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Abstract. We consider n-tuples of differential 1-forms in the Euclidean
n-space that satisfy a quasiconformality condition and an asymptotic
closedness condition. We show that renormalized sequences of such tu-
ples have subsequences converging to differentials of quasiregular maps.
We then use these maps to show that the tuples carry topological infor-
mation.

1. Introduction

The study of quasiconformal or more general quasiregular mappings is a
study of solutions f = (f1, . . . , fn) in the Sobolev space W 1,n

loc (Ω; Rn) to the
system

(1.1) (det Df(x))−2/n Df(x)tDf(x) = G(x),

where G is a measurable matrix valued function in a domain Ω in Rn, n ≥ 2,
satisfying, for some fixed 1 ≤ K < ∞,

1

K
|ξ|2 ≤ 〈G(x)ξ, ξ〉 ≤ K|ξ|2, ξ ∈ Rn,

almost everywhere in Ω. The general existence theory due to Morrey, Bo-
jarski, and others lends the two dimensional theory a special flavor. In
dimension n ≥ 3, it is well known that the system (1.1) is overdetermined;
moreover, there are no known integrability conditions that would guaran-
tee the existence of solutions. See [12] for a thorough discussion on these
matters.

In this paper, we approach the existence question from the point of view
of approximative solutions, a method suggested by Sullivan [16], [17]. The
matrix field G determines a conformal structure on Ω, and to a measurable
Riemannian metric in this conformal class we can associate an orthonormal
frame field ρ of positive orientation. This frame field, interpreted as a matrix
field, satisfies the equation

(1.2) (det ρ(x))−2/nρ(x)tρ(x) = G(x).
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On the other hand, ρ can be naturally interpreted as a coframe of 1-forms.
In what follows, we adopt this interpretation.

To describe our a priori assumptions on the frame field ρ, let us consider
a quasiregular mapping f : Ω → Rn. The 1-forms

(1.3) ρi := dfi =
n
∑

j=1

∂fi

∂xj
dxj , i = 1, . . . , n ,

belong to Ln
loc(Ω) and satisfy

(QC) |ρ|n ≤ K ⋆ (ρ1 ∧ · · · ∧ ρn)

almost everywhere in Ω, where by |ρ| we mean the operator norm of the

matrix (ρij) =
(

∂fi

∂xj

)

and by ⋆(ρ1 ∧ · · · ∧ ρn) the density of ρ1 ∧ · · · ∧ ρn

with respect to the Euclidean volume element; ⋆(ρ1∧· · ·∧ρn) coincides with
the determinant of (ρij) almost everywhere. The frame ρ = (ρ1, . . . , ρn) as
in (1.3) is a pullback frame f∗dx of the standard Euclidean frame dx =
(dx1, . . . , dxn).

In general, we call an n-tuple ρ = (ρ1, . . . , ρn) of (Borel) measurable 1-
forms in Ω a measurable frame. An obvious integrability condition for such
a frame to be a pullback frame is that dρ = (dρ1, . . . , dρn) = 0 in the sense
of distributions.

We do not want to assume such a strong condition. Instead, our objective
is to study the asymptotic behavior of a frame at a point, and then find
quasiregular mappings through a blow-up or renormalization procedure.

We now define conditions on a frame that will lead to germs of quasireg-
ular mappings. Let x0 ∈ Rn. We call a (nonzero) measurable frame
ρ = (ρ1, . . . , ρn) a strong K-quasiconformal frame at x0 if ρ is defined in
a ball B(x0, r0) about x0 and satisfies integrability assumptions ρ ∈ Lp for
some p > n and dρ ∈ Lq for some q > n−1, the quasiconformality condition
(QC), the strong doubling condition

(SD) ∦ ρ‖p,B(x0,r) ≤ C ∦ ρ‖n,B(x0,r/2) for every 0 < r < r0,

and the asymptotic closedness condition

(AC) r
∦ dρ‖q,B(x0,r)

∦ ρ‖n,B(x0,r)
→ 0 as r → 0.

Here and in what follows we use the notation

∦ u‖p,E =
(

|E|−1

∫

E
|u(x)|p dx

)1/p
.

Whereas we consider strong doubling to be a technical condition, the
asymptotic closedness is a necessary condition for the renormalization pro-
cess to produce mappings. The strongness of the frame refers to the high
integrability assumption q > n − 1 of dρ, see Section 2.
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Although the imposed conditions seem restrictive, the differential df =
(df1, . . . , dfn) of a quasiregular mapping f : B(x0, r0) → Rn is a strong quasi-
conformal frame at x0. Indeed, (QC) is the defining condition of quasiregu-
larity; that (SD) is true follows from the higher integrability of the derivative
of a quasiregular mapping and from the local doubling property [13], [1]. It
is a rather deep fact that (SD) holds for ρ = df . Asymptotic closedness is
obvious as dρ = d2f = 0.

To describe the renormalization process, let ρ be a quasiconformal frame
at x0 and define a mapping fρ by

x 7→
∫

[x0,x]
ρ.

It can be easily seen that the mapping fρ need not be quasiregular in any
neighborhood of x0. However, given a sequence 0 < ri < r0 tending to zero,
and maps fi defined by

fi(x) =

∫

[x0,x0+ri(x−x0)]

ρ

‖ρ‖n,B(x0,ri)
,

we may pass to a subsequence converging to a quasiregular tangent map.
For the statement of the first theorem, we say that a quasiregular mapping

f : Rn → Rn is polynomial (or of polynomial type) if |f(x)| → ∞ as |x| →
∞; cf. [9]. The degree deg(f) of such an f is the degree of its extension

f̂ : Sn → Sn.

Theorem A. Suppose that ρ is a strong K-quasiconformal frame at x0, and
ri ց 0. Then each fi is continuous, and there exist a subsequence ξ = (rij )
and a polynomial K-quasiregular mapping fξ : Rn → Rn so that fij → fξ

locally uniformly.

We denote the set of all mappings fξ obtained in Theorem A by I(x0, ρ),
and call this set the infinitesimal space of ρ at x0. The infinitesimal space
of a quasiregular mapping was introduced and thoroughly investigated by
Gutlyanskii, Martio, Ryazanov, and Vuorinen [5]. In particular, they estab-
lished Theorem A, as well as Theorem B below, in the case where ρ is a
differential of a quasiregular mapping (a closed frame). Although the infini-
tesimal space of the frame may consist of several maps, it carries topological
information on the frame as the following theorem presents.

Theorem B. Suppose that ρ is a strong K-quasiconformal frame at x0.
Then all mappings in I(x0, ρ) have the same positive degree.

We define the index of ρ at x0, denoted by i(x0, ρ), to be the common
degree of the mappings in I(x0, ρ). Our last main theorem shows that the
index of a strong quasiconformal frame is stable in the following asymptotic
sense. When ρ is a frame in B(x0, r0), we define

ρr =
λ∗

rρ

‖ρ‖n,B(x0,r)
,
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for every 0 < r < r0, where λr(x) = x0 + r(x − x0).

Theorem C. Suppose that ρ and ρ̃ are strong K-quasiconformal frames at
x0 and that

(1.4) lim inf
r→0

‖ρr − ρ̃r‖n,B(x0,1) < ε,

where ε > 0 depends only on n and the datas of ρ and ρ̃. Then i(x0, ρ) =
i(x0, ρ̃).

Given Theorems A, B, and C, we obtain that, when ρ is a strong quasi-
conformal frame, infinitesimal solutions of Beltrami systems of type (1.2),
are quasiregular mappings of the degree determined by the infinitesimal ge-
ometry of the frame. Moreover, the space of solutions is stable under natural
perturbations.

The proof of Theorem A relies on three main ingredients. First, in Sec-
tion 3, we consider a suitable extension of the smooth Poincaré homotopy
operator. Then, in Section 4, we prove, with the aid of the results in [11],
a weak compactness theorem for quasiconformal frames. This in turn im-
plies a weak version of Theorem A for quasiconformal frames (Theorem 4.4),
where a weak convergence in Ln of differentials instead of uniform conver-
gence of mappings is concluded. In Section 5 we prove a continuity estimate
for the maps fi, which, together with the earlier results, finishes the proof of
Theorem A. Theorems B and C are then proved by combining the uniform
convergence property with methods from quasiregular mapping theory.

Although there is no formal connection, we would like to mention a recent
work of Faraco and Zhong in the conformal case of the geometric rigidity
problem of non-linear elasticity [2]; see also Friesecke, James, and Müller [3]
and Rešetnjak [14]. It is tempting to consider the geometric rigidity problem
as a question of finding such a mapping that its gradient field is a section of
a given product fiber bundle, where the fiber is a given set of matrices. In
such interpretation, the solutions to the Beltrami equation (1.1) correspond
to finding mappings having gradient fields in a bundle, where the fibers are
defined by the conformal structure G. For a more detailed discussion on the
connections between non-linear elasticity and geometric function theory, we
refer to [12, Section 1.12].

The notions of quasiconformal frames and Theorems A, B, and C gen-
eralize the theory of Cartan-Whitney presentations due to Sullivan [16],
Heinonen and Sullivan [10], and Heinonen and Keith [7]. In the theory of
Cartan-Whitney presentations, the bi-Lipschitz invariance and the branch
set of the presentation lead to applications of the local theory to the paramet-
rization and smoothability questions of Lipschitz manifolds. In the same
spirit, we initiate in Sections 8 and 9 the study of the quasi-invariance and
the branch set of quasiconformal frames. Section 9 ends with open questions
in this direction.
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Juha Heinonen passed away while this manuscript was being finished. P.P.
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2. Notation

Given n ≥ 2, ℓ ∈ {0, . . . , n}, and a domain Ω in Rn, we denote by Γ(
∧ℓ Ω),

C∞(
∧ℓ Ω), and C∞

0 (
∧ℓ Ω) the spaces of measurable ℓ-forms, smooth ℓ-forms,

and smooth compactly supported ℓ-forms on Ω, respectively.
The Euclidean metric on Ω induces an inner product 〈·, ·〉 in the fibers of

the exterior bundle
∧ℓ TΩ of ℓ-covectors. This is uniquely determined by

the requirement

〈dxI , dxJ 〉 =

{

1, I = J,
0, otherwise,

where I = (i1, . . . , iℓ) and J = (j1, . . . , jℓ) are ordered ℓ-tuples so that
1 ≤ i1 < · · · < iℓ ≤ n and 1 ≤ j1 < · · · < jℓ ≤ n, and dxI and dxJ are the
ℓ-forms dxi1 ∧ · · · ∧ dxiℓ and dxj1 ∧ · · · ∧ dxjℓ

, respectively. We denote the
associated norm and the Hodge star operator by | · | and by ⋆, respectively.

The Lp-norm of an ℓ-form ω ∈ Γ(
∧ℓ Ω) for 1 ≤ p < ∞ is defined by

‖ω‖p,Ω =

(
∫

Ω
|ω|p dx

)1/p

,

and the L∞-norm by

‖ω‖∞,Ω = esssupx∈Ω |ω(x)|.
The space of p-integrable ℓ-forms on Ω is denoted by Lp(

∧ℓ Ω) and the

corresponding local spaces by Lp
loc(
∧ℓ Ω). We write Hs for the Hausdorff

s-measure and abbreviate dx = dHn for the Lebesgue n-measure. We also
use the notation

∦ ω‖p,Ω =
(

|Ω|−1

∫

Ω
|ω(x)|p dx

)1/p

for ω ∈ Lp(
∧ℓ Ω).

The weak exterior differential of an ℓ-form ω ∈ L1
loc(
∧ℓ Ω) is the unique

form dω ∈ L1
loc(
∧ℓ+1 Ω), if exists, that satisfies

∫

Ω
dω ∧ ϕ = (−1)ℓ+1

∫

Ω
ω ∧ dϕ

for every ϕ ∈ C∞
0 (
∧n−ℓ−1 Ω). We denote by Wp,q(

∧ℓ Ω) the (p,q)-partial

Sobolev space of ℓ-forms ω ∈ Lp(
∧ℓ Ω) having dω ∈ Lq(

∧ℓ+1 Ω).

We endow the fibers of the product bundle (
∧ℓ TΩ)n with the operator

norm

|ξ| = sup
(v1,...,vℓ)

|(ξ1(v1, . . . , vℓ)), . . . , ξn(v1, . . . , vℓ))|
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where ξ = (ξ1, . . . , ξn) is an n-tuple of ℓ-covectors, and the supremum is
taken over vectors v1, . . . , vℓ ∈ TΩ satisfying

∑ |vi|2 = 1.
We call an n-tuple ρ = (ρ1, . . . , ρn) of (Borel) measurable 1-forms on Ω a

measurable frame. We also say that a measurable frame is a Wp,q-frame if
the forms ρi, i = 1, . . . , n, belong to Wp,q. We then denote

dρ = (dρ1, . . . , dρn).

A Wp,q-frame ρ = (ρ1, . . . , ρn) is a K-quasiconformal frame at x0 if ρ is
defined in a ball B(x0, r0) about x0, p > n, q > n/2, and if ρ satisfies (QC)
and (AC) conditions together with the doubling condition

(D) ‖ρ‖n,B(x0,r) ≤ C‖ρ‖n,B(x0,r/2) for every 0 < r < r0.

We denote by B(x0, r) the open n-ball centered at x0 ∈ Rn of radius r > 0.
We also write B(r) = B(0, r) and Bn = B(1), for short. The corresponding
(n − 1)-spheres are denoted by S(x0, r), S(r), and Sn−1, respectively.

We let C = C(a, b, . . .) denote a general constant that depends only on a,
b, . . ., and whose value may vary from line to line.

3. The Lp-Poincaré homotopy operator

For two points a, b ∈ Rn we denote the (oriented) line segment from a to
b by [a, b]. For a (pointwise defined) Borel measurable 1-form ω we set

∫

[a,b]
ω :=

∫ 1

0
ω(a + t(b − a); b − a) dt

whenever the integral on the right exists.
The main result of this section is the following theorem on the existence

and properties of the function fρ : B → R,

fρ(x) =

∫

[x0,x]
ρ,

in a ball B = B(x0, r) for ρ ∈ Wp,q(
∧1 B).

Theorem 3.1. Suppose that ρ ∈ Wp,q(
∧1 B), B = B(x0, r), for some p > n

and q > n/2. Then there exists α = α(n, p, q) > 1 so that fρ ∈ W 1,α(B).
Moreover,

∦ dfρ‖α,B ≤ ∦ ρ‖α,B + Cr ∦ dρ‖q,B ,

where C = C(n, α, q) > 0.

The proof of Theorem 3.1 is based on an extension of the Poincaré homo-

topy operator Kx0
: C∞(

∧ℓ B) → C∞(
∧ℓ−1 B),

Kx0
ω(x; v1, . . . , vℓ−1) =

∫ 1

0
tℓ−1ω(x0 + t(x − x0);x − x0, v1, . . . , vℓ−1) dt,

where ω ∈ C∞(
∧ℓ B) and v1, . . . , vℓ−1 ∈ Rn. Here and in what follows,

we identify the fibers of
∧1 TB with Rn, as usual. For brevity, we write
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K instead of K0 if B is a ball about the origin. For a smooth 1-form ρ on
B = B(x0, r) we have fρ = Kx0

ρ.

Remark 3.2. The operator K can be, for many purposes, replaced with

the convoluted Poincaré homotopy operator T : Lp(
∧ℓ B) → Lp(

∧ℓ−1 B) of
Iwaniec and Lutoborski [11]. See Section 6 for a discussion.

We note that given a Euclidean similarity map A : Rn → Rn we have

(3.1) KA(x0)ρ = (A−1)∗Kx0
(A∗ρ)

for every smooth ℓ-form ρ defined in a ball about A(x0). In particular, for
every such 1-form,

fρ ◦ A = Kx0
A∗ρ.

Lemma 3.3. Suppose that ω ∈ C∞(
∧ℓ B) and p > n/ℓ. Then

(3.2) ∦ Kx0
ω‖α,B ≤ Cr ∦ ω‖p,B,

where α = p if p ≥ (n − 1)/(ℓ − 1) and 1 < α < p/(n − p(ℓ − 1)) otherwise,
and C = C(n, α, p, ℓ) > 0.

Proof. By (3.1) we may assume that B = B(r). Given p > n/ℓ, let α be as
in the statement. First, we have

|Kω(x)|α ≤ C
(

∫ 1

0
tℓ−1|x||ω(tx)| dt

)α
≤ C|x|α

∫ 1

0
t(ℓ−1)α|ω(tx)|α dt

by Hölder’s inequality. Next we integrate over Sn−1(s), 0 < s < r. By
Fubini’s theorem and change of variables y = tx,
∫

Sn−1(s)
|Kω(x)|α dHn−1(x) ≤ Csα

∫ 1

0

∫

Sn−1(s)
t(ℓ−1)α|ω(tx)|α dHn−1(x) dt

= Csα

∫ 1

0
tβ
∫

Sn−1(ts)
|ω(x)|α dHn−1(x) dt,

where β = (ℓ − 1)α + 1 − n. Then, by change of variables η = ts, the last
term equals

(3.3) Csα−1−β

∫ s

0
tβ
∫

Sn−1(t)
|ω(x)|α dHn−1(x) dt.

We split the rest of the proof to two cases. First, if p ≥ (n−1)/(ℓ−1), then
β ≥ 0. We estimate the t-term and use Fubini’s theorem to see that (3.3) is
bounded from above by

Csα−1

∫

B(s)
|ω(x)|α dx.

Thus,

‖Kω‖α
α,B(r) ≤ C

∫ r

0
sα−1

∫

B(s)
|ω(x)|α dx ds ≤ Crα||ω||αα,B(r),

which yields (3.2).
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If p < (n − 1)/(ℓ − 1), then β < 0 and α − 1 − β > 0. Thus (3.3) and
Fubini’s theorem yield

‖Kω‖α
α,B(r) ≤ C

∫ r

0
sα−1−β

∫ s

0
tβ
∫

Sn−1(t)
|ω(x)|α dHn−1(x) dt ds

≤ Crα−β

∫

B(r)
|x|β|ω(x)|α dx.

We use Hölder’s inequality

rα−β

∫

B(r)
|x|β|ω(x)|α dx ≤ rα−β

(

∫

B(r)
|x|γ dx

)(p−α)/p
||ω||αp,B(r),

where γ = βp/(p − α). By our choice of α, γ > −n, and so the last term is
bounded from above by

Crα+n−nα/p||ω||αp,B(r),

where C = C(n, α, p, ℓ) > 0. Thus (3.2) holds. The proof is complete. �

By Lemma 3.3, and density of smooth forms in Lp(
∧ℓ B), the extension

Kx0
: Lp(

∧ℓ B) → Lα(
∧ℓ−1 B) is well-defined and (3.2) holds. Recall that

in the smooth case Kx0
is a chain homotopy between identity and zero, that

is,

(3.4) ω = Kx0
dω + dKx0

ω.

We next show that this identity remains valid under suitable Sobolev regu-
larity assumptions.

Lemma 3.4. Suppose that ω ∈ Wp,q(
∧ℓ B) for some p > n/ℓ and q >

n/(ℓ + 1). Then (3.4) holds.

Proof. We may assume that B = Bn. By density, there exists a sequence

(ωi) of smooth forms in Bn so that ωi → ω in Lp(
∧ℓ Bn) and dωi → dω in

Lq(
∧ℓ+1 Bn). We fix η ∈ C∞

0 (
∧ℓ Bn). Then

∫

Bn

〈ω −Kdω, η〉 =

∫

Bn

〈ω − ωi, η〉 −
∫

Bn

〈Kdω −Kdωi, η〉

+

∫

Bn

〈ωi −Kdωi, η〉.

The first term on the right hand side tends to zero as i → ∞ by the Lp-
convergence, and the second by Lemma 3.3 and our choice of q. For the last
term we have
∫

Bn

〈ωi −Kdωi, η〉 =

∫

Bn

〈dKωi, η〉 =

∫

Bn

〈Kωi, d
∗η〉 →

∫

Bn

〈Kω, d∗η〉

by (3.4), Lemma 3.3, and our choice of p. The proof is complete. �
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Proof of Theorem 3.1. We may assume that B = B(r). By Lemmas 3.3 and
3.4, Kρ is integrable, and

∦ dKρ‖α,B = ∦ ρ −Kdρ‖α,B ≤ ∦ ρ‖α,B+ ∦ Kdρ‖α,B

≤ ∦ ρ‖α,B + Cr ∦ dρ‖q,B ,

where C = C(n, α, q) > 0. Thus Kρ ∈ W 1,α(B). On the other hand,
Kρ = fρ almost everywhere in B by Fuglede’s lemma [4, Theorem 3(f)].
The proof is complete. �

4. Weak compactness of quasiconformal frames

In this section we turn to the setting of quasiconformal frames. Recall
that, given a frame ρ = (ρ1, . . . , ρn) in a ball B = B(x0, r0), and 0 < r < r0,
we denote

ρr =
λ∗

rρ

‖ρ‖n,B(x0,r)
, λ(x) = x0 + r(x − x0),

and fr = Kx0
ρr. Given a sequence (ri), we denote ρi = ρri

and fi = Kx0
ρi

if there is no ambiguity.

Theorem 4.1. Suppose that ρ is a Wp,q-frame in B(x0, r) for p > n and q >
n/2 satisfying (QC) with some K ≥ 1 and (AC). Let ri ց 0. Then there
exist a subsequence ξ = (rij ) and a K-quasiregular mapping fξ : B(x0, 1) →
Rn such that

ρij |B(x0, 1) → dfξ

weakly in Ln.

The following two-dimensional example shows that the limit map fξ need
not be quasiregular if (AC) is relaxed.

Example 4.2. We define ρ = (ρ1, ρ2) by ρ1 = x1dx1+x2dx2, ρ2 = −x2dx1+
x1dx2. Then ρ satisfies (QC) with K = 1. Moreover, |dρ| ≡ 1 and

r
∦ dρ‖q,B(r)

∦ ρ‖2,B(r)
=

√
2

for every r > 0 and q > 1. However, fξ(x) − fξ(0) = (21/2|x|2/π1/2, 0) for
every limit map fξ in Theorem 4.1. These mappings are not quasiregular or
even discrete.

We do not know if it is possible for the map fξ in Theorem 4.1 to be a
constant map. This is in fact equivalent to the question whether Condition
(D) follows from the other conditions in the definition of a quasiconformal
frame. That (D) is true for closed frames i.e. differentials of quasiregu-
lar mappings depends on a deep theorem of Rešetnjak: quasiregular map-
pings are branched covering maps, cf. [15]. We would need an extension of
Rešetnjak’s theorem to our current setting in order to be able to show that
our maps fξ are always nontrivial.
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The following example shows that constant maps can arise if the assump-
tion (AC) is replaced by

(4.1) lim inf
r→0

r
∦ dρ‖q,B(x0,r)

∦ ρ‖n,B(x0,r)
= 0.

Example 4.3. In this example, we consider 1-frames on R2 as complex val-
ued 1-forms on C for notational brevity. This convention allows us to con-
sider the pull-back frame (f∗

kdx1, f
∗
k dx2), where fk : C → C is the mapping

fk(z) = zk, as a 1-form dzk. As dzk = kzk−1dz, we have that |dzk| = k|z|k−1.
Fix 1 < q < 2. Let (rk) be a decreasing sequence so that rk+1/rk → 0

as k → ∞. We assume for simplicity that r0 = 1 and 3rk+1 < rk for every
k ≥ 1. Let {αk} be a smooth partition of unity, k ≥ 1, so that supp αk ⊂
B(rk) \ B̄(rk+1/2), αk ≡ 1 on B(rk/2) \ B̄(rk+1), and ‖dαk‖∞ ≤ 4/rk+1.

We set ρ to be the 1-frame

ρ =

∞
∑

k=1

αkdzk =

(

∞
∑

k=1

αkkzk−1

)

dz

on B2. Clearly, ρ satisfies (QC) with K = 1.
To see that ρ satisfies (4.1), we first observe that we have the pointwise

estimate |dρ| ≤ Ckrk−3
k on B(rk) \ B̄(rk/2) for every k, where C > 0 is a

constant. Since dρ = 0 in the complement of these annuli, we have that
∫

B(rk/2)
|dρ|q =

∫

B(rk+1)
|dρ|q ≤ Ckqr

(k−2)q
k+1 r2

k+1

and

∦ dρ‖q,B(rk/2) ≤ Ckrk−2
k

(

rk+1

rk

)2/q

.

Furthermore, we have the estimate

∦ ρ‖2,B(rk/2) ≥ Ckrk−1
k

for every k, where C > 0 is a constant. Hence along the sequence (rk/2) we
have

(rk/2)
∦ dρ‖q,B(rk/2)

∦ ρ‖2,B(rk/2)
≤ C

(

rk+1

rk

)2/q

→ 0

as k → ∞. Thus ρ satisfies (4.1). However, ρ does not satisfy (AC), which
can be seen as follows. By the pointwise estimate

|dρ| ≥ C(k − 1)|z|k−2|dαk−1 ∧ dz| = C(k − 1)|z|k−2|dαk−1|
on B(rk) \ B̄(rk/2), we have

∫

B(rk)
|dρ|q ≥ C(k − 1)qr

(k−2)q
k

∫

B(rk)\B̄(rk/2)
|dαk−1|q

≥ C(k − 1)qr
(k−2)q
k capq(B(rk), B̄(rk/2))

= C(k − 1)qr
(k−2)q
k r2−q

k ,
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where capq is the (variational) q-capacity, see [15, II 10]. Since |ρ| ≤ 2k|z|k−2

on B(rk), we have

rk

∦ dρ‖q,B(rk)

∦ ρ‖2,B(rk)
≥ rk

C(k − 1)r
k−2+(2−q)/q−2/q
k

Ckrk−2
k

≥ C > 0

for every k. Thus ρ does not satisfy (AC).
Let (tk) be the sequence tk = rk/3 and set ρk = ρtk . Let ξ = (tij )

be a subsequence of (tk). We show that if there exists a mapping f ∈
W 1,2(B2; R2) so that ρij |B2 → df weakly in L2 then f is a constant map.

Let 0 < R < R′ < 1. Since
∫

B(Rrk/3)
|ρ|2 ≤

∫

B(Rrk/3)
|dzk|2 ≤ Ck2(Rrk/3)

2k

and
∫

B(rk/3)\B(R′rk/3)
|ρ|2 ≥

∫

B(rk/3)\B(R′rk/3)
|dzk|2

≥ Ck2(R′rk/3)
2(k−1)((rk/3)

2 − (R′rk/3)
2),

where C > 0 is a constant, we have that

(4.2) ‖ρk‖2,B(R) =
‖ρ‖2,B(Rrk/3)

‖ρ‖2,B(rk/3)
≤

‖ρ‖2,B(Rrk/3)

‖ρ‖2,B(rk/3)\B(R′rk/3)
→ 0 as k → ∞.

Thus, if there exists f ∈ W 1,2(B2; R2) so that ρij → df weakly in L2 then f
is a constant mapping. By (4.2), ρ does not satisfy (D).

As mentioned above, the doubling condition guarantees the nontriviality
of the tangent maps.

Theorem 4.4. Suppose that ρ is a K-quasiconformal frame at x0, and
ri ց 0. Then there exist a subsequence ξ = (rij ) and a polynomial K-
quasiregular mapping fξ : Rn → Rn such that

ρij → dfξ

locally weakly in Ln.

For the proofs of Theorems 4.1 and 4.4, we first note that

(4.3) ‖ρr‖p,B(x0,t) = C(n, p)tn/p ∦ ρ‖p,B(x0,tr)

∦ ρ‖n,B(x0,r)

and

(4.4) ‖dρr‖q,B(x0,t) = C(n, q)tn/qr
∦ dρ‖q,B(x0,tr)

∦ ρ‖n,B(x0,r)
,

where C(n, s) = |Bn| 1s− 1

n . In particular, ‖ρr‖n,B(x0,1) = 1.
The proof of Theorem 4.1 is based on the weak compactness of mappings

fρi
in W 1,α and on the weak Ln-compactness of frames satisfying (QC).
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Proposition 4.5. Let K ≥ 1 and (ρi) be a sequence of frames, bounded in

Wn,q(
∧1 Bn) for some q > n/2, converging weakly in Ln to a Wn,q-frame

ρ = (ρ1, . . . , ρn). If the frames ρi satisfy Condition (QC) with K, then ρ
satisfies (QC) with K.

Proof. By the convexity of t 7→ tn,

|ρi|n − |ρ|n ≥ n|ρ|n−1 (|ρi| − |ρ|)
for every i. Thus

∫

Bn

η|ρ|n ≤ lim inf
i→∞

(
∫

Bn

η|ρi|n − n

∫

Bn

η|ρ|n−1(|ρi| − |ρ|)
)

for every η ∈ C∞
0 (Bn). Since η|ρ|n−1 ∈ Ln/(n−1)(Bn) and |ρi| → |ρ| weakly

in Ln, we have

(4.5)

∫

Bn

η|ρ|n ≤ lim inf
i→∞

∫

Bn

η|ρi|n ≤ lim inf
i→∞

K

∫

Bn

η ⋆ ((ρi)1 ∧ · · · ∧ (ρi)n) .

Since q > n/2, we have by compensated compactness [11, Theorem 5.1] that

(4.6) lim
i→∞

∫

Bn

η ⋆ ((ρi)1 ∧ · · · ∧ (ρi)n) =

∫

Bn

η ⋆ (ρ1 ∧ · · · ∧ ρn) .

Combining (4.5) and (4.6), we have

|ρ|n ≤ K ⋆ (ρ1 ∧ · · · ∧ ρn)

almost everywhere in Bn. The proof is complete. �

Proof of Theorem 4.1. We may assume that the frames ρi are defined in Bn

and x0 = 0. By (4.3), (4.4), and (AC), (ρi) is bounded in Wn,q. Hence
there exist a subsequence, also denoted by (ri), and a frame ρ in Bn so that
ρi → ρ weakly in Ln. By Proposition 4.5, ρ satisfies (QC) with K.

Now we consider the sequence fi = Kρi. Combining Theorem 3.1, (4.3),
(4.4), and (AC) yields

∦ dfi‖α,Bn ≤ ∦ ρi‖α,Bn + C ∦ dρi‖q,Bn ≤ C

for some α > 1. This together with the Sobolev-Poincaré inequality shows
that (f̃i) = (fi− (fi)B) is a bounded sequence in W 1,α(Bn; Rn), where (fi)B
is the mean value of fi in Bn;

(fi)B =

(

|Bn|−1

∫

Bn

(fi)1, . . . , |Bn|−1

∫

Bn

(fi)n

)

.

Thus, by the weak compactness of Sobolev spaces [8, Theorem 1.31], there
exist a subsequence, also denoted by (ri), and f ∈ W 1,α(Bn; Rn), so that

df̃i → df weakly in Lα. To show that f is K-quasiregular, it is now sufficient
to show that ρ = df .

Given η ∈ C∞
0 (Bn), we have

∣

∣

∣

∣

∫

Bn

η(df − ρ)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Bn

η(df − dfi)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Bn

η(dfi − ρi)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Bn

η(ρi − ρ)

∣

∣

∣

∣

,
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where the integrals are considered as vector valued. The first and the third
terms on the right hand side tend to zero as i tends to infinity by the weak
convergence in Lα and Ln, respectively. To see that the second term tends
to zero, we use Lemmas 3.4 and 3.3 together with (4.3), (4.4), and (AC) to
obtain

‖dfi − ρi‖α,Bn = ‖dKρi − ρi‖α,Bn = ‖Kdρi‖α,Bn

≤ C‖dρi‖q,Bn = Cri

∦ dρ‖q,B(ri)

∦ ρ‖n,B(ri)
→ 0,

as i → ∞. Hence
∫

Bn

η(df − ρ) = 0

for every η ∈ C∞
0 (Bn). If follows that df = ρ almost everywhere in Bn. The

proof is complete. �

Proof of Theorem 4.4. We assume that x0 = 0, and fix k ∈ N. Then by
(D), and (4.3), the sequence (ρi|B(k)) is bounded in Ln. Now we can use
the proof of Theorem 4.1 to show that there exist a subsequence (rij ) and a
K-quasiregular mapping fk : B(k) → Rn so that

ρij |B(k) → dfk

weakly in Ln. By taking a diagonal subsequence (ρk) we then deduce that
there exists a K-quasiregular mapping f : Rn → Rn so that

ρk → df

locally weakly in Ln.
To prove that f is polynomial, it suffices to show that 0 < ||Jf ||1,B(2r) ≤

C||Jf ||1,B(r) for every 0 < r < ∞, see the proof of [9, 1.5]. We fix η1 and η2

in C∞
0 (Rn) so that 0 ≤ η1 ≤ 1 and 0 ≤ η2 ≤ 1, η1 = 1 on B(r/2) and 0 in

Rn \B(r), and η2 = 1 on B(2r) and 0 in Rn \B(4r). Then, by [11, Theorem
5.1] and (D),

||Jf ||1,B(2r) ≤
∫

Rn

η2Jf = lim
k→∞

∫

Rn

η2 ⋆ (ρk
1 ∧ · · · ∧ ρk

n)

≤ lim
k→∞

∫

B(4r)
⋆(ρk

1 ∧ · · · ∧ ρk
n) ≤ C lim

k→∞

∫

B(r/2)
⋆(ρk

1 ∧ · · · ∧ ρk
n)

≤ C lim
k→∞

∫

Rn

η1 ⋆ (ρk
1 ∧ · · · ∧ ρk

n) = C

∫

Rn

η1Jf ≤ C||Jf ||1,B(r).

This proves the doubling property. On the other hand, if we consider r = 2
and recall that ||ρk||n,Bn = 1, the calculation above, combined with (QC),
shows that ||Jf ||1,B(2) > 0. The proof is complete. �



14 JUHA HEINONEN, PEKKA PANKKA, AND KAI RAJALA

5. Continuity and the proof of Theorem A

In this section we first return to the setting of Section 3, and prove a
Hölder continuity estimate for the function fρ. Together with Theorem 4.4
this leads to the proof of Theorem A. The following theorem corresponds
to the Hölder continuity of W 1,p-functions with p > n.

Theorem 5.1. Suppose that ρ ∈ Wp,q(
∧1 B) for some p > n and q > n−1,

where B = B(x0, r0). Then fρ has a continuous representative; for every x
and y ∈ B,

(5.1) |fρ(x) − fρ(y)| ≤ C
(

|x − y|1−n/p‖ρ‖p,B + |x − y|1−(n−1)/q‖dρ‖q,B

)

,

where C = C(n, p, q) > 0.

It is well-known that Sobolev functions in W 1,n need not be continuous.
Respectively, when n ≥ 3, Theorem 5.1 is not true for 1-forms in Wp,n−1 as
the following example shows.

Example 5.2. Recall that a singleton {a} ⊂ Sn−1 has zero (n−1)-capacity
in Sn−1 when n ≥ 3; there exists u ∈ W 1,n−1(Sn−1) such that u ∈ Lp(Sn−1)
for every 1 ≤ p < ∞ and |u(x)| → ∞ as x → en or x → −en. We define a 1-
form ρ in Bn by ρ(x) = u(x/|x|)dxn. Then |ρ(x)| = |u(x/|x|)| and |dρ(x)| ≤
C|x|−1|∇u(x/|x|)| almost everywhere. Hence ρ ∈ Wp,n−1(

∧1 Bn) for every
1 ≤ p < ∞. However, fρ is not continuous because all its representatives
are unbounded around the xn-axis.

Proof of Theorem 5.1. We may assume that B = Bn. By density and Fu-
glede’s lemma [4, Theorem 3(f)], we may assume that ρ is smooth. Indeed,

given a sequence of smooth forms ρi converging to ρ in Lp(
∧1 Bn), Fuglede’s

lemma implies that

fi(x) − fi(y) =

∫

[y,x]
ρi →

∫

[y,x]
ρ = fρ(x) − fρ(y)

for every x and y in Bn \E, where |E| = 0. Here fi = fρi
, and from now on

we denote f = fρ.
Now fix x ∈ Bn \ {0} and 0 < r < |x|/4. We may assume that x = |x|en.

We denote B′ = B(x, r) ∩ Bn, and fB′ is the average of f in B′. We will
give an estimate for |f(x) − fB′ |. By Stokes’ theorem,

|f(x) − fB′ | ≤ |B′|−1

∫

B′

|f(x) − f(y)| dy

= |B′|−1

∫

B′

∣

∣

∣

∣

∣

∫

[0,x]
ρ −

∫

[0,y]
ρ +

∫

[x,y]
ρ −

∫

[x,y]
ρ

∣

∣

∣

∣

∣

dy

≤ |B′|−1

∫

B′

(

∫

[0,x,y]
|dρ| dH2

)

dy + |B′|−1

∫

B′

(

∫

[y,x]
|ρ|
)

dy.

(5.2)
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The last term can be estimated by Fubini’s theorem, the change of vari-
ables, and Hölder’s inequality in a standard way:

∫

B′

(

∫

[x,y]
|ρ|
)

dy =

∫ 1

0

∫

B′

|ρ|(x + t(y − x))|y − x| dy dt

=

∫ r

0

∫ s

0

∫

S(x,u)∩Bn

|ρ|(z)
( s

u

)n−1
dHn−1(z) du ds

≤ C(n, p)rnr1−n/p‖ρ‖p,Bn .

For later use we notice that the same estimate gives

(5.3) |fB(x,|x|/4)∩Bn | ≤ C|x|−n

∫

B(5|x|/4)∩Bn

|f(y)| dy ≤ C|x|1−n/p||ρ||p,Bn .

To estimate the dρ-term in (5.2) we need additional notation. We will
use the (n − 1)-balls

Pn−1(s, t) = (Rn−1 × {sen}) ∩ B(sen, t),

and their boundaries

T n−2(s, t) = (Rn−1 × {sen}) ∩ S(sen, t).

Set also R = maxy∈B′ |y| and x′ = Ren. We extend |dρ| outside Bn as the

zero function. Then
∫

B′

(

∫

[0,x,y]
|dρ| dH2

)

dy ≤ C(n)r2

∫

T n−2(R,2r)

(

∫

[0,x′,z]
|dρ| dH2

)

dHn−2(z).

By the change of variables and Hölder’s inequality, we have

∫

T n−2(R,2r)

(

∫

[0,x′,z]
|dρ| dH2

)

dHn−2(z)

=

∫

T n−2(R,2r)

∫ R

0

∫ 2rt/R

0
|dρ|

(

t
x′

|x′| + s
z − x′

|z − x′|

)

ds dt dHn−2(z)

=

∫ R

0

∫ 2rt/R

0

∫

T n−2(t,s)
|dρ|(y)

(

2r

s

)n−2

dHn−2(y) ds dt

= (2r)n−2

∫ R

0

∫

P n−1(t,2rt/R)

|dρ|(y)

|y − ten|n−2
dHn−1(y) dt

≤ C(n)rn−2

∫ R

0

(

∫

P n−1(t,2rt/R)
|dρ|q(y) dHn−1(y)

)1/q

(tr)1−(n−1)/q dt

≤ C(n, q)rn−2r1−(n−1)/q‖dρ‖q,Bn .

By combining these estimates, we finally have

(5.4) |f(x) − fB′ | ≤ C(n, p, q)
(

r1−n/p‖ρ‖p,Bn + r1−(n−1)/q‖dρ‖q,Bn

)

.
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Now we will use the above estimates for x and y in Bn \ {0}. First, if
|x − y| < |x|/8,

B′(y, |x − y|) ⊂ B′(x, 2|x − y|) ⊂ B′(x, |x|/4),
where B′ is the intersection of the corresponding ball with Bn. Then

|f(x) − f(y)| ≤ |f(x) − fB′(y,|x−y|)| + |f(y) − fB′(y,|x−y|)|

≤ C|x − y|−n

∫

B′(x,2|x−y|)
|f(x) − f(z)| dz

+ |f(y) − fB′(y,|x−y|)|.
Notice that (5.4) remains true with |f(x) − fB′(x,2|x−y|)| replaced by

|x − y|−n

∫

B′(x,2|x−y|)
|f(x) − f(z)| dz.

Thus (5.1) follows from (5.4). We are left with the case |x− y| ≥ |x|/8. We
may assume that |x| ≥ |y|. Now

|f(x) − f(y)| ≤ |f(x) − fB′(x,|x|/4)| + |fB′(x,|x|/4)| + |fB′(y,|y|/4)|
+ |f(y) − fB′(y,|y|/4)|.

This combined with (5.3), (5.4) and our assumption |x| < 8|x − y| yields
(5.1). The proof is complete. �

Now we are ready to complete the proof of Theorem A.

Proof of Theorem A. Suppose that ri ց 0, and fix R ≥ 1. By Theorem 5.1,
we may assume that the mappings fi are continuous. Furthermore, by (5.1),
(4.3), (4.4), (SD), and (AC), we have the continuity estimate

|fi(x) − fi(y)| ≤ C
(

|x − y|1−n/p‖ρi‖p,B(R) + |x − y|1−(n−1)/q‖dρi‖q,B(R)

)

≤ C
(

|x − y|1−n/p + |x − y|1−(n−1)/q
)

for every x and y in B(R), with C not depending on i. We conclude that
(fi|B(R)) is equicontinuous. Hence, by the Arzela-Ascoli theorem, there
exists a subsequence (fij ) converging locally uniformly to f : Rn → Rn. By
the proof of Theorem 4.4, (fij ) has a further subsequence, also denoted by
(fij), converging to a polynomial K-quasiregular mapping fξ locally weakly

in W 1,α(Rn; Rn) for some α > 1. Clearly fξ = f . The proof is complete. �

6. Proof of Theorem B

In this section we prove the following result, and show how it implies
Theorem B.

Theorem 6.1. Suppose that ρ is a strong quasiconformal frame at x0. Then
there exists a radius ε > 0 so that

B(x0, ε) ∩ f−1
ρ (0) = {x0}.
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In our proof of Theorem 6.1, on which Theorems B and C depend, it is
important that the map fρ is constructed by using the operator K, that is,
by integrating ρ over radial segments. One can also construct maps from
a given frame by using other operators, such as the averaged homotopy
operator T considered in Section 9 below. The advantage of T over K is
that it has nicer analytic behavior, see [11]. However, the averaged operator
T does not naturally commute with the rescaling induced by λr whereas
operator K does. Indeed, using operator K, the rescalings can be viewed as
blow-ups of a single map fρ = Kρ. If follows that the rescalings are easier
to analyze when using the operator K. We do not know whether Theorems
B and C hold if the operator T is used to produce the infinitesimal space.

To prove Theorem 6.1 we use the following corollary of Theorem A. As the
proof of the corollary follows directly from the compactness of the rotation
group, we omit the details.

Corollary 6.2. Suppose that ρ is a strong K-quasiconformal frame at x0,
and ri ց 0. Define gi = fi ◦ hi, where fi = fρri

and hi is a rotation

about the origin. Then there exist a subsequence ξ = (gij ), and a polynomial
K-quasiregular mapping fξ : Rn → Rn so that gij → fξ locally uniformly.

We will also use the following local distortion estimate for quasiregular
mappings, see [15, II 4.3] for details. Suppose that f : B(x0, r0) → Rn is a
non-constant K-quasiregular mapping. Then there exist a constant H ′ ≥ 1
and a radius s0 > 0 so that

(6.1) Hf (x0, s) ≤ H ′

for every 0 < s < s0. Here

Hf (x, s) =
maxy∈S(x,s) |f(y) − f(x)|
miny∈S(x,s) |f(y) − f(x)| .

In what follows, we assume that ρ is a strong quasiconformal frame at x0.
Without loss of generality, x0 = 0. We will use some basic properties of the
local topological degree µ(y, f, U), cf. [15, I 4].

Lemma 6.3. There exist a sequence (si), decreasing to 0, and a constant
H ≥ 1, so that

(6.2) Hfρ(0, s) ≤ H and µ(0, fρ, B(s)) ≥ 1

for every si/5 ≤ s ≤ 5si. In particular, S(s) ∩ f−1
ρ (0) = ∅ for every such s.

Proof. By Theorem A, there exist a non-constant quasiregular mapping
f : Rn → Rn and a sequence (ri) so that fi → f locally uniformly. More-
over, by (6.1), Hf (0, t) ≤ H ′ for 0 < t ≤ t0. Thus, by the uniform con-
vergence, there exists i0 ∈ N so that Hfi

(0, t) ≤ 2H ′ and µ(0, fi, B(t)) =
µ(0, f,B(t)) ≥ 1 for every i ≥ i0 and t0/5 ≤ t ≤ 5t0. The claim follows since
Hfρ(0, s) = Hfi

(0, s/ri) and µ(0, fρ, B(s)) = µ(0, fi, B(s/ri)). �
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Lemma 6.4. There exists ε0 > 0 so that for every x ∈ f−1
ρ (0)∩B(ε0) \ {0}

there exists 0 < sx < |x|/10 with the following properties:

(1) f−1
ρ (0) ∩ B̄(x, 5sx) \ B(x, sx/5) = ∅ and

(2) µ(0, fρ, B(x, sx/5)) ≥ 1.

Proof. We argue by contradiction: suppose that for every ǫ > 0 there exists
x ∈ f−1

ρ (0) ∩ B(ε) \ {0} such that the required sx does not exist. Then
there exists a sequence (xi) of such points so that xi → 0 as i → ∞. Define
gi = f|xi|◦hi, where hi is a rotation about the origin so that hi(e1) = xi/|xi|.
Then gi(e1) = 0 for every i. By Corollary 6.2, there exists a subsequence of
(gi) that converges locally uniformly to a non-constant quasiregular mapping
f : Rn → Rn. By redefining the sequence (xi), we may assume that the
whole sequence (gi) converges to f . Then f(e1) = 0, and by (6.1), there
exists H ′ ≥ 1 so that Hf (e1, t) ≤ H ′ for every 0 < t < 5t0. We may assume
that t0 < 1/10. Then, by the uniform convergence,

Hfρ(xi, t|xi|) = Hgi
(e1, t) ≤ 2H ′,

and
µ(0, fρ, B(xi, t|xi|)) = µ(0, gi, B(e1, t)) ≥ 1

for every i ≥ i0 and t0/5 ≤ t ≤ 5t0. By the definition of Hfρ , f−1
ρ (0) ∩

B̄(xi, 5|xi|t0) \B(xi, |xi|t0/5) = ∅. This contradicts our choice of the points
xi. The proof is complete. �

Proof of Theorem 6.1. We choose a decreasing sequence (ri) as in Lemma
6.3, so that r1 < ε0, where ε0 is as in Lemma 6.4. We denote Ai = B̄(r1) \
B(ri) and Ãi = B̄(5r1) \ B(ri/5) for all i ≥ 1. We also set F = f−1

ρ (0) ∩
B(ε0) \ {0}. Let B′

i be the covering of Ai ∩ F by the balls B(x, sx) ⊂ Ãi,
where sx is as in Lemma 6.4. By the 5r-covering lemma, there exists a
finite or countable subfamily Bi = {B(xj , sj)} of B′

i covering Ai ∩F so that
the balls B(xj, sj/5) are pairwise disjoint. Since fρ(S(5r1)) ∩ {0} = ∅, the
topological degree µ(0, fρ, B(5r1)) is well-defined (and thus finite). By the
additivity of the topological degree, cf. [15, I 4.4], and Lemma 6.3,

µ(0, fρ, B(5r1)) = µ(0, fρ, B(ri/5)) + µ(0, fρ, Ãi)

≥ 1 +
∑

j

µ(0, fρ, B(xj , sj/5)).

By Lemma 6.4, µ(0, fρ, B(xj , sj/5)) ≥ 1 for every j. We conclude that

1 + cardBi ≤ µ(0, fρ, B(5r1)) < ∞,

i.e. there are at most finitely many balls B(xj , sj/5) in the collection, with
an upper bound not depending on i. Since |sj | < |xj|/10 for each j, this
shows that B(ri) ∩ F = ∅ for i large enough. The proof is complete. �

Proof of Theorem B. We assume that x0 = 0. From Theorem 6.1 and
Lemma 6.3 it follows that

m = µ(0, fρ, B(s)) = µ(0, fρ, B(ε)) ≥ 1



QUASICONFORMAL FRAMES 19

for every s < ε, where ε is the radius in Theorem 6.1. Let fξ be a mapping
in the infinitesimal space I(0, ρ) and ξ = (ri). We claim that fξ has degree

m. Since fξ is a discrete map, f−1
ξ (0) ∩ S(0, t) = ∅ for almost every t > 0.

Then, by uniform convergence, choosing i to be large enough yields

(6.3) µ(0, fξ , B(t)) = µ(0, fρ, B(tri)) = m.

Since the degree is additive, (6.3) proves our claim, and, consequently, The-
orem B. �

Remark 6.5. The proof of Theorem B also shows that f−1(0) = {x0} for
every f ∈ I(x0, ρ).

Remark 6.6. By [9] and the proof of Theorem A, the degrees of the mappings
in I(x0, ρ) are bounded from above by a constant only depending on n and
the data of ρ.

7. Proof of Theorem C

In this section we prove Theorem C on the stability of the index i(x0, ·) of
strong quasiconformal frames. Here by the data of a quasiconformal frame
we mean the constants K and C in (QC) and (SD), respectively.

Notice that if the limes inferior in (1.4) equals 0, then there exists f that
is a limit map for both ρ and ρ′. Thus in that case i(x0, ρ) = i(x0, ρ

′)
automatically follows from Theorem B.

We first recall a familiar continuity estimate for quasiregular mappings,
cf. [12, 7.7.1]. Suppose that f : Bn → Rn is a K-quasiregular mapping.
There exist C0 ≥ 1 and α > 0, only depending on n and K, so that

(7.1) |f(x) − f(y)|n ≤ C0|x − y|nα||Jf ||1,Bn

for every x, y ∈ B̄(1/2).
Our second auxiliary result is a distortion estimate for a special class of

quasiregular mappings. In the proof we use the path family method. Since
it does not appear elsewhere in this paper, we do not give all details and
definitions; they can be found in [15].

Lemma 7.1. Suppose that f : Rn → Rn is a polynomial K-quasiregular
mapping with f−1(0) = {0}. Then

min
y∈Sn−1

|f(y)| ≥ A,

where A > 0 depends only on n, K, deg(f), and ‖Jf‖1,B(1/2).

Proof. By the Caccioppoli inequality, cf. [15, VI (3.15)], and the openness
of f ,

‖Jf‖1,B(1/2) ≤ C max
y∈Sn−1

|f(y)|n,

where C > 0 only depends on n and K. Hence it suffices to show that
Hf (0, 1) is bounded from above by a constant depending only on n, K, and
deg(f); recall the definition of Hf (x, s) from Section 6.
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Fix a point a ∈ Sn−1 so that |f(a)| = miny∈Sn−1 |f(y)|, and consider

the a-component U of f−1(B(|f(a)|)). Since f is a polynomial map, U is
relatively compact. Thus U is a normal domain of f , and f(Ū) = B̄(|f(a)|),
see [15, I 4.7]. From our assumption f−1(0) = {0} it then follows that 0 ∈ U .

Now fix b ∈ Sn−1 so that |f(b)| = maxy∈Sn−1 |f(y)|, and consider the
maximal f -lifting γ′ of γ starting at b, where γ : [1,∞) → Rn, γ(t) = tf(b)
(for information on path lifting, see [15, II 3]). Then |γ′| joins b and ∞.
Denote by Γ the family of all paths joining |γ′| and U in Rn. Then standard
path family estimates and the KO-inequality (see [15, II 2.4]) give

cn ≤ MnΓ ≤ K deg(f)MnfΓ ≤ C1(log Hf (0, 1))1−n,

where Mn is the n-modulus of path families, and C1 only depends on n, K
and deg(f). The proof is complete. �

Proof of Theorem C. We assume x0 = 0, and fix ε > 0, to be determined
later. We choose a sequence (ri) decreasing to 0 so that ||ρi − ρ′i||n,Bn < ε
for each i. This can be done by (1.4). Without loss of generality, we may
assume, by Theorem A that (fρi

) and (fρ′i
) converge locally uniformly to

polynomial quasiregular mappings f and g, respectively. By Remark 6.5,
f−1(0) = g−1(0) = {0}.

As in the proof of Theorem 4.4, we see that

min{‖Jf‖1,B(1/2), ‖Jg‖1,B(1/2)} ≥ C−1,

max{||Jf ||1,B(2), ||Jg||1,B(2)} ≤ C

and

(7.2) ||Df − Dg||n,Bn < ε,

where C ≥ 1 only depends on the datas of ρ and ρ′. In particular, (7.1)
implies that there exists α = α(n,K) > 0 so that

(7.3) max{|f(x) − f(y)|, |g(x) − g(y)|} ≤ C|x − y|α

for every x and y in B̄n.

By Theorem B, it suffices to show that deg(f̂) = deg(ĝ), where f̂ and
ĝ are the extensions of f and g to mappings Sn → Sn, respectively. Since
f−1(0) = {0} and g−1(0) = {0}, the extensions f̂ and ĝ have the same degree
if the restrictions of f/|f | and g/|g| to Sn−1 are homotopic as mappings
Sn−1 → Sn−1. Thus it suffices to show that

f(a)

|f(a)| 6= − g(a)

|g(a)|
for every a ∈ Sn−1.

Let a ∈ Sn−1. By Lemma 7.1 and Remark 6.6,

min{|f(a)|, |g(a)|} ≥ A,

where A > 0 only depends on the datas of ρ and ρ′. Hence it suffices to
show that

|f(a) − g(a)| < 2A.
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We fix δ > 0, to be determined later, and denote by Tδ the spherical cap
B(a, δ) ∩ Sn−1. Also, we denote h = f − g. Then, by applying (7.3) twice
and the triangle inequality, we obtain

|h(a)| ≤ Cδα + Cδ1−n

∫

Tδ

|h(x)| dHn−1(x)

≤ Cδα + Cδ1−n

∫

Tδ

|h(x) − h(δx)| dHn−1(x)

≤ Cδα + Cδ1−n

∫

Tδ

∫ 1

δ
|Dh(tx)| dt dHn−1(x).

By the change of variables, Hölder’s inequality and (7.2), the last integral
is controlled by

∫

Bn\B̄(δ)

|Dh(y)|
|y|n−1

dy ≤ ‖Dh‖n,Bn

(

∫

Bn\B̄(δ)
|y|−n dy

)(n−1)/n

≤ Cε
(

log δ−1
)(n−1)/n

.

Thus

|f(a) − g(a)| ≤ Cδα + Cεδ1−n
(

log δ−1
)(n−1)/n

,

where C > 0 only depends on n and the data. Now we can choose δ so that

Cδα = A/2, and then ε so that Cεδ1−n
(

log δ−1
)(n−1)/n

= A/2. The proof
is complete. �

8. Quasi-invariance

In this section we show that quasiconformal frames are preserved under
pullbacks by quasiregular mappings.

Theorem 8.1. Suppose that ρ is a K0-quasiconformal frame at f(x0),
where f is a non-constant K1-quasiregular mapping. Then f∗ρ is a K0K1-
quasiconformal frame at x0.

Proof. We may assume that x0 = f(x0) = 0. Also, we assume that ρ is a K0-
quasiconformal frame at 0, satisfying ρ ∈ Lp0 for some p0 > n, and dρ ∈ Lq0

and (AC) for some q0 > n/2. We denote, for r > 0, L(r) = maxx∈S(r) |f(x)|
and l(r) = minx∈S(r) |f(x)|. Then there exist A ≥ 1 and r′ > 0 so that

(8.1) L(r) ≤ Al(r/2)

for every 0 < r < r′, see the proof of [15, II 4.3].
We will also use the reverse Hölder inequality of quasiregular mappings:

there exist C > 0 and τ > 1 so that

(8.2) ∦ Jf‖τ,B(r) ≤ C ∦ Jf‖1,B(r)

when r is small enough, see [13].
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We first show that f∗ρ ∈ Lp(
∧1 B(r0)) for some n < p < p0 and r0 > 0.

By the quasiregularity of f and Hölder’s inequality,

∫

B(r)
|f∗ρ(x)|p dx ≤ C

∫

B(r)
Jf (x)p/n|ρ(f(x))|p dx

≤ C
(

∫

B(r)
Jf (x)t dx

)(p0−p)/p0

×
(

∫

B(r)
Jf (x)|ρ(f(x))|p0 dx

)p/p0

,

where

t =
(p0 − n)p

(p0 − p)n
.

By the p0-integrability of ρ, and the change of variables, the last term is
finite for r small enough. On the other hand, we can choose n < p < p0 so
that t ≤ τ , and apply (8.2) to show that also the Jf -term is finite when r is
small.

To prove condition (QC) we recall that quasiregular mappings preserve
sets of zero n-measure. Hence condition (QC) applied to ρ, and the quasireg-
ularity of f , give

|f∗ρ(x)|n ≤ |Df(x)|n|ρ(f(x))|n ≤ K1Jf (x)K0 ⋆ (ρ1 ∧ · · · ∧ ρn)(f(x))

= K0K1 ⋆ ((f∗ρ)1 ∧ · · · ∧ (f∗ρ)n)(x)

almost everywhere. Similarly, to prove condition (D) we fix a small r > 0
and calculate

∫

B(r)
|f∗ρ(x)|n dx ≤ K1

∫

B(r)
Jf (x)|ρ(f(x))|n dx ≤ C

∫

B(L(r))
|ρ(x)|n dx.

By (8.1), and condition (D) applied to ρ, the last term is bounded by

C

∫

B(l(r/2))
|ρ(x)|n dx ≤ C

∫

B(r/2)
Jf (x)|ρ(f(x))|n dx

≤ C

∫

B(r/2)
|f∗ρ(x)|n dx.

Here we used the inclusion B(l(r/2)) ⊂ f(B(r/2)) which is valid by the
openness of f . Condition (D) follows.

Now we turn to the proof of (AC). We note that the identity df∗ρ = f∗dρ
is valid under our assumptions. We fix n/2 < q < q0 to be determined later.
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First, by the quasiregularity of f and Hölder’s inequality,

∦ df∗ρ‖q,B(r) ≤ C
(

r−n

∫

B(r)
Jf (x)sJf (x)q/q0 |dρ(f(x))|q dx

)1/q

≤ C
(

r−n

∫

B(r)
Jf (x)sq0/(q0−q) dx

)(q0−q)/qq0

×
(

r−n

∫

B(r)
Jf (x)|dρ(f(x))|q0 dx

)1/q0

,

(8.3)

where s = 2q/n − q/q0. We can choose q > n/2 so that
sq0

q0 − q
≤ τ,

which allows us to apply (8.2) to obtain
(

r−n

∫

B(r)
Jf (x)sq0/(q0−q) dx

)(q0−q)/qq0 ≤ C
(

r−n

∫

B(r)
Jf (x) dx

)s/q

≤ C
(L(r)

r

)ns/q
.

For the last term of (8.3), the change of variables, and (AC) applied to ρ
give
(

r−n

∫

B(r)
Jf (x)|dρ(f(x))|q0 dx

)1/q0 ≤ C
(L(r)

r

)n/q0

∦ dρ‖q0,B(L(r))

≤ ε(r)

L(r)

(L(r)

r

)n/q0

∦ ρ‖n,B(L(r)),

where ε(r) → 0 as r → 0. Condition (D) applied to ρ, and (8.1) then yield

∦ ρ‖n,B(L(r)) ≤ C ∦ ρ‖n,B(l(r)) ≤ C
r

L(r)
∦ f∗ρ‖n,B(r)

as above. Combining the estimates gives (AC) at x0 for f∗ρ. The proof is
complete. �

9. Quasiconformality of frames in a domain

In the previous sections we have studied the properties of quasiconformal
frames at a point. In this section we show that if the asymptotic closedness
condition (AC) of a frame is replaced by a stronger uniform condition, the
strong doubling condition can be weakened to a corresponding doubling
condition. This leads us to the notion of (strong) quasiconformal frames in
a domain. At the end of this section we define the branch set of a strong
quasiconformal frame and discuss open problems concerning the properties
of these frames.

Let ρ = (ρ1, . . . , ρn) be a Wn,q-frame in a domain Ω for some q > n/2.
We say that ρ is locally doubling if for every compact set E ⊂ Ω there exists
CE ≥ 1 so that

(LD) ‖ρ‖n,B(a,r) ≤ CE‖ρ‖n,B(a,r/2)
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whenever B(a, r) ⊂ E.
We also say that ρ is uniformly asymptotically closed if for every ε > 0

there exists δ > 0 so that

(UAC) r
∦ dρ‖q,B(a,r)

∦ ρ‖n,B(a,r/2)
< ε

whenever B(a, r) ⊂ Ω and 0 < r < δ.
We say that ρ is a K-quasiconformal frame (in Ω) if it satisfies the quasi-

conformality condition (QC), Condition (LD), and Condition (UAC). Fur-
thermore, such ρ is a strong K-quasiconformal frame (in Ω) if it also satisfies
(UAC) for some q > n − 1. Notice that the differential of a quasiregular
mapping defines a strong quasiconformal frame, see [13].

In what follows, we show that a strong quasiconformal frame in a domain
is a strong quasiconformal frame at every point of the domain. We begin
with the following weak reverse Hölder inequality for quasiconformal frames
in a domain.

Theorem 9.1. Suppose that ρ is a K-quasiconformal frame in a domain
Ω. Then there exist C ≥ 1 and η > 0, only depending on n, K and q, and
r0 > 0 so that

(9.1) ∦ ρ‖n,B(a,r) ≤ C ∦ ρ‖n−η,B(a,2r).

whenever B(a, 2r) ⊂ Ω and 0 < r < r0.

Now, by a variant of Gehring’s lemma [12, Corollary 14.3.1] and (9.1), we
see that, under the assumptions of Theorem 9.1, we have that there exist
p > n and C > 0, only depending on n, K and q, so that

∦ ρ‖p,B(a,r) ≤ C ∦ ρ‖n,B(a,2r)

whenever B(a, 2r) ⊂ Ω. In particular we have the following corollary.

Corollary 9.2. Suppose that ρ is a (strong) K-quasiconformal frame in Ω.
Then ρ is a (strong) K-quasiconformal frame at every x0 ∈ Ω.

We begin the proof of Theorem 9.1 by quoting a result from [11]. Let

B = B(x, r). The averaged Poincaré homotopy operator T : Lp(
∧ℓ B) →

Lp(
∧ℓ B), defined in [11], is a chain homotopy between identity and zero in

Wp,p for 1 < p < ∞, that is,

(9.2) ω = T dω + dT ω

for every ω ∈ Wp,p(
∧ℓ B). Moreover, T supports a Sobolev-Poincaré in-

equality

(9.3) ∦ ω − ωB‖np/(n−p),B ≤ Cr ∦ dω‖p,B

for every 1 < p < n, where

ωB =

{

dT ω, ℓ ≥ 1,
|B|−1

∫

B ω, ℓ = 0,

see [11, Corollary 4.2] for details.
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Proof of Theorem 9.1. Fix ε > 0 to be determined later. We fix a ball
B = B(x, r) ⊂ Ω with r < δ, where δ is as in (UAC). We define an (n− 1)-
form ω by

ω =
n
∑

i=1

(−1)i−1(T ρi − (T ρi)B) · ρ1 ∧ · · · ∧ ρ̂i ∧ · · · ∧ ρn.

Then, by (9.2), we have

dω = nρ1 ∧ · · · ∧ ρn − λ1 + λ2,

where

λ1 =
n
∑

i=1

(−1)i−1 (T dρi) ∧ ρ1 ∧ · · · ∧ ρ̂i ∧ · · · ∧ ρn

and

λ2 =
n
∑

i=1

(−1)i−1(T ρi − (T ρi)B) · d(ρ1 ∧ · · · ∧ ρ̂i ∧ · · · ∧ ρn).

For λ1, λ2, and ω, we have the pointwise estimates

|λ1| ≤ C|T dρ| |ρ|n−1, |λ2| ≤ C|T ρ − (T ρ)B | |dρ| |ρ|n−2,

and

|ω| ≤ C|T ρ − (T ρ)B | |ρ|n−1

almost everywhere in B, where C > 0 depends only on n. Here

T ρ − (T ρ)B = (T ρ1 − (T ρ1)B , . . . ,T ρn − (T ρn)B).

We fix a test function φ ∈ C∞
0 (B(x, r)) so that 0 ≤ φ ≤ 1, φ|B(x, r/2) = 1

and |∇φ| ≤ 3/r. Then, by Stokes’ theorem,

C−1

∫

B
φ ⋆ (ρ1 ∧ · · · ∧ ρn) ≤

∫

B
(φ |λ1| + φ |λ2| + |ω|/r) ,

which, in view of our quasiconformality condition and pointwise estimates,
yields

C−1 ∦ ρ‖n
n,B(x,r/2) ≤ r−n

∫

B
|T ρ − (T ρ)B | |dρ| |ρ|n−2

+ r−n−1

∫

B
|T ρ − (T ρ)B | |ρ|n−1 + r−n

∫

B
|T dρ| |ρ|n−1,

(9.4)

where C > 0 depends only on n and K.
We estimate each term separately. In what follows, we denote by t′ the

Hölder conjugate exponent of 1 < t < ∞. Also, we denote ∦ ·‖p =∦ ·‖p,B.
We may assume that n/2 < q < n.
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Set k = nq/(n− q). Since q > n/2, we have that k > n and k′(n−1) < n.
By Hölder’s inequality and the Sobolev-Poincaré inequality (9.3),

r−n−1

∫

B
|T ρ − (T ρ)B ||ρ|n−1 ≤ Cr−1 ∦ T ρ − (T ρ)B‖k ∦ ρ‖n−1

k′(n−1)

≤ C ∦ ρ‖q ∦ ρ‖n−1
k′(n−1).

Similarly,

r−n

∫

B
|T dρ||ρ|n−1 ≤ Cr ∦ dρ‖q ∦ ρ‖n−1

k′(n−1)

by (9.2) and (9.3). By our assumption, r ∦ dρ‖q ≤ ε ∦ ρ‖n,B(x,r/2), so we
have

r−n

∫

B
|T dρ||ρ|n−1 + r−n−1

∫

B
|T ρ − (T ρ)B ||ρ|n−1

≤ C ∦ ρ‖n−1
k′(n−1)

(

∦ ρ‖q + ε ∦ ρ‖n,B(x,r/2)

)

.
(9.5)

Set next ν = (n/2 + q)/2. Since n/2 < ν < q, we have that ν ′(n − 2) < n,
and Hölder’s inequality yields

r−n

∫

B
|T ρ − (T ρ)B | |dρ| |ρ|n−2

≤ C
(

r−n

∫

B
|T ρ − (T ρ)B |ν |dρ|ν

)1/ν
∦ ρ‖n−2

ν′(n−2).

Furthermore, by Hölder’s inequality, (9.3), and (UAC), we have
(

r−n

∫

B
|T ρ − (T ρ)B |ν |dρ|ν

)1/ν
≤ C ∦ T ρ − (T ρ)B‖ν(q/ν)′ ∦ dρ‖q

≤ Cr ∦ ρ‖α ∦ dρ‖q

≤ Cε ∦ ρ‖α ∦ ρ‖n,B(x,r/2),

where 1 ≤ α < n satisfies nα/(n − α) = max{ν(q/ν)′, n/(n − 1)}. By
choosing ε > 0 small enough, we have that

(9.6) r−n

∫

B
|T ρ − (T ρ)B | |dρ| |ρ|n−2 ≤ ∦ ρ‖α ∦ ρ‖n,B(x,r/2) ∦ ρ‖n−2

ν′(n−2).

We denote t = max{k′(n − 1), q, ν ′(n − 2), α} < n. We may assume that
∦ ρ‖t ≤ ∦ ρ‖n,B(x,r/2), otherwise (9.1) holds. Then, by (9.4), (9.5), and (9.6),

∦ ρ‖n
n,B(x,r/2) ≤ C ∦ ρ‖n−1

t (∦ ρ‖t+ ∦ ρ‖n,B(x,r/2))

≤ C ∦ ρ‖n−1
t ∦ ρ‖n,B(x,r/2),

where C > 0 depends only on n, K and q. The proof is complete. �

By Theorem B and Corollary 9.2, we know that if ρ is a strong quasicon-
formal frame in Ω, then the local degree i(x, ρ) is well-defined and positive at
every point x ∈ Ω. We define the branch set Bρ of a strong quasiconformal
frame ρ to be the set of points x ∈ Ω for which i(x, ρ) ≥ 2.
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In [16], [10], and [7], Cartan-Whitney presentations, i.e. W∞,∞-frames
satisfying

(9.7) ⋆(ρ1 ∧ · · · ∧ ρn) ≥ δ > 0

almost everywhere, are considered. It is shown that for these frames the
map fρ, defined as in Section 3, is a quasiregular mapping (in fact even
a mapping of bounded length distortion) in a neighborhood of every base-
point x0, and that the differential of fρ is close to the frame in norm. This
gives a version of the measurable Riemann mapping theorem in this setting:
the Beltrami system induced by a Cartan-Whitney presentation always has
local approximative solutions. This in turn has significant applications to
smoothability and bi-Lipschitz parametrization problems. In these appli-
cations the branch set of the frame is important, since it represents an
obstruction to parametrizations. In [10] and [7] it is shown that the branch
set has measure zero and topological dimension at most (n − 2). Also, in
[7] a sharp additional assumption has been found, so that (9.7) and this
assumption together imply that the branch set is empty. See [6] for fur-
ther discussion. In our current work we have studied extensions where the
“branched bi-Lipschitz” assumption (9.7) is replaced by a quasiconformality
assumption. Instead of local approximative solutions, we found weaker infin-
itesimal solutions. As in the case of Cartan-Whitney presentations, also in
the current setting it would be interesting to know properties of the branch
set and to find out natural additional assumptions that force the branch set
to be empty.
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