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Definition

A continuous mapping f : M → N between oriented Riemannian
n-manifolds is K -quasiregular if

f ∈W 1,n
loc (M,N), and

‖Df ‖n ≤ K detDf almost everywhere.

TxM Tf (x)N

Dfx

In this terminology

quasiconformal = quasiregular homeomorphism.

Examples

holomorphic maps C→ C
conformal maps Rn → Rn

PL branched covers M → N between closed manifolds.
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Example: Zorich map R3 → R3 \ {0}
Let A : R2 → S2 be

R2 S2

Define Z : R3 → R3 \ {0} by (x , y , t) 7→ etA(x , y).
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n = 2: Quasiregular maps between Riemann surfaces

f is quasiregular ⇔ ∂z̄ f = µ∂z f (Beltrami equation).

f = (holomorphic) ◦ (quasiconformal) (Stöılow’s theorem)

n ≥ 3:

f quasiregular ⇔ J−2
f (Df )TDf = G (Beltrami equation)

Reshetnyak: A non-constant qr-map is discrete, open, and Jf > 0 a.e.
Pekka Pankka (University of Helsinki) 4 / 15



Picard theorems

Theorem (Rickman’s Picard theorem)

For a non-constant K-quasiregular map f : Rn → Sn,

#(Sn \ fRn) ≤ C (n,K ).

Theorem (Prywes’s theorem)

If N is closed and there exists a non-constant quasiregular map Rn → N,
then

dimHk(N) ≤ dimHk(Tn).

Methods: Elliptic PDE’s of n-Laplace type

∆nu = div(|∇u|n−2∇u) = 0⇒ div(A(u ◦ f )) = 0.
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Main question of the talk:

How to define quasiregularity if dimM < dimN?

Motivating questions:

Local topological results, like discreteness?

Analytical results, like higher integrability?

Picard type theorems?

Connection to holomorphic curves?
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Issues

Definition of quasiregularity uses Jacobian

Idea: Replace Jacobian condition with a ratio condition on semi-axes.

Lose the sign of the Jacobian ⇒ lose orientation.

Low regularity ⇒ folding is allowed (i.e. (x , y) 7→ (|x |, y)).

Jacobian ≈ local degree theory

Local degree is given by generators of the cohomology in the top
dimension.

No local degree ⇒ no Reshetnyak’s theorem (?)
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Idea: Compensate the lack of topology by an additional structure

Suppose n = dimM < dimN = m. An n-form ω ∈ Ωn(N) on N is an
n-volume form if ω is closed and non-vanishing, that is, ωp 6= 0 for each
p ∈ N.

Let M be an n-dimensional oriented Riemannian manifold, let N be an
m-dimensional Riemannian manifold for m ≥ n.

Definition

A continuous mapping f : M → N is a K -quasiregular ω-curve with respect
to an n-volume form ω ∈ Ωn(N) if

f ∈W 1,n
loc (M,N), and

(‖ω‖ ◦ f )‖Df ‖n ≤ K (?f ∗ω) almost everywhere.

Here the norms are the operator norm and comass:

‖Df ‖x = max{|(Df )x(v)| : |v | = 1}
‖ω‖p = max{ωp(v1, . . . , vn) : v1, . . . , vn ∈ TpN, ‖vj‖ = 1}
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Geometric interpretation (an example)

Suppose

ω is simple, e.g. ω = dx ∧ dy ∈
∧2 R3, and

f : R2 → R3 a quasiregular ω-curve.

TxR2

(Df )x (TxR2)

(Df )x

(Df )xB

B

TxR2

(Df )x

xy -plane ⊂ Tf (x)R
3EB

In this case:

Distortion K of f is given by the eccentricity of the ellipsoid E .
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Examples

Quasiregular mappings are quasiregular curves

Suppose m = n and take ω = volN . Then a K -quasiregular mapping
f : M → N is a K -quasiregular ω-curve.

Holomorphic curves are 1-quasiregular curves

A holomorphic curve h = (h1, . . . , hk) : C→ Ck is a 1-quasiregular curve
with respect to ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn.
Reason: Since ‖ω0‖ = 1 and each Dhj is conformal, we have

‖Dh‖2 = ‖Dh1‖2 + · · ·+ ‖Dhk‖2 = Jh1 + · · ·+ Jhk = h∗ω0.

Pseudoholomorphic curves are quasiregular curves (at least locally)
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Suppose m = n and take ω = volN . Then a K -quasiregular mapping
f : M → N is a K -quasiregular ω-curve.

Holomorphic curves are 1-quasiregular curves

A holomorphic curve h = (h1, . . . , hk) : C→ Ck is a 1-quasiregular curve
with respect to ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn.
Reason: Since ‖ω0‖ = 1 and each Dhj is conformal, we have

‖Dh‖2 = ‖Dh1‖2 + · · ·+ ‖Dhk‖2 = Jh1 + · · ·+ Jhk = h∗ω0.

Open question:

Does there exists a non-constant quasiregular curve f : R2 → R3 with
respect to ω = ?θH = ?(dt − 1

2 (xdy − ydx))?
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Properties of quasiregular curves

Theorem (Locally uniform limits are in the same class)

Let (fk) be a sequence of K-quasiregular ω-curves fk : M → N converging
locally uniformly to a map f : M → N. Then f is a K-quasiregular ω-curve.

Theorem (Liouville’s theorem)

Let N be a complete Riemannian manifold and ω ∈ Ωn(N) an exact
n-volume form. Then bounded quasiregular ω-curves Rn → N are
constant.

Method:

Both proofs are (partly) based on a simple Caccioppoli inequality: if
ω = dτ then, for f : M → N and ψ ∈ C∞0 (M), we have∫

M
ψnf ∗ω ≤ C (n)Kn−1

∫
M
|∇ψ|n

(
‖τ‖

n
n−1

‖ω‖

)
◦ f .
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Liouville theorems for conformal curves

Theorem (Two dimensional 1-quasiregular curves are holomorphic)

Let Ω ⊂ R2 be a domain and let f = (f1, . . . , fk) : Ω→ (R2)k be a
1-quasiregular curve with respect to the standard symplectic form
ω0 = dx1 ∧ dy1 + · · ·+ dxn ∧ dyn. Then f is a holomorphic curve Ω→ Ck .

Theorem (Higher dimensional 1-quasiregular curves)

Let Ω ⊂ Rn be a domain for n ≥ 3 and let f : Ω→ (Rn)k be a
1-quasiregular ω-curve with respect to ω =

∑s
j=1 π

∗
j volRn ∈

∧n Rnk . Then

coordinate maps of f = (f1, . . . , fk) : Ω→ (Rn)k are conformal.

Pekka Pankka (University of Helsinki) 12 / 15



Gromov’s quasiminimality condition

Definition

A mapping f : M → N is C -quasiminimal if for each compact submanifold
W b M with boundary and each competing map h : M → N we have∫

W
‖∧nDf ‖ ≤ C

∫
W
‖∧nDh‖.

Theorem

A K-quasiregular ω-curve f : M → N is KR(ω)-quasiminimal, where

R(ω) =
max‖ω‖
min‖ω‖

.
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Failure of Reshetnyak’s theorem

Reshetnyak’s theorem for quasiregular mappings:

A non-constant quasiregular mapping is discrete and open.

Theorem (Iwaniec–Verchota–Vogel, 2002)

There exists a Lipschitz map F = (f1, f2) : C→ C2 having the following
properties:

Jf1 + Jf2 ≡ 1 on C+ and

F ≡ 0 on C−.

The map F = (f1, f2) in strip R× (1/2, 1):

f1(x , y) = α(y)e−i2x + β(y)e−ix

f2(x , y) = −α(y)e−i2x + β(y)e−ix
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Failure of Reshetnyak’s theorem

Reshetnyak’s theorem for quasiregular mappings:

A non-constant quasiregular mapping is discrete and open.

Theorem (Iwaniec–Verchota–Vogel, 2002)

There exists a Lipschitz map F = (f1, f2) : C→ C2 having the following
properties:

Jf1 + Jf2 ≡ 1 on C+ and

F ≡ 0 on C−.

Consequence:

F is a quasiregular curve with respect to the symplectic form ω0

⇒ Reshetnyak’s theorem fails for quasiregular curves in general.
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Curves over simple forms

Theorem

Let Ω ⊂ Rn be a domain and f : Ω→ Rm be a quasiregular ω-curve with
respect to a simple form ω ∈ Ωn(Rm). Then, locally, f is a graph over a
quasiregular mapping: for each x ∈ Ω there exists a neighborhood D, an
isometry L : Rm → Rm, and a quasiregular map f̂ : D → Rn for which

L ◦ f = (f̂ , u) : D → Rn × Rm−n,

where u ∈W 1,n
loc (D,Rm−n).

Corollary

f is discrete

?f ∗ω > 0 a.e.

(higher integrability) exists p > n for which f ∈W 1,p
loc (Ω,Rm).
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