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MAPPINGS OF FINITE DISTORTION AND
WEIGHTED PARABOLICITY

PEKKA PANKKA

ABSTRACT. Mappings of finite distortion between Riemannian manifolds having
a weighted parabolic manifold as a domain are studied. We prove that local
homeomorphisms of finite distortion are essentially m-to-1 mappings, where m de-
pends only on the fundamental groups of the manifolds. Some characterizations of
weighted parabolic manifolds are also discussed.

1. INTRODUCTION

It is well known that a quasiregular local homeomorphism from R" into itself is a
homeomorphism if n > 3, see [Z1]. This theorem is known as Zorich’s theorem or as
the Global Homeomorphism Theorem. In the setting of Riemannian manifolds V.A.
Zorich has proved a generalization of this theorem known as geometric version of the
Global Homeomorphism Theorem.

Theorem 1 ([Z2]). Let M be a parabolic Riemannian manifold and N a simply
connected Riemannian manifold, both manifolds of dimensionn > 3, and let f: M —
N be a quasireqular local homeomorphism. Then [ is a homeomorphism onto its
image, and the set N\ fM has zero n-capacity.

Recently P. Koskela and J. Onninen proved in [KO] that a version of Viisdla’s
inequality for path families holds also for mappings of finite distortion satisfying
some regularity assumptions. In [HP] I. Holopainen and the author proved a version
of the Global Homeomorphism Theorem for mappings of finite distortion.

Theorem 2 ([HP|). Let M be a K™ '(-)-parabolic Riemannian manifold, N a simply
connected Riemannian manifold, both of dimension n > 3, and let f: M — N be a
local homeomorphism of finite distortion K(-) satisfying the condition (A). Then f
is a homeomorphism onto its image and the set N \ fM has zero n-capacity.

Mappings of finite distortion and the condition (A) are defined in the following
section. The method of the proof allows us to consider the situation without the
simply connectedness of N. Indeed, mappings of finite distortion from a parabolic
manifold into another n-manifold are essentially m-to-1 mappings, where m depends
only on the fundamental groups of M and N.

Theorem 3. Let M be a K™ '(-)-parabolic Riemannian manifold, N a Riemannian
manifold, both of dimension n > 3, and let f: M — N be a local homeomorphism of
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finite distortion K(-) satisfying the condition (A). Then there exists a set E C N of
zero m-capacity such that f is an m-to-1 mapping on M \ f~'E, where

m = card (m(N)/fir(M)) € Z, U {cc},

and card f1(y) < m for everyy € E, if m < co. Moreover, N\ fM C E and E is
the set of asymptotic limits of f.

In order to describe the idea of the proof let us define the weighted parabolicity of
a Riemannian manifold. The other definitions are given in the following section. We
say that a C™, oriented, connected Riemannian n-manifold M is (p,w)-parabolic,
where w: M — [0, 00] is a measurable function, if the path family

Iy ={v: 7| ¢ C, C C M compact}

has zero p-modulus with weight w, that is, Mod, ., (I'57) = 0. The path family '],
consisting of paths leaving every compact set, is called the family of paths going
to the infinity. We say that M is w-parabolic, if p = n. It is equivalent to define
(p, w)-parabolic manifolds by requiring that every compact subset C' of M has zero
w-weighted p-capacity with respect to M, that is, cap,,(C, M) = 0. The weighted
modulus and capacity are discussed in [KO]. The definitions are also given in the
following section.

The proofs of Theorems 2 and 3 are based on the following ideas. First, by the
parabolicity of M the set of asymptotic limits of f is very small, that is, having zero
n-capacity. Secondly, paths outside the set of asymptotic limits admit total lifts.
Hence we can also lift homotopies. Thirdly, the set of asymptotic limits is so small
that removing it does not affect the fundamental group.

It should be noted that if the mapping f is not a local homeomorphism, then the
set of asymptotic values can be large. See e.g. [D] where a quasiregular mapping from
R™ to R™ having every point of R" as an asymptotic limit is constructed.

This note is organized as follows. In Section 3 some characterizations of weighted
parabolic manifolds are discussed. The sets of the asymptotic limits of mappings of
finite distortion under the assumptions of Theorem 3 are considered in Section 4.
Finally, Section 5 is devoted to the proof of Theorem 3.

2. SOME DEFINITIONS AND PRELIMINARIES

In this note we consider only C'*°, oriented, connected, Riemannian n-manifolds
without boundary. We always assume that n > 3. Let M and N be such manifolds.
We say that a continuous mapping f: M — N has finite distortion, if the mapping
is locally in the class I/VI})CI(M ,N), that is, the local representations of f are in the
class I/Vli’cl, and f satisfies the following conditions:
(a) the Jacobian determinant J(-, f) of f is locally integrable, and
(b) there exists a measurable function K: M — [1, o], finite almost everywhere,

such that
|Df(x)||" < K(z)J(z, f) ae.z € M.

Moreover, we assume that the function K (-) satisfies condition
(A) exp (A(K)) € Ly (M),

where A is an Orlicz function such that
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(A-1) / h AT“) dt = oo,

and
(A-2) tA'(t) increases to oo for sufficiently large .

The minimal integrability assumptions on the distortion function K are discussed in

great detail in [IKO], [KKM], and [KKMOZ]. See also [HP, Sec. 2| for a discussion

of the definition of mappings of finite distortion between Riemannian manifolds.
The w-weighted p-modulus of path family I' in M is

(1) Mod, ,,(I') = inf/ pPw dm,
M

where the infimum is taken over non-negative Borel functions p such that

/pdle
gl

for every locally rectifiable v € I'. The measure m in the definition of the weighted
modulus is the measure given by the Riemannian metric of M. The w-weighted
p-capacity of the condenser (C, Q) in M is

cap,,,(C, ) = inf/ || Vu|[Pw dm,
v JIM

where the infimum is taken over functions u € C§°(Q2) satisfying u|C' > 1.
For a constant weight w it is well know that

cap,,,(C, ) = Mod, ,,(T")

when [ is the family of all paths v € 'y intersecting the set C, see e.g. [R, Prop.
I1.10.2]. The proof given in [R, Prop. I1.10.2] works almost verbatim also in the
weighted case.

In the paper [KO] P. Koskela and J. Onninen show that Viisild’s inequality for
modulus of path families holds for mappings of finite distortion when the distortion
function K(-) satisfies the condition (A). As a corollary of this version of Viisild’s
inequality we obtain a version of Poletsky’s inequality which is sufficient for our
considerations. Let f: M — N be a mapping of finite distortion K (-) satisfying the
condition (A) and let T be a path family in M. Then

Mod, (fT") < Mod,, g»-1(I).

See [KO] for a discussion on the modulus and the capacity inequalities for mappings
of finite distortion in the Euclidean setting. The required modifications for Vaisila’s
inequality for mappings of finite distortion between Riemannian manifolds are dis-
cussed in [HP, Sec. 3].

We use following notations for the special type of path families. For every E C M
we denote by 'y the path family of all paths intersecting the set E. For every pair
E and F of subsets of M we denote by A(E, F') the family of the paths connecting
E and F. Moreover, we denote by |y| the locus of the path 7.
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3. CHARACTERIZATION OF WEIGHTED PARABOLIC MANIFOLDS

In the unweighted case (w = 1) it is known that a sufficient condition for p-
parabolicity, 1 < p < oo, of a complete non-compact manifold is an Ahlfors type
criterion

o) [w<%5fmlﬁﬂ:w.

Here V (t) is the volume of a ball of radius ¢ around some fixed point. For details see
e.g. [HK, 2.3]. In [HK] it is actually shown that the condition (2) is sufficient in the
class of proper metric spaces equipped with Borel regular measure assigning every ball
a finite positive measure. Thus, if we assume that 0 < ||wxp||[1 < oo for every ball B
in M, we obtain that the condition (2) is sufficient for (p, w)-parabolicity of a complete
Riemannian manifold M with the measure du = w dm. The condition (2) is not
necessary in general, see e.g. [H]. It is shown in [HK] that if the measure is doubling
and supports a (1, p)-Poincaré inequality the condition (2) becomes necessary for
p-parabolicity.

In the conformal case p = n the parabolicity can be characterized using only com-
pleteness and volume. For locally integrable weights the characterization of weighted
parabolicity is analogous to the unweighted case. Since the proof of the weighted
case follows closely the proof of the unweighted case given in [ZK]|, we give only a
sketch of the proof of the weighted case.

Theorem 4. Let (M,g) be a n-Riemannian manifold and w: M — [0,00] be in
LL .(M). Then (M, g) is w-parabolic if and only if there exists C* function \: M —

loc

10, 0o[ such that (M, \g) is complete and
Q wllsguag = [ wx® dm, < .
M

Here my is the measure given by the Riemannian metric g.

Sketch of the proof. We may assume that M is a non-compact complete manifold.
Indeed, the claim is trivial for compact manifolds, and for a non-compact manifold
M we may choose a function Ay such that (M, A\gg) is complete. The metric Agg is
conformally equivalent to g and hence this has no effect to the w-parabolicity.

Let us first consider the sufficiency. Let § = Ag. Since the n-modulus is a conformal
invariant, it is sufficient to show that the (n,w)-modulus of ' with respect to
Riemannian metric g is zero. Because paths in I'}; have infinite length in the metric
g, every constant positive function is admissible and thus, by the condition (3), we
have that the family I'}; has zero modulus.

Let us now consider the necessity. Let us fix a point 0 € M. Since M is a complete
w-parabolic manifold, we may choose an increasing sequence of radii r; €]0, oo[ such
that r;, — oo as 1+ — oo and

Capn,w(B(Oa Ti)a B(O; TH—I)) = MOdn,w(A(aB(O, 7’1'), aB(O, T'H—l)) < 27i.
Thus, by the definition of the capacity, there exist functions u; € C§°(M) such that
ui|B(o,3) 2 1, suppu; C B(o, ri41), and

/M V| |"w dm, < 277
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1
loc

Moreover, since w € L, .(M), we may choose a positive C* function ¢: M —]0, oo|

such that
/ pw dmy < 27",
B(o,ri4+1)\B(o,7;)
Now it is easy to show that the function

00 1/n

i=1
satisfies the claimed properties. 0

4. THE SET OF ASYMPTOTIC LIMITS

In this section we show that under the assumptions of Theorem 3 the set of as-
ymptotic limits of f has a zero n-capacity. In particular our objective is to discuss
the role of the local homeomorphicity of f and the dimension assumption n > 3.

Let f: M — N be a mapping between manifolds M and N. We say that a point
y € N is an asymptotic limit of f, if there exists a path ~: [a,b[— M such that
v €IS and fovy(t) = y ast — b. The set of all asymptotic limits of f is denoted
by E(f).

It is shown in [Z2] that the set the asymptotic limits of a quasiregular local homeo-
morphism from an n-parabolic manifold into another n-manifold has zero n-capacity.
The same method can be applied to local homeomorphisms of finite distortion, see
[HP, Sec. 4] for details. In this section we give an outline of the proof given in [HP,
Sec. 4].

Proposition 5 ([HP, Prop. 2|). Let M and N be connected oriented Riemann-
tan manifolds of dimension n > 3 and let f: M — N be a local homeomorphism
of finite distortion K(-) satisfying condition (A). If M is K(-)" *-parabolic, then
cap,,(E(f)) =0 and E(f) is o-compact. Moreover, N\ fM C E(f).

Let us now discuss the idea of the proof of Proposition 5. By the connection
between capacity and modulus, it is sufficient to show that Mod, (I'g(s)) = 0. Hence,
it suffices to show that 'y < fI'9}, that is, every path vy in N intersecting the
set F(f) has a subpath 4/, which has a lift ¢ in f such that o € I'{J. Indeed, if
Lrep) < fI'SS holds we have by Poletsky’s inequality and the K™~!(-)-parabolicity of
M that

Mod,,(I'g(s)) < Mod,(fT'%;) < Mod,, xkn-1(I'3;) = 0.
However, by the definition of the set E(f), we know only that for every point in E(f)
there exists some path which has a lift in f belonging to I'%;.

Since the capacity and the o-compactness are preserved in countable unions, it is
sufficient to consider a countable set of bilipschitz charts (U, o) satisfying conditions
B"™ C U and ¢~ 1(0) € N\ E(f), and to show that for every such chart (U, ¢) the
set E(f)NU is o-compact and has zero n-capacity. See [HP, Prop. 2] for details how
these charts can be chosen. Let E(f)y = ¢(E(f)NU) for every chosen chart (U, ¢).

The properties of the paths visiting the set E(f) N U are now studied in three
steps. First, we find an maximal open star-shaped set G C B™ around origin such
that for every z € G and every path from origin to z in G has a total lift in o f|f U
starting from zy. Hence E(f)y C B™\ G. The second step is to show that the set G
is relatively locally connected, G is dense in B", and B" \ G has zero n-dimensional
measure. The modulus estimate given in [Z2, Lemma 2] is crucial for this step. See
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also [HP, Lemma 12, Lemma 25| for details. In the third step, we show that every
path in I'g(s)ny has a subpath in fT'3;. Indeed, for every point y € E(f) NU we find
a path o: [0,00[ = M such that o € 'S} and g o foo(t) = ¢(y) as t — co. Now
for every path v in B™ we may use the relative local connectedness of G, the local
homeomorphicity of f, and the path ¢ o f oo to construct a path ¢’ € I'}] such that
po foco'is asubpath of .

It should be noted that the dimension assumption, n > 3, was used only to obtain
the relative local connectedness of the set G. In dimension 2 this property does not
hold. Indeed, for n = 2 every ray in B? separates it locally. Simple examples, say the
exponential mapping, show that all versions of the Global Homeomorphism Theorem
fail when n = 2. The local homeomorphicity of f was used throughout the proof, in
particular in path-lifting.

5. PROOF OF THEOREM 3
For the proof of Theorem 3 we need the following proposition.

Proposition 6 ([HP, Prop. 3|). Let N be a connected n-manifold, and E C N
a o-compact set such that H" ?(E) = 0. Then groups m (N \ E) and 7 (N) are
isomorphic, and N \ E is path-connected.

A similar proposition is originally proved in [MRV] for compact sets. Since we need
the result for the set of asymptotic limits, which we know only to be o-compact, we
need a refined version of the original result. See [HP] for the details of the proof.
The author does not know whether the o-compactness of £ can be relaxed. For the
proof of Theorem 3 some properties of the set M \ f~1E(f) are still to be verified.
For quasiregular local homeomorphisms it is well known that the inverse image of
a set of zero n-capacity has also zero n-capacity. However, the following lemma is
sufficient for our considerations.

Lemma 7. Let manifolds M and N and the mapping f be as in the Theorem 3. For
every path v: [0,1] — M such that (0) and (1) belong to M\ f*E(f) there exists
a path o: [0,1] = M\ f~'E(f) homotopic to v and having the same endpoints as 7.

Proof. Let v: [0,1] = M be a path such that v(0) and (1) belong to M \ f~*E(f).
Let {U;}, i = 0,...,k, be a finite cover of |y| such that U; N U1 # 0, v(0) € Uy,
v(1) € Uy, and f|U;: U; — fU; is a homeomorphism. Moreover, we may assume that
fU; is homeomorphic to B™ for every i. Let 0 =ty < t; < ... < t; = 1 be a partition
of [0, 1] such that [t;, t;11] C U; for every i. Since E(f) has zero n-capacity, we may
assume that f(y(t;)) € E(f) for every i. For every i = 0,...,k — 1 there exists a
path o;. [ti,tﬂ_l] — fUZ \ E(f) such that Uz(tz) = f(’}/(tz)) and O'z(tz) = f(’)/(tH_l))
Indeed, we may consider the set fU; as a manifold and apply Proposition 6 to the set
fU; N E(f). Since every path o; is homotopic to f o v|[t;, t;+1], the path o: [0,1] —
M\ fUE(f), o[t tin] = (/U)o 03, is homotopic to 7. 0

In the proof of Theorem 3 we assume that every loop is defined on the unit interval
[0, 1]. Moreover, for loops v and  starting at the same point, we denote by a* 3 the
loop which is the concatenation of these loops. The inverse of a path v is denoted by

o
Proof of Theorem 3. By Proposition 5 the set E(f) has zero n-capacity. We show
that it satisfies also the other properties.
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Let us fix an arbitrary point y € N \ FE(f) and choose xz € f~'(y). For every
class ¢ € m(N)/fumi (M) let us fix a point z. € f~'(y) in the following way. For
¢ € m(N)/fum (M) choose a loop «, starting from y. By Proposition 6, we may
choose a, in such way that |a.| C N\ E(f). Hence, it has a total lift 3. starting from
x. Thus we may choose z. = 5.(1). Let ¢ and ¢’ be classes in 71 (N)/ fom (M) and
suppose z. = z. Then the paths . and B, have the same end points and thus the
path 3. * (8.)"! is a loop in M starting at z. Hence the homotopy classes of paths
o, and a, belong to the same class in w1 (N)/fom (M). Thus ¢ = ¢/. We conclude
that

card f~'(y) > card (mi(N)/fom(M)).

Let g and z; be points in f~!(y) and let 3y and 3; be paths joining = to zy and
x to xy in M\ f~'E(f), respectively. Then the homotopy classes of paths f o 3, and
f o 1 represent some classes ¢y and ¢; in m (N)/fem (M). If ¢g = ¢;, there exists
a loop v in M starting at x such that the paths f o 8y and (f o) * (f o B1) are
homotopic in N \ E(f). We may, by Lemma 7, assume that |y| C M\ f~ E(f).
Moreover, we have that fo (y* ;) = (f o) * (f o 81). Let us now fix a homotopy
F:[0,1] x [0,1] = N \ E(f) between the paths f o 8y and f o (y* 31). There exists
a homotopy H: [0,1] x [0,1] — M starting from [y such that f o H = F. By the
uniqueness of path lifting, we conclude that H is a homotopy between [y and 7y * ;.
Thus the end points 2y and x; of paths By and [, respectively, are the same. This
yields the inequality

card f~'(y) < card m(N)/fomi(M).

Let us now fix a point y € E(f)NfM. We may assume that card w1 (N)/ f.mi (M) <
0o, and hence card f1(z) < oo for every z € N \ E(f). Suppose card f~1(y) > m.
Then we may choose m points z; € f '(y) and their disjoint relatively compact
neighborhoods U; such that f|U;: U; — fU; is a homeomorphism. Let a: [a,b] - N
be a path such that «(b) = y. Let us fix some z € |a|N fU; N---N fU, \ E(f).
Since card f~'(z) = m, we have that f~'(2) C Uy U---UU,. Thus no lift of « is
in 'Y}, Since o was arbitrary, this contradicts the assumption y € E(f). Therefore

card f~'(y) < m. O
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