Two-player game

YLE13 Marko Lindroos

Non-cooperative games

- Individual strategies for the players
- Reaction functions, best reply
- Nash equilibrium definition
- Stages games at different levels
- Repeated games, folk theorems, sustaining cooperative behaviour as equilibria
- Dynamic games

Why non-cooperative

- Classification: strategic (static), extensive (dynamic), coalition
- Important in fisheries non-cooperation (competition) vs cooperation
- Division not clear, almost all games have both noncooperative and cooperative elements
- Typically in economics non-cooperative game theory dominates

What are non-cooperative games about

- How fisher's decisions interact with other fishers' decisions
- What is the best strategy for the fishers
- What is exected to happen is the fishery? Depends on rules of the game, number of players, biological factors
- Why fishers behave as they do?
- Assume rational choice

International fisheries negotiations

Nature of negotiations

 Countries attempt to sign and ratify agreements to maximise their own economic benefits

Negotiations typically time-consuming

 Agreements not binding à self-enforcing or voluntary agreements

Explaining the tragedy of the commons

 Can we explain the seemingly irrational behaviour in the world's fisheries, overexploitation, overcapitalisation, bycatch...

Non-cooperative game theory explains this behaviour

 Non-cooperative games vs open access (freedom of the seas)

Nash equilibrium

Each player chooses the best available decision

 It is not optimal for any single player to unilaterally change his strategy

 There can be a unique equilibrium, multiple equilibria or no equilibria

A two-player non-cooperative fisheries game

- Assume there are n players (fishers, fishing firms, countries, groups of countries) harvesting a common fish resource x
- Each player maximises her own economic gains from the resource by choosing a fishing effort E_i
- This means that each player chooses her optimal e.g. number of fishing vessels taking into account how many the other players choose
- As a result this game will end up in a Nash equilibrium where all individual fishing efforts are optimal

Building objective functions of the players

Assume a steady state:

sume a steady state:
$$h_i = qE_i x$$

$$\frac{dx}{dt} = F(x) - \sum_{i=1}^{n} h_i = 0$$

By assuming logistic growth the steady state stock is then

Stock biomass depends on all fishing efforts

$$q \overset{n}{\overset{n}{\diamond}} E_i$$

$$x = K(1 - \frac{i=1}{R})$$

Objective function

- Players maximise their net revenues (revenues
 - costs) from the fishery
- max $ph_i c_i E_i$
- Here p is the price per kg, h_i is harvest of player i, c_i is unit cost of effort of player i

Two maximisation problems

• max
$$p_1 = ph_1 - cE_1 \& p_2 = ph_2 - cE_2$$

$$p_1 = pqE_1K(1 - \frac{q(E_1 + E_2)}{R}) - cE_1$$

FOC à reaction function

$$\frac{\P p_1}{\P E_1} = pqK - \frac{2pq^2 E_1 K + pq^2 E_2 K}{R} - c = 0$$

$$-\frac{2pq^2E_1K}{R} = c - pqK + \frac{pq^2E_2K}{R}$$

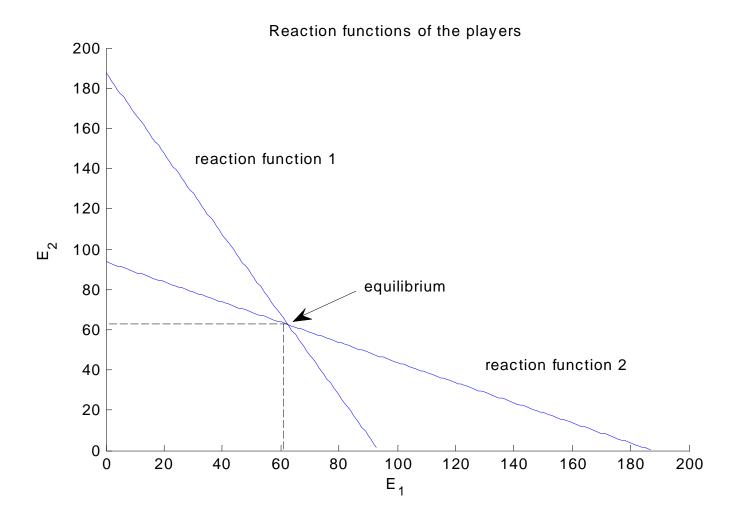
$$E_1 = -\frac{cR}{2pq^2K} + \frac{pqKR}{2pq^2K} - \frac{pq^2E_2K}{2pq^2K}$$

Country 1 reaction function

$$E_1 = \frac{R}{2q}(1 - b) - \frac{E_2}{2}$$

Nash Equilibrium

At the intersection of the reaction functions



Equilibrium fishing efforts

$$E_1 = \frac{R}{3q}(1 - b) = E_2$$

$$E_{tot} = \frac{2R}{3q}(1-b)$$

Equilibrium fishing efforts for n asymmetric players

Derive by using the n reaction curves

$$E_{i} = \frac{nR}{(n+1)q} (1 - b_{i}) - \mathbf{\hat{a}}_{j i}^{n-1} \frac{R}{(n+1)q} (1 - b_{j})$$

 The equilibrium fishing efforts depend on the efficiency of all players and the number of players

Illustration

Nash-Cournot equilibrium

Symmetric case

Schäfer-Gordon model

Exercises

- Compute the symmetric 3-player and *n* player equilibrium. First solve 3-player game, then extend to n players. Compute equilibrium efforts and stock in both cases.
- Compute the 3-player and n-player asymmetric equilibrium. Compute equilibrium efforts in both cases.

A two-stage game (Ruseski JEEM 1998)

- Assume two countries with a fishing fleet of size n₁ and n₂
- In the first stage countries choose their optimal fleet licensing policy, i.e., the number of fishing vessels.
- In the second stage the fishermen compete, knowing how many fishermen to compete against
- The model is solved backwards, first solving the second stage equilibrium fishing efforts
- Second, the equilibrium fleet licensing policies are solved

Objective function of the fishermen

The previous steady state stock is then

$$x = K(1 - \frac{q(E_1 + E_2)}{R})$$
where $E_1 = e_{1v} + \sum_{w=0}^{n_1 - 1} e_{1w}$

The individual domestic fishing firm v maximises

max
$$pqe_{1v}x$$
 - ce_{1v}

Reaction functions

- In this model the domestic fishermen compete against domestic vessels and foreign vessels
- The reaction between the two fleets is derived from the first-order condition by applying symmetry of the vessels

$$2pq^{2}e_{1v}K + \sum_{k=0}^{n_{1}-1} pq^{2}e_{k}K + pq^{2}E_{2}K$$

$$pqK - \frac{w^{1}v}{R} - c = 0$$

$$E_1 = \frac{n_1}{n_1 + 1} \left[\frac{R}{q} (1 - b) - E_2 \right] = n_1 e_{1v}$$

Equilibrium fishing efforts

Analogously in the other country

$$E_2 = \frac{n_2}{n_2 + 1} \left[\frac{R}{q} (1 - b) - E_1 \right]$$

• By solving the system of two equations yields the equilibrium

$$E_2 = \frac{Rn_2}{q} \left(\frac{1 - b}{1 + n_1 + n_2} \right)$$

$$E_1 = \frac{Rn_1}{q} \left(\frac{1 - b}{1 + n_1 + n_2} \right)$$

Equilibrium stock

- Insert equilibrium efforts into steady state stock expression
- The stock now depends explicitly on the number of the total fishing fleet

$$x = \frac{K[1 + (n_1 + n_2)b]}{1 + n_1 + n_2}$$

Equilibrium rent

 Insert equilibrium efforts and stock into objective function to yield

$$P_1 = RpK \frac{n_1(1-b)^2}{(1+n_1+n_2)^2}$$

First stage

 The countries maximise their welfare, that is, fishing fleet rents less management costs

$$\max W_1 = P_1 - n_1 F$$

 The optimal fleet size can be calculated from the FOC (implicit reaction function)

$$\frac{\P W_1}{\P n_1} = RpK \frac{(1 - n_1 + n_2)(1 - b)^2}{(1 + n_1 + n_2)^3} - F = 0$$

Results

Aplying symmetry and changing variable m = 2n+1

$$\frac{RpK(1-b)^2}{(1+n)^3} - F = 0$$

$$n_{1} = \frac{1}{2} \dot{\hat{\mathbf{j}}} \, \dot{\hat{\mathbf{e}}} \frac{\hat{\mathbf{e}} RpK(1-b)^{2}}{F} \dot{\hat{\mathbf{u}}}^{1/3} - 1 \dot{\hat{\mathbf{y}}} \dot{\hat{\mathbf{g}}}^{1/3} - 1 \dot{\hat{\mathbf{y}}} \dot{\hat{\mathbf{g}}}^{1/3} \dot{\hat{\mathbf{g}}}^{1/3} \dot{\hat{\mathbf{g}}}^{1/3} + 1 \dot{\hat{\mathbf{y}}} \dot{\hat{\mathbf{g}}}^{1/3} \dot{\hat{\mathbf{g}}}^$$

• With F=0 à open access

Discussion

- Subsidies
- Quinn & Ruseski: asymmetric fishermen
- entry deterring strategies: Choose large enough fleet so that the rival fleet is not able make profits from the fishery
- Kronbak and Lindroos ERE 2006 4 stage coalition game