ijF

a
ij + (Diφ)†(Diφ) +m2

3φ
†φ + λ3(φ

†φ)2

• Dimensions: [φ] = GeV1/2, [g2
3] = [λ3] = GeV

• Theory is fixed by

g3 x ≡ λ3/g
2
3 y ≡ m2

3(g
2
3)/g

4
3

Lattice: (Φ2 ≡ 1
2Trφ†φ):

S = βG
∑

2

(1 −
1

2
TrU2) − βH

∑

x,i

1

2
Trφ†xUx,iφx+i +

∑

x
[Φ2 + βR(Φ2 − 1)2]

CPC (exact when a→ 0):

g2
3a =

4

βG
,

x =
1

4
λ3aβG =

βRβG
β2
H

,

y =
β2
G

8

( 1

βH
− 3 −

2xβH
βG

)

+
9.5277βG

32π
(1 + 4x) +

+
1

16π2

[(51

16
+ 9x− 12x2

)(

ln
3βG
2

+ 0.09
)

+ 5.0 + 5.2x
]

.



4D actions:

- SU(2) - Higgs

- + fermions

- + U(1)

- MSSM . . .

Physical quantities at T = 0

perturbatively

(pole masses, gR)

@
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@@R
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‘integration’ over scale T by 2–loop matching

integrate over A0 (gT )

3D continuum SU(2) + φ (+ U(1))

parameters x, y (+ z)

3D lattice SU(2) + φ (+ U(1))

B
B
B
B
B
BN

2–loop, exact connection

in the continuum limit

K. Farakos, K. Kajantie, K. Rummukainen, M. Shaposhnikov,
NPB 425 (1994); NPB 442 (1995);
K.K., M. Laine, K.R., M.S, NPB 458 (1996); U(1): hep-lat/9612006
3D continuum – lattice: M. Laine, NPB 451 (1995)

MSSM: M. Laine, NPB 481 (1996); J.Cline, K.Kainulainen, NPB 482 (1996);
M.Losada, hep-ph/9605266

SU(5) GUT: A. Rajantie, hep-ph/9702255



Features:

Encapsulation:

1. Perturbative dimensional reduction 4D ↔ 3D

2. Analysis of the 3D effective action (analytical/numerical)

3. 4D theory ↔ T = 0 physical observables

Reduction:

4D couplings + T 7→ x, y (z)

y ∼ T : 4D theories are characterized by the value of x.

Economy:

3D theory simple to analyze numerically/analytically

Numerically:

• 4D fermions have only massive ∼ πT modes

→ effective action is bosonic

• Heavy scales and 4th dimension missing

→ easy on computers

• Superrenormalizability

→ scaling becomes transparent (UV-sector is in control)



Validity:

• Error in effective action:

δS = O(m2
α(T )/T 2) (+const.)

• Weak couplings: g2 ≪ 1, λ≪ 1

→ mH<∼240 GeV (MSM)

• Broken phase: mW (Tc) ≈
1
2gvc ≪ T

→ mH>∼30 GeV

• Action does not contain Dim-6 -operators (which would still give

a renormalizable action in 3D)

For example, a fermion loop

causes a shift ∼ 1% in mini-

mum location of Veff(φ) (top

quark).

g
Y

t 

φ 



Conclusions
In MSM:

• m∗
H
<
∼75 GeV (x<∼0.10) transition is 1st order and turns into a

cross-over for larger mH

• Tc ∼ 1 GeV accuracy

• latent heat L, interface tension σ, metastability temperatures, dis-

continuity in < φ >

• 2-loop P.T. provides a good guideline for the EW transition for

m∗
H
<
∼60 GeV (x<∼0.09). However, deviations are seen:

- T latt
c < T pert

c (difference 1–2%)

- σlatt ∼ 1
4σ

pert

• Phases analytically connected, but they behave like real ‘symmet-

ric’ and ‘broken’ phases to a very good accuracy

• confinement in the high-temperature phase

• Chern-Simons diffusion?

• EW baryogenesis requires x < 0.04. No mH-value can satisfy

this in MSM. MSSM?

3D effective action:

accurate and very economical method for the phase transition stud-

ies in weakly coupled systems (MSM, MSSM, GUT?).



< Φ2 > /g2
3 for mH = 55 – 120 GeV
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U1 gauge field survives DR, and it can cause significant non-

perturbative effects. 3D action is

L3 =
1

4
F a
ijF

a
ij +

1

4
BijBij + (Diφ)†(Diφ) +

1

2
m2

3φ
†φ + λ3(φ

†φ)2

where

Di = ∂i + ig3Ai +
1

2
ig′3Bi

3 dimensionless parameters:

x ≡
λ3

g2
3

y ≡
m2

3(g
2
3)

g4
3

z ≡
g′23
g2

3

= tan2 θW

We use:

z = 0.3 ≈ m2
Z/m

2
W − 1

x = 0.0644 and 0.6240 (m∗
H = 60 and 180 GeV)

Mass spectrum: mH , mW±, mZ , mγ

The effect of U(1) field when x = 0.0644

z = 0 z = 0.3

yc lattice -0.00142(36) 0.00724(45)

+ pert. U(1) 0.0060

2-loop P.T. 0.01141 0.01882

∆ℓ3 lattice 0.471(8) 0.569(17)

+ pert. U(1) 0.55

2-loop 0.493 0.575

σ3 lattice 0.0116(28) 0.0165(30)

+ pert. U(1) 0.014

2-loop 0.0401 0.0487


