Quasiregular curves

Pekka Pankka

University of Helsinki

Differential Geometry & Geometric Analysis Seminar Princeton University April 1, 2020

Definition

A continuous mapping $f: M \to N$ between oriented Riemannian *n*-manifolds is *K*-quasiregular if

- $f \in W^{1,n}_{\text{loc}}(M,N)$, and
- $||Df||^n \leq K \det Df$ almost everywhere.

In this terminology

quasiconformal = quasiregular homeomorphism.

Examples

- holomorphic maps $\mathbb{C} \to \mathbb{C}$
- conformal maps $\mathbb{R}^n \to \mathbb{R}^n$
- PL branched covers $M \rightarrow N$ between closed manifolds.

Example: Zorich map $\mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$

Let $A \colon \mathbb{R}^2 \to \mathbb{S}^2$ be

Define $Z : \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{0\}$ by $(x, y, t) \mapsto e^t A(x, y)$.

Definition

A continuous mapping $f: M \to N$ between oriented Riemannian *n*-manifolds is *K*-quasiregular if

- $f \in W^{1,n}_{\text{loc}}(M,N)$, and
- $||Df||^n \leq K \det Df$ almost everywhere.

n = 2: Quasiregular maps between Riemann surfaces

- f is quasiregular $\Leftrightarrow \partial_{\overline{z}} f = \mu \partial_z f$ (Beltrami equation).
- $f = (holomorphic) \circ (quasiconformal) (Stoïlow's theorem)$

n ≥ 3:

• f quasiregular $\Leftrightarrow J_f^{-2}(Df)^T Df = G$ (Beltrami equation)

• Reshetnyak: A non-constant qr-map is discrete, open, and $J_f > 0$ a.e.

Picard theorems

Theorem (Rickman's Picard theorem)

For a non-constant K-quasiregular map $f : \mathbb{R}^n \to \mathbb{S}^n$,

 $#(\mathbb{S}^n \setminus f\mathbb{R}^n) \leq C(n, K).$

Theorem (Prywes's theorem)

If N is closed and there exists a non-constant quasiregular map $\mathbb{R}^n \to N$, then

 $\dim H^k(N) \leq \dim H^k(\mathbb{T}^n).$

Picard theorems

Theorem (Rickman's Picard theorem)

For a non-constant K-quasiregular map $f : \mathbb{R}^n \to \mathbb{S}^n$,

 $\#(\mathbb{S}^n \setminus f\mathbb{R}^n) \leq C(n, K).$

Theorem (Prywes's theorem)

If N is closed and there exists a non-constant quasiregular map $\mathbb{R}^n \to N$, then

 $\dim H^k(N) \leq \dim H^k(\mathbb{T}^n).$

Methods: Elliptic PDE's of *n*-Laplace type

$$\Delta_n u = \operatorname{div}(|\nabla u|^{n-2}\nabla u) = 0 \Rightarrow \operatorname{div}(\mathcal{A}(u \circ f)) = 0.$$

Main question of the talk:

How to define quasiregularity if dim $M < \dim N$?

Main question of the talk:

How to define quasiregularity if dim $M < \dim N$?

Motivating questions:

- Local topological results, like discreteness?
- Analytical results, like higher integrability?
- Picard type theorems?
- Connection to holomorphic curves?

Definition of quasiregularity uses Jacobian

Idea: Replace Jacobian condition with a ratio condition on semi-axes.

- Lose the sign of the Jacobian \Rightarrow lose orientation.
- Low regularity \Rightarrow folding is allowed (i.e. $(x, y) \mapsto (|x|, y)$).

Jacobian \approx local degree theory

Local degree is given by generators of the cohomology in the top dimension.

• No local degree \Rightarrow no Reshetnyak's theorem (?)

Idea: Compensate the lack of topology by an additional structure

Suppose $n = \dim M < \dim N = m$. An *n*-form $\omega \in \Omega^n(N)$ on *N* is an *n*-volume form if ω is closed and non-vanishing, that is, $\omega_p \neq 0$ for each $p \in N$.

Idea: Compensate the lack of topology by an additional structure

Suppose $n = \dim M < \dim N = m$. An *n*-form $\omega \in \Omega^n(N)$ on *N* is an *n*-volume form if ω is closed and non-vanishing, that is, $\omega_p \neq 0$ for each $p \in N$.

Let *M* be an *n*-dimensional oriented Riemannian manifold, let *N* be an *m*-dimensional Riemannian manifold for $m \ge n$.

Definition

A continuous mapping $f: M \to N$ is a *K*-quasiregular ω -curve with respect to an *n*-volume form $\omega \in \Omega^n(N)$ if

- $f \in W^{1,n}_{\text{loc}}(M,N)$, and
- $(\|\omega\| \circ f)\|Df\|^n \le K(\star f^*\omega)$ almost everywhere.

Idea: Compensate the lack of topology by an additional structure

Suppose $n = \dim M < \dim N = m$. An *n*-form $\omega \in \Omega^n(N)$ on *N* is an *n*-volume form if ω is closed and non-vanishing, that is, $\omega_p \neq 0$ for each $p \in N$.

Let M be an n-dimensional oriented Riemannian manifold, let N be an m-dimensional Riemannian manifold for $m \ge n$.

Definition

A continuous mapping $f: M \to N$ is a *K*-quasiregular ω -curve with respect to an *n*-volume form $\omega \in \Omega^n(N)$ if

•
$$f \in W^{1,n}_{\operatorname{loc}}(M,N)$$
, and

• $(\|\omega\| \circ f)\|Df\|^n \le K(\star f^*\omega)$ almost everywhere.

Here the norms are the operator norm and comass:

$$\begin{split} \|Df\|_{x} &= \max\{|(Df)_{x}(v)| \colon |v| = 1\}\\ \|\omega\|_{p} &= \max\{\omega_{p}(v_{1}, \dots, v_{n}) \colon v_{1}, \dots, v_{n} \in T_{p}N, \ \|v_{j}\| = 1\} \end{split}$$

Geometric interpretation (an example)

Suppose

- ω is simple, e.g. $\omega = dx \wedge dy \in \bigwedge^2 \mathbb{R}^3$, and
- $f: \mathbb{R}^2 \to \mathbb{R}^3$ a quasiregular ω -curve.

Geometric interpretation (an example)

Suppose

- ω is simple, e.g. $\omega = dx \wedge dy \in \bigwedge^2 \mathbb{R}^3$, and
- $f: \mathbb{R}^2 \to \mathbb{R}^3$ a quasiregular ω -curve.

In this case:

Distortion K of f is given by the eccentricity of the ellipsoid E.

Quasiregular mappings are quasiregular curves

Suppose m = n and take $\omega = \text{vol}_N$. Then a *K*-quasiregular mapping $f: M \to N$ is a *K*-quasiregular ω -curve.

Holomorphic curves are 1-quasiregular curves

A holomorphic curve $h = (h_1, \ldots, h_k)$: $\mathbb{C} \to \mathbb{C}^k$ is a 1-quasiregular curve with respect to $\omega_0 = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n$. Reason: Since $\|\omega_0\| = 1$ and each Dh_j is conformal, we have

$$|Dh||^{2} = ||Dh_{1}||^{2} + \dots + ||Dh_{k}||^{2} = J_{h_{1}} + \dots + J_{h_{k}} = h^{*}\omega_{0}.$$

Pseudoholomorphic curves are quasiregular curves (at least locally)

Examples

Quasiregular mappings are quasiregular curves

Suppose m = n and take $\omega = \text{vol}_N$. Then a *K*-quasiregular mapping $f: M \to N$ is a *K*-quasiregular ω -curve.

Holomorphic curves are 1-quasiregular curves

A holomorphic curve $h = (h_1, \ldots, h_k)$: $\mathbb{C} \to \mathbb{C}^k$ is a 1-quasiregular curve with respect to $\omega_0 = dx_1 \wedge dy_1 + \cdots + dx_n \wedge dy_n$. Reason: Since $\|\omega_0\| = 1$ and each Dh_j is conformal, we have

$$|Dh||^2 = ||Dh_1||^2 + \cdots + ||Dh_k||^2 = J_{h_1} + \cdots + J_{h_k} = h^* \omega_0.$$

Open question:

Does there exists a non-constant quasiregular curve $f : \mathbb{R}^2 \to \mathbb{R}^3$ with respect to $\omega = \star \theta_H = \star (dt - \frac{1}{2}(xdy - ydx))?$

Properties of quasiregular curves

Theorem (Locally uniform limits are in the same class)

Let (f_k) be a sequence of K-quasiregular ω -curves $f_k \colon M \to N$ converging locally uniformly to a map $f \colon M \to N$. Then f is a K-quasiregular ω -curve.

Theorem (Liouville's theorem)

Let N be a complete Riemannian manifold and $\omega \in \Omega^n(N)$ an exact n-volume form. Then bounded quasiregular ω -curves $\mathbb{R}^n \to N$ are constant.

Method:

Both proofs are (partly) based on a simple Caccioppoli inequality: if $\omega = d\tau$ then, for $f: M \to N$ and $\psi \in C_0^{\infty}(M)$, we have

$$\int_{M} \psi^{n} f^{*} \omega \leq C(n) \mathcal{K}^{n-1} \int_{M} |\nabla \psi|^{n} \left(\frac{\|\tau\|^{\frac{n}{n-1}}}{\|\omega\|} \right) \circ f.$$

Liouville theorems for conformal curves

Theorem (Two dimensional 1-quasiregular curves are holomorphic) Let $\Omega \subset \mathbb{R}^2$ be a domain and let $f = (f_1, \ldots, f_k) \colon \Omega \to (\mathbb{R}^2)^k$ be a 1-quasiregular curve with respect to the standard symplectic form $\omega_0 = dx_1 \land dy_1 + \cdots + dx_n \land dy_n$. Then f is a holomorphic curve $\Omega \to \mathbb{C}^k$.

Theorem (Higher dimensional 1-quasiregular curves)

Let $\Omega \subset \mathbb{R}^n$ be a domain for $n \geq 3$ and let $f : \Omega \to (\mathbb{R}^n)^k$ be a 1-quasiregular ω -curve with respect to $\omega = \sum_{j=1}^s \pi_j^* \operatorname{vol}_{\mathbb{R}^n} \in \bigwedge^n \mathbb{R}^{nk}$. Then coordinate maps of $f = (f_1, \ldots, f_k) : \Omega \to (\mathbb{R}^n)^k$ are conformal.

Gromov's quasiminimality condition

Definition

A mapping $f: M \to N$ is *C*-quasiminimal if for each compact submanifold $W \Subset M$ with boundary and each competing map $h: M \to N$ we have

$$\int_{W} \|\wedge^{n} Df\| \leq C \int_{W} \|\wedge^{n} Dh\|.$$

Theorem

A K-quasiregular ω -curve $f: M \to N$ is KR(ω)-quasiminimal, where

$$\mathsf{R}(\omega) = rac{\mathsf{max} \| \omega \|}{\mathsf{min} \| \omega \|}.$$

Failure of Reshetnyak's theorem

Reshetnyak's theorem for quasiregular mappings:

A non-constant quasiregular mapping is discrete and open.

Theorem (Iwaniec-Verchota-Vogel, 2002)

There exists a Lipschitz map $F = (f_1, f_2) : \mathbb{C} \to \mathbb{C}^2$ having the following properties:

- $J_{f_1} + J_{f_2} \equiv 1$ on \mathbb{C}_+ and
- $F \equiv 0$ on \mathbb{C}_{-} .

The map $F = (f_1, f_2)$ in strip $\mathbb{R} \times (1/2, 1)$:

$$f_1(x,y) = \alpha(y)e^{-i2x} + \beta(y)e^{-ix}$$

$$f_2(x,y) = -\alpha(y)e^{-i2x} + \beta(y)e^{-ix}$$

Failure of Reshetnyak's theorem

Reshetnyak's theorem for quasiregular mappings:

A non-constant quasiregular mapping is discrete and open.

Theorem (Iwaniec–Verchota–Vogel, 2002)

There exists a Lipschitz map $F = (f_1, f_2) \colon \mathbb{C} \to \mathbb{C}^2$ having the following properties:

•
$$J_{f_1}+J_{f_2}\equiv 1$$
 on \mathbb{C}_+ and

•
$$F \equiv 0$$
 on \mathbb{C}_{-} .

Consequence:

F is a quasiregular curve with respect to the symplectic form $\omega_0 \Rightarrow$ Reshetnyak's theorem fails for quasiregular curves in general.

Theorem

Let $\Omega \subset \mathbb{R}^n$ be a domain and $f: \Omega \to \mathbb{R}^m$ be a quasiregular ω -curve with respect to a simple form $\omega \in \Omega^n(\mathbb{R}^m)$. Then, locally, f is a graph over a quasiregular mapping: for each $x \in \Omega$ there exists a neighborhood D, an isometry $L: \mathbb{R}^m \to \mathbb{R}^m$, and a quasiregular map $\hat{f}: D \to \mathbb{R}^n$ for which

$$L \circ f = (\hat{f}, u) \colon D \to \mathbb{R}^n \times \mathbb{R}^{m-n},$$

where $u \in W^{1,n}_{loc}(D, \mathbb{R}^{m-n})$.

Corollary

- f is discrete
- $\star f^* \omega > 0$ a.e.
- (higher integrability) exists p > n for which $f \in W^{1,p}_{loc}(\Omega, \mathbb{R}^m)$.