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Abstract. We obtain a quantitative cohomological boundedness the-
orem for closed manifolds receiving entire mappings of bounded mean
distortion and finite lower order. We also prove an equidistribution the-
orem for mappings of finite distortion.

1. Introduction

By the classical Uniformization Theorem, the sphere S
2 and the torus

T
2 are the only closed Riemann surfaces admitting nonconstant conformal

mappings from the complex plane. The same rigidity is present in higher
dimensions; closed manifolds admitting conformal mappings from R

n are
quotients of S

n and T
n, see e.g. [2, Prop. 1.4]. However, if distortion is

allowed, simple examples show that the spaces S
k1 × S

k2 × · · · × S
kℓ (k1 +

· · · + kℓ = n) receive nonconstant mappings of bounded distortion from R
n.

A mapping f : M → N between oriented Riemannian n-manifolds is said
to be a mapping of bounded distortion, or quasiregular, if f is a Sobolev
mapping in W 1,n

loc (M ; N) and there exists a constant K ≥ 1 so that

|Df(x)|n ≤ KJf (x) for almost every x ∈ M,

where |Df(x)| is the operator norm of the differential Df(x) and Jf (x) is the
Jacobian determinant of f at x. Mappings we consider are continuous and
the Sobolev space W 1,n

loc (M ; N) is understood as in [4]. By Reshetnyak’s
theorem [17, p. 163], quasiregular mappings are discrete and open, and
therefore examples of generalized branched covers.

A connected and oriented Riemannian n-manifold receiving a nonconstant
(K-)quasiregular mapping from R

n is called (K-)quasiregularly elliptic. By
the Uniformization Theorem and the measurable Riemann Mapping Theo-
rem, the only closed quasiregularly elliptic 2-manifolds are S

2 and T
2. For

n = 3, closed quasiregularly elliptic manifolds are by Jormakka’s theorem
[10] quotients of S

3, S
2 × S

1, and T
3. In higher dimensions such characteri-

zations are not known. In dimension n = 4, a construction of Rickman [19]
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gives a positive answer to a question of Gromov [3, 2.41] on the quasiregular
ellipticity of S

2 × S
2#S

2 × S
2.

The fundamental group and the de Rham cohomology ring yield obstruc-
tions for quasiregular ellipticity of a closed manifold. More precisely, by
Varopoulos’s theorem [23, Theorem X.11] the order of growth of the funda-
mental group of a closed quasiregularly elliptic manifold cannot exceed the
dimension of the manifold. Similarly, by a theorem of Bonk and Heinonen
[2, Theorem 1.1]: Given n ≥ 2 and K ≥ 1 there exists a constant C =
C(n,K) > 0 so that the dimension of the de Rham cohomology ring H∗(N)
of a closed K-quasiregularly elliptic n-manifold N is at most C. Here, and
in what follows, the dimension of H∗(N) is dim H∗(N) =

∑

k dim Hk(N).
Local versions of these theorems show that analogous results hold for

mappings that are quasiregular in a neighborhood of infinity; see [15]. The
assumption of quasiregularity can, however, be further relaxed. With On-
ninen we showed in [14] that Varopoulos’s theorem holds for a larger class
of mappings, a subclass of mappings of finite distortion. In this vein, we
show that a cohomological boundedness phenomenon of Bonk-Heinonen type
holds for a subclass of mappings of bounded mean distortion. To state our
main results, we give some definitions.

We say that a nonconstant continuous mapping f : R
n → N is a mapping

of finite distortion if f belongs to the Sobolev space W 1,n
loc (Rn; N) and there

exists a measurable function K : R
n → [1,∞) so that

|Df(x)|n ≤ K(x)Jf (x) for almost every x ∈ R
n.

We set the outer distortion function Kf of f to be the function Kf (x) =
|Df(x)|n/Jf (x), whenever Jf (x) > 0, and Kf (x) = 1, otherwise.

We say that a mapping of finite distortion f has (K-)bounded p-mean
distortion, p ≥ 1, if there exist constants K ≥ 1 and r0 > 0 so that

(

1

|Bn(r)|

∫

Bn(r)
Kp

f (x) dx

)1/p

≤ K

for every r ≥ r0. Here Bn(r) is the open ball of radius r about the origin
in R

n and |Bn(r)| is the Lebesgue n-measure of Bn(r). We also say that f
has finite lower order λ if

λ = lim inf
r→∞

log Af (r)

log r
< ∞.

Here and in what follows Af is the averaged counting function

Af (r) =

∫

Bn(r)
Jf (x) dx.

Theorem 1. For every n ≥ 2, λ ≥ 0, and K ≥ 1 there exist constants
p = p(n) > n − 1 and C = C(n, λ,K) > 0 with the following property.
Let N be a closed, connected, and oriented Riemannian n-manifold and let
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f : R
n → N be a mapping of K-bounded p-mean distortion having finite lower

order λ. Then dim H∗(N) ≤ C.

Although, the dependence of the constant C on the distortion and the
finite lower of the mapping is not fully understood in general, it is explic-
itly known in some special cases. For λ = 0 the manifold N is a rational
homology sphere, i.e. dim H∗(N) = 2, by [14, Theorem 1]. In addition, for
n = 2, 3, we have dim H∗(N) ≤ 2n by Varopoulos’s theorem and Poincaré
duality. Let us also recall that by the rescaling principle for quasiregular
mappings, see e.g. [2, Section 2], a quasiregularly elliptic manifold always
admits quasiregular mappings having finite lower order at most n. Thus we
recover the Bonk-Heinonen theorem from Theorem 1.

The proof of the main theorem relies on two ingredients of possible inde-
pendent interest. In Section 2, we give a very simple proof for an extension
of a special case of the Mattila-Rickman equidistribution theorem [13, The-
orem 5.1]. For mappings of bounded mean distortion, our result reads as
follows. In the statement of the theorem, the logarithmic measure mlog(E)
of a set E ⊂ (0,∞) is

mlog(E) =

∫

E

dr

r
.

Theorem 2. Let N be a closed, connected, and oriented Riemannian n-
manifold, n ≥ 2, u ∈ Lq(N), q > n, and suppose that f : R

n → N is a
mapping of bounded (n − 1)-mean distortion. Then for every ε > 0 there
exist r0 ≥ 1 and a set F ⊂ [1,∞) so that mlog([r/2, r] \ F ) < ε for every
r ≥ r0 and

(1.1) lim
r→∞

r∈F

1

Af (r)

∫

Bn(r)
(u ◦ f)(x)Jf (x) dx =

1

|N |

∫

N
u(y) dy,

where the integral on the right is with respect to the Riemannian measure of
N and |N | is the volume of N .

We find it interesting that the proof of this equidistribution theorem does
not rely on discreteness and openness, as the sharper result of Mattila and
Rickman for quasiregular mappings does, but uses only the change of vari-
ables methods. In fact, it is not known to us whether the mappings in ques-
tion are discrete and open. A result of Manfredi and Villamor [11] states
that mappings of finite distortion having distortion in Lp

loc for p > n − 1
are discrete and open and hence branched covers. For n = 2, Iwaniec and
Šverák [9] proved that distortion in Lp

loc for p ≥ n − 1 implies discreteness
and openness. They also conjecture the same result in all dimensions n > 2.
For recent results in this direction, see [6].

In Section 3 we consider Caccioppoli-type potential estimates for pull-
backs of forms under mappings of finite distortion. Instead of focusing on
the solutions of degenerate A-harmonic equations arising in the pull-back,
we consider pairs of closed forms (ξ, ζ) satisfying a nonnegativity condi-
tion ⋆(ξ ∧ ζ) ≥ 0, where ⋆ denotes the Hodge star duality operator. Such
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pairs arise naturally in linear and non-linear Hodge theory; pairs (ξ, ⋆ξ) and
(ξ, ⋆|ξ|p−2ξ) are nonnegative if ξ is a harmonic or a p-harmonic form, re-
spectively. These pairs are special cases of Cartan forms as considered by
Haj lasz, Iwaniec, Malý, and Onninen [4].

Having the equidistribution result and a Caccioppoli-type estimate at
our disposal, we finish the proof of Theorem 1 in Section 4. The argument
follows closely the proof of Bonk and Heinonen. The main difference is in the
replacement of conformal exponents by exponents within a range determined
by a Sobolev-embedding theorem for differential forms.

Acknowledgments. We thank Tadeusz Iwaniec and Jani Onninen for
the encouragement to study these questions. We would also like to thank
Mario Bonk and Kai Rajala for fruitful discussions and comments greatly
improving the manuscript. We are also grateful to the referees for their
comments on the manuscript.

2. A Mattila-Rickman type value distribution theorem

In this section we give a weak Mattila-Rickman type equidistribution the-
orem for mappings of finite distortion. Since the natural class of mappings
in this theorem is larger than mappings of bounded mean distortion, we
introduce first some notation.

Given an integrable function u on a Riemannian manifold N , we set
∫

N
u =

∫

N
u volN =

∫

N
u(y) dµ(y),

where volN is the volume form determined by the Riemannian metric of N
and µ is the Riemannian measure on N . Submanifolds of R

n are assumed
to inherit the standard Riemannian metric from R

n. We also denote by

−

∫

N
u =

1

|N |

∫

N
u

the mean value of function u over a Riemannian manifold N , where |N | is
the volume of N .

Let f : R
n → N be a mapping of finite distortion. The outer distortion

function of f gives rise to a type of logarithmic measure mf on (0,∞) defined
by

mf (E) =

∫

E

dr

rkf (r)
,

where kf : (0,∞) → [1,∞] is the spherical mean distortion function

kf (r) =

(

−

∫

Sn−1(r)
Kn−1

f

)
1

n−1

,

where Sn−1(r) is the sphere of radius r about the origin in R
n.
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Remark 3. For quasiregular mappings and mappings of bounded spherical
mean distortion, 1 ≤ kf ≤ K, the measure mf is comparable, with a constant
depending only on K, to the logarithmic measure mlog,

mlog(E) =

∫

E

dr

r
.

For a mapping of bounded mean distortion f , the measures mf and mlog

need, however, not be comparable. A radial mapping f : R
n → R

n as in [14,
Example 14] with kf comparable to the function

k(r) = 1 +

∞
∑

m=1

mχ[2m−1,2m](r)

provides an example of a mapping of this type.
For a more detailed discussion on logarithmic measures in value distribu-

tion theory of quasiregular mappings, see e.g. [18, V.9.16].

The main theorem of this section reads as follows.

Theorem 4. Let N be a closed, connected, and oriented Riemannian n-
manifold and suppose that f : R

n → N is a mapping of finite distortion such
that mf ([1,∞)) = ∞. Then for every n-form ω in Lq(

∧n N), q > n, there
exists a set E ⊂ [1,∞) of finite mf -measure so that

(2.2)
1

Af (r)

∫

Bn(r)
f∗ω → −

∫

N
ω

as r → ∞, r 6∈ E.

Theorem 4 is analogous to the Euclidean version of the Mattila-Rickman
equidistribution theorem [13, Theorem 5.11]. For our applications, it suffices
to have the following version of this result.

Theorem 5. Let N be a closed, connected, and oriented Riemannian n-
manifold and suppose that f : R

n → N is a mapping of finite distortion.
Then for every ε > 0 and every n-form ω in Lq(

∧n N), q > n, there exists
a set E ⊂ [1,∞) of finite mf -measure so that

(2.3)

(

−

∫

N
ω − ε

)
∫

Bn(r)
Jf <

∫

Bn(r)
f∗ω <

(

−

∫

N
ω + ε

)
∫

Bn(r)
Jf

for r ∈ [1,∞) \ E.

The proofs of Theorems 4 and 5 can be reduced to the following lemma
corresponding to the case of exact n-forms.

Lemma 6. Let N and f be as in Theorem 5. Then for every δ > (n−1)/n,

ε > 0, and every bounded (n − 1)-form τ in W 1,q(
∧n−1 N), q > n, there

exists a set E ⊂ [1,∞) of finite mf -measure so that

(2.4)

∣

∣

∣

∣

∣

∫

Sn−1(r)
f∗τ

∣

∣

∣

∣

∣

< ε

(

∫

Bn(r)
Jf

)δ
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for r ∈ [1,∞) \ E.

The mappings we consider have the Lusin property (N) and hence support
the change of variables formula, see e.g. [5], [12], and [4, Section 2.2]. We
use these properties frequently in what follows.

Proof of Theorem 5 assuming Lemma 6. Let

ω̃ = ω −

(

−

∫

N
ω

)

volN .

Since
∫

N
ω̃ = 0,

ω̃ is weakly exact; see e.g. [16, Section 3]. Thus, by the Poincaré inequality

[8, Theorem 6.4], there exists an (n − 1)-form τ ∈ W 1,q(
∧n−1 N) so that

dτ = ω̃. Since q > n, τ is Hölder continuous, and hence bounded, by the
Sobolev embedding theorem.

Let ε > 0. Since
∫

Bn(r)
f∗ω̃ =

∫

Sn−1(r)
f∗τ

for almost every r > 0, we may apply Lemma 6 with δ = 1 and we obtain a
set E ⊂ [1,∞) of finite mf -measure so that

∣

∣

∣

∣

∣

∫

Bn(r)
f∗ω̃

∣

∣

∣

∣

∣

< ε

∫

Bn(r)
Jf

for r ∈ [1,∞) \ E. Since
∫

Bn(r)
f∗ω̃ =

∫

Bn(r)
f∗ω −

(

−

∫

N
ω

)
∫

Bn(r)
Jf ,

the claim follows. �

Proof of Theorem 4 assuming Lemma 6. Suppose first that the averaged count-
ing function Af is bounded. Let k be an integer so that the set X = {y ∈
N : card f−1(y) = k} has positive measure. Thus

∫

Bn(r)
(χX ◦ f)Jf =

∫

X
n(y,Bn(r); f)dy → k|X|

as r → ∞, where |X| the Riemannian measure of X and n(·, ·; f) is the
counting function,

n(y,Bn(r); f) = card (f−1(y) ∩ Bn(r))

of f ; see [12, Theorem 3.1].
We show next that Af (r) → k|N | as r → ∞. Let A∞ = limr→∞ Af (r);

the limit exists, since Af is non-decreasing and bounded. Let ε > 0. By an
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application of Theorem 5 to χXvolN , there exists a set E ⊂ [1,∞) of finite
mf -measure so that

(

|X|

|N |
− ε

)
∫

Bn(r)
Jf <

∫

Bn(r)
(χX ◦ f) Jf <

(

|X|

|N |
+ ε

)
∫

Bn(r)
Jf

for r ∈ [1,∞) \ E. Since mf ([1,∞)) = ∞, we obtain
(

|X|

|N |
− ε

)

A∞ ≤ k|X| ≤

(

|X|

|N |
+ ε

)

A∞.

Thus
k|N |

1 + ε|N |
≤ A∞ ≤

k|N |

1 − ε|N |

and we have that Af (r) → k|N | as r → ∞. Hence N \ X is a zero set and
f is a k-to-1 map. Thus

∫

Rn

f∗ω = k

∫

N
ω =

(

−

∫

N
ω

)

k|N |

for all ω ∈ Lq(N), q > n, by the change of variables.
Suppose now that the averaged counting function Af is unbounded. Let

ω and ω̃ be n-forms as in the proof of Theorem 5. Then an application of
Lemma 6 with (n−1)/n < δ < 1 yields a set E ⊂ [1,∞) of finite mf -measure
so that

∣

∣

∣

∣

∣

∫

Bn(r)
f∗ω̃

∣

∣

∣

∣

∣

<

(

∫

Bn(r)
Jf

)δ

for r ∈ [1,∞) \ E. Thus
∣

∣

∣

∣

∣

1

Af (r)

∫

Bn(r)
f∗ω̃

∣

∣

∣

∣

∣

< Af (r)δ−1 → 0,

as r → ∞, r 6∈ E. The claim follows. �

Proof of Lemma 6. Let E ⊂ [1,∞) be the set of such radii r ≥ 1 that (2.4)
does not hold. Then, for almost every r ∈ E, Hölder’s inequality yields

ε

(

∫

Bn(r)
Jf

)δ

≤

∫

Sn−1(r)
|f∗τ | ≤

∫

Sn−1(r)
|Df |n−1 (|τ | ◦ f)

≤ ‖τ‖∞

(

∫

Sn−1(r)
Kn−1

f

)
1

n
(

∫

Sn−1(r)
Jf

)
n−1

n

.

Thus the averaged counting function Af satisfies the differential inequality

ε
n

n−1 Af (r)δ n
n−1 ≤ C‖τ‖

n
n−1

∞ rkf (r)A′

f (r)

for almost every r ∈ E, where C = C(n). Since

C

(

‖τ‖∞
ε

)
n

n−1

∫

∞

1

A′

f (r)

Af (r)δ n
n−1

dr ≥

∫

E

dr

rkf (r)
= mf (E)
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by the differential inequality and
∫

∞

1

A′

f (r)

Af (r)δ n
n−1

dr ≤
1

δ n
n−1 − 1

Af (1)1−δ n
n−1 ,

the claim follows. �

To prove Theorem 2 we consider first the following lemma.

Lemma 7. Let f : R
n → N be a mapping of K-bounded (n − 1)-mean dis-

tortion. Given ε > 0 there exists δ > 0, R0 ≥ 1, and a set F ⊂ [1,∞) so
that

mlog([R/2, R] \ F ) < ε

for R ≥ R0 and

mf (E) ≥ δmlog(E)

for every measurable set E ⊂ F . In particular, mf ([1,∞)) = ∞.

Proof. Let δ > 0 and consider the set

Bδ = {r ∈ (0,∞) : kf (r) > 1/δ}.

Then

mf (E) =

∫

E

dr

rkf (r)
≥ δ

∫

E

dr

r
= δmlog(E)

for every measurable set E ⊂ (0,∞) \ Bδ.
Fix r0 ≥ 1 so that

∫

Bn(r)
Kn−1

f ≤ Kn−1|Bn(r)|

for r ≥ r0 and set R0 = 2r0. It suffices to show that

|Bδ ∩ [R/2, R]| < Cδn−1R

for R ≥ R0, where C = C(n,K).
Let R ≥ R0 and denote Bδ,R = Bδ∩[R/2, R]. Since kf (r)δ > 1 for r ∈ Bδ,

we have

(R/2)n−1|Bδ,R| ≤

∫

Bδ,R

rn−1 dr ≤ δn−1

∫

Bδ,R

rn−1kf (r)n−1 dr

≤ δn−1

∫

Bn(R)
Kn−1 ≤ δn−1Kn−1|Bn(R)|.

Thus

|Bδ,R| ≤ Cδn−1R,

where C = C(n,K). �

Proof of Theorem 2. Let ω = u volN and let E ⊂ [1,∞) be a set of finite
mf -measure as in Theorem 5. Given ε > 0, we may fix, by Lemma 7, δ > 0,
R1 ≥ 1, and a set F ′ ⊂ [1,∞) so that

mlog([R/2, R] \ F ′) < ε/2
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for R ≥ R1, and

mf (E ∩ F ′) ≥ δmlog(E ∩ F ′).

We fix R0 ≥ R1 so that mlog(E∩ [R0/2,∞)) < ε/2. Then R0 and F = F ′\E
satisfy conditions of the claim. �

3. A Caccioppoli-type estimate

In this section we deduce a counterpart for the Caccioppoli-type estimate
used in the proof of Bonk and Heinonen. In what follows we use the notation
q′ to denote the Hölder conjugate q/(q − 1) of q > 1.

We begin with a potential theoretic lemma of Caccioppoli-type for non-
negative pairs of forms.

Lemma 8. Let 0 < r < R, 1 ≤ ℓ ≤ n − 1, and q > 1. Let ω and ω′

be closed forms in Lq(
∧ℓ Bn(R)) and Lq′(

∧n−ℓ Bn(R)), respectively, so that
⋆(ω ∧ ω′) ≥ 0. Then there exists C = C(n) > 0 so that

(3.5)

∫

Bn(r)
ω ∧ ω′ ≤

C

R − r

(

∫

Bn(R)
|τ |q

)1/q (
∫

Bn(R)
|ω′|q

′

)1/q′

for every τ ∈ W d,q(
∧ℓ−1 Bn(R)) satisfying dτ = ω.

Proof. Since ⋆(ω ∧ ω′) ≥ 0, we have, by Stokes’ theorem and Hadamard’s
and Hölder’s inequalities,
∫

Bn(r)
ω ∧ ω′ ≤

1

R − r

∫ R

r

∫

Bn(t)
ω ∧ ω′ =

1

R − r

∫ R

r

∫

Sn−1(t)
τ ∧ ω′

≤
1

R − r

∫ R

r

∫

Sn−1(t)
|τ ∧ ω′| ≤

C

R − r

∫

Bn(R)
|τ ||ω′|

≤
C

R − r

(

∫

Bn(R)
|τ |q

)1/q (
∫

Bn(R)
|ω′|q

′

)1/q′

,

where C = C(n) > 0. �

The main result of this section combines the Caccioppoli-type estimate
with value distribution results for mappings of finite distortion having finite
lower order. The proof uses the following observation, typical in value dis-
tribution theory; see e.g. [2, Lemma 4.14]. For the reader’s convenience we
give a simple proof.

Lemma 9. Let λ > 0 and ϕ : (0,∞) → (0,∞) be a nondecreasing function
so that

(3.6) λ = lim inf
r→∞

log ϕ(r)

log r
< ∞.

Then for every r0 > 0 there exists r1 ≥ r0 so that

(3.7) ϕ(r) ≤ 5λϕ(r/2)
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for all r1/2 ≤ r ≤ r1. In particular, (3.7) holds in a set of infinite logarithmic
measure.

Proof. Let r0 > 0. We show first that there exists r1 ≥ r0 so that ϕ(r1) ≤
5λϕ(r1/4). Should this not be the case, ϕ(4kr0) ≥ 5kλϕ(r0) for every k ≥ 0.
To show that this is a contradiction, let k0 > 0 to be fixed later. Let k ≥ k0

and 4kr0 ≤ r ≤ 4k+1r0. Then

log ϕ(r)

log(r)
≥

log(ϕ(4kr0))

log(4k+1r0)
≥

log(5kλϕ(r0))

log(4k4r0)
=

kλ log 5 + log ϕ(r0)

k log 4 + log(4r0)
> Cλ,

where C = C(k0) > 1 for k0 large. This contradicts (3.6). Thus there exists
r1 ≥ r0 so that ϕ(r1) ≤ 5λϕ(r1/4). Then

ϕ(r) ≤ ϕ(r1) ≤ 5λϕ(r1/4) ≤ 5λϕ(r/2).

for every r1/2 ≤ r ≤ r1. �

The following proposition combines the Caccioppoli-type estimate with
value distribution and finite lower order.

Proposition 10. Let N be a closed, connected, and oriented Riemannian
n-manifold so that |N | = 1, and let f : R

n → N be a mapping of K-bounded
p-mean distortion for p > n − 1 having finite lower order λ. Then there
exists a sequence (ri) tending to infinity so that the following holds.

Let 1 ≤ ℓ ≤ n − 1 and suppose that q > n/ℓ satisfies

q′ =
p

p + 1

(n

ℓ

)

′

.

Let also ξ and ζ be closed forms in L∞(
∧ℓ N) and in L∞(

∧n−ℓ N), re-
spectively, so that ⋆(ξ ∧ ζ) ≥ 0. There exist a constant C = C(n, ℓ, λ, ‖ξ ∧
ζ‖1, ‖ζ‖ n

n−ℓ
) > 0 and a set E ⊂ [1,∞) of finite mf -measure so that for every

α ∈ W d,q
loc

(

∧ℓ−1 Bn(r)
)

satisfying dα = f∗ξ we have

(

∫

Bn(r)
Jf

)ℓ/n

≤ CK
n−ℓ

n rℓ−1−n
q

(

∫

Bn(r)
|α|q

)1/q

for r ∈ (
⋃

i[ri/2, ri]) \ E.

Proof. Since f has finite lower order λ, there exists, by Lemma 9, C =
C(λ) > 0 and a sequence (ri) tending to infinity so that

(3.8) Af (r) ≤ CAf (r/2)

for ri/2 ≤ r ≤ ri and every i. We show that this sequence satisfies conditions
of the claim.
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We show first that

∫

Bn(r)
f∗ξ ∧ f∗ζ

≤
C

R − r

(

∫

Bn(R)
K

1

s−1

f

)
s−1

sq′
(

∫

Bn(R)
|α|q

)1/q(
∫

Bn(R)
(|ζ| ◦ f)

n
n−ℓ Jf

)
n−ℓ

n

(3.9)

for R > r ≥ 1, where s = n
n−ℓ

1
q′ .

Since ⋆(f∗ξ ∧ f∗ζ) = ⋆(ξ ∧ ζ) ◦ fJf ≥ 0, it suffices, by Lemma 8, to show
that
(

∫

Bn(R)
|f∗ζ|q

′

)1/q′

≤

(

∫

Bn(R)
K

1

s−1

f

)
s−1

sq′
(

∫

Bn(R)
(|ζ| ◦ f)

n
n−ℓ Jf

)
n−ℓ

n

.

By Hölder’s inequality, we obtain
∫

Bn(R)
|f∗ζ|q

′

≤

∫

Bn(R)
(KfJf )

n−ℓ
n

q′ (|ζ| ◦ f)q′

=

∫

Bn(R)
K

1

s

f (|ζ| ◦ f)q′ J
1

s

f

≤

(

∫

Bn(R)
K

1

s−1

f

)
s−1

s
(

∫

Bn(R)
(|ζ| ◦ f)

n
n−ℓ Jf

)
1

s

.

The inequality (3.9) now follows.
By Theorem 5, we fix a set E ⊂ [1,∞) of finite mf -measure so that

(3.10)
1

2C

∫

Bn(r/2)
Jf ≤

∫

Bn(r/2)
f∗ξ ∧ f∗ζ

and

(3.11)

∫

Bn(r)
(|ζ| ◦ f)

n
n−ℓ Jf ≤ 2C

∫

Bn(r)
Jf

for r ∈ [1,∞) \ E, where C = C(n, ℓ, ‖ξ ∧ ζ‖1, ‖ζ‖ n
n−ℓ

) > 0.

Thus (3.9) and (3.8) together with (3.10) yield
∫

Bn(r)
Jf ≤ C

∫

Bn(r/2)
Jf ≤ C

∫

Bn(r/2)
f∗ξ ∧ f∗ζ

≤
C

r

(

∫

Bn(r)
K

1

s−1

f

)
s−1

sq′
(

∫

Bn(r)
|α|q

)1/q (
∫

Bn(r)
(|ζ| ◦ f)

n
n−ℓ Jf

)
n−ℓ

n

≤
C

r

(

∫

Bn(r)
K

1

s−1

f

)
s−1

sq′
(

∫

Bn(r)
|α|q

)1/q (
∫

Bn(r)
Jf

)
n−ℓ

n

,

for r ∈ (
⋃

i[ri/2, ri]) \ E, where C = C(n, ℓ, λ, ‖ξ ∧ ζ‖1, ‖ζ‖ n
n−ℓ

) > 0.
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Since q satisfies q′ = p
p+1

(

n
ℓ

)

′
, we have

1

s − 1
=

1
n

n−ℓ
1
q′ − 1

=
q′

(

n
ℓ

)

′
− q′

= p

and
(

∫

Bn(r)
K

1

s−1

f

)
s−1

sq′

=

(

∫

Bn(r)
Kp

f

)
1

sq′p

≤ CK
n−ℓ

n r
n

sq′p = CK
n−ℓ

n r
n−ℓ

p ,

for every r large enough, where C = C(n, ℓ, p). This concludes the proof. �

4. Proof of Theorem 1

By Poincaré duality, it suffices to consider the cohomology groups Hℓ(N)
for 1 ≤ ℓ ≤ n/2. We may also assume that |N | = 1.

Suppose d = dim Hℓ(N) > 0. By non-linear Hodge theory [20], we may
fix (n/ℓ)-harmonic ℓ-forms ξ1, . . . , ξd on N so that the cohomology classes
of the forms span Hℓ(N) and that the forms satisfy

‖ξi‖n/ℓ = 1 and ‖ξi − ξj‖n/ℓ ≥ 1

for all i and j 6= i. For every i, we set ζi to be the (n/ℓ)-harmonic conjugate

of ξi, i.e., ζi = ⋆|ξi|
n
ℓ
−2ξi. Then ‖ζi‖ n

n−ℓ
= 1. The forms ξi and ζi are Hölder

continuous by results of Uhlenbeck [21] and Ural’tseva [22]. Especially, they
are bounded.

Since n/ℓ ≥ 2, we have, by a pointwise monotonicity estimate (see e.g.
[1, p. 288]), that

∫

N
(ξi − ξj) ∧ (ζi − ζj) ≥ C

∫

N
|ξi − ξj|

n/ℓ ≥ C,

where C = C(n) > 0. By Hölder’s inequality, we also obtain
∫

N
(ξi − ξj) ∧ (ζi − ζj) ≤ C‖ξi − ξj‖n/ℓ

(

‖ζi‖ n
n−ℓ

+ ‖ζj‖ n
n−ℓ

)

≤ C,

where C = C(n) > 0. For brevity, we set ξij = ξi − ξj and ζij = ζi − ζj for
every i 6= j.

To obtain an estimate for the number of forms ξi, we use the compactness

of the Poincaré homotopy operator T : Ls(
∧ℓ Bn) → Lq(

∧ℓ−1 Bn) of Iwaniec
and Lutoborski [7]. Since T is a composition of a continuous operator

Ls(
∧ℓ Bn) → W 1,s(

∧ℓ−1 Bn) and a Sobolev embedding W 1,s(
∧ℓ−1 Bn) →

Lq(
∧ℓ−1 Bn), we have that T is compact for s ≤ q < s∗, where s∗ =

ns/(n − s) is the Sobolev conjugate of s. Thus it suffices to show that
there exist exponents s and q and a radius r > 0 so that s ≤ q < s∗ and
that we have the estimates

‖Tλ∗

rf
∗ξi‖q ≤ C

(

∫

Bn(r)
Jf

)ℓ/n
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and

‖Tλ∗

rf
∗ξi − Tλ∗

rf
∗ξj‖q ≥

1

C

(

∫

Bn(r)
Jf

)ℓ/n

,

where C = C(n, λ,K) > 0 and λr : R
n → R

n is the similarity mapping
x 7→ rx. Then, by the compactness of T , the number of forms λ∗

rf
∗ξi, and

hence also ξi, is bounded by a constant depending only on n, λ, and K.
We fix

s =
1

2

(

n

ℓ + 1
+

n

ℓ

)

and q =
1

2

(n

ℓ
+ s∗

)

.

Since s > n/(ℓ + 1), we have s∗ > n/ℓ and n/ℓ < q < s∗. Thus q′ < (n/ℓ)′

and there exists p̃ > 1 so that

q′ =
p̃

p̃ + 1

(n

ℓ

)

′

.

Since 1 ≤ ℓ ≤ n/2, we may fix p = p(n) > n − 1 so that

p ≥ max

{

p̃,
sℓ

n − sℓ

}

.

Suppose now that f : R
n → N is a mapping of K-bounded p-mean distor-

tion. By Theorem 5 and Lemma 7, we fix R0 ≥ 1, δ > 0, and a set F ⊂ [1,∞)
so that mlog(F ∩ [R/2, R]) > (5/6) log 2 for R ≥ R0, mf (E) ≥ δmlog(E) for
a measurable set E ⊂ F , and

∫

Bn(r)
(|ξi| ◦ f)n/ℓJf ≤ C

∫

Bn(r)
Jf

for every i and every r ∈ F , where C = C(n) > 0.
Using Hölder’s inequality, we obtain

(

∫

Bn(r)
|f∗ξi|

s

)1/s

≤

(

∫

Bn(r)
K

ℓs
n−ℓs

f

)
n−ℓs

ns
(

∫

Bn(r)
(|ξi| ◦ f)n/ℓJf

)ℓ/n

≤ C

(

−

∫

Bn(r)
Kp

f

)
ℓ

np

r
n−ℓs

s

(

∫

Bn(r)
Jf

)ℓ/n

≤ CK
ℓ
n r

n−ℓs
s

(

∫

Bn(r)
Jf

)ℓ/n

(4.12)

for every r ∈ F , where C = C(n) > 0. Thus

(
∫

Bn

|λ∗

rf
∗ξi|

s

)1/s

≤ CK
ℓ
n

(

∫

Bn(r)
Jf

)ℓ/n

for every r ∈ F .
Since

dTλ∗

rf
∗ξij = λ∗

rf
∗ξij − Tdλ∗

rf
∗ξij = λ∗

rf
∗ξij,
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we may set αij = λ∗

1/rTλ∗

rf
∗ξij and we have

dαij = f∗ξij.

for every i 6= j. By Proposition 10, there exists a sequence (ri) tending to
infinity, a set E ⊂ [1,∞) of finite mf -measure, and C = C(n, λ) > 0 so that

(4.13)

(

∫

Bn(r)
Jf

)ℓ/n

≤ CK
n−ℓ

n r
ℓ−1−n

q

(

∫

Bn(r)
|αij |

q

)1/q

for r ∈ (
⋃

i[ri/2, ri]) \ E and all i 6= j.
Since E has finite mf -measure, mlog(F ∩ E) < ∞ and we may fix r ∈

F ∩ (
⋃

i[ri/2, ri]) \ E so that (4.12) and (4.13) hold for every i 6= j.
Since

(
∫

Bn

|Tλ∗

rf
∗ξij|

q

)1/q

= rℓ−1−n
q

(

∫

Bn(r)
|αij |

q

)1/q

,

we obtain the last required estimate

‖Tλ∗

rf
∗ξij‖q ≥ C

(

∫

Bn(r)
Jf

)ℓ/n

.

This concludes the proof of Theorem 1.
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