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We describe an electronic stopping model for low energy ions, a necessity for accurate prediction
of penetration depths of energetic ions in materials, especially in crystal channels. With the use of
molecular dynamics simulations and calculating the electronic stopping from a 3D charge distribution
without using any free parameters, we obtain accurate range distributions on a realistic physical
basis. Our electronic stopping model is based on the Brandt—Kitagawa (BK) [W. Brandt and M.
Kitagawa, Phys. Rev. B 25 5631(1982)] theory. For heavy ions (Z > 1) we also include a version of
the Firsov inelastic energy loss model. We test our model for silicon, where plenty of experimental
data is available. We first test the model for the ranges of hydrogen, to determine the accuracy of
the scaling hypothesis used in the BK theory, and then for other ions. The results are compared with
experimental range profiles and, with the exception of the (110)-direction, show good agreement,
comparable to that achieved with models employing free parameters. We also show that a model
using an averaged electron distribution is a promising method to overcome the shortcoming in the

(110)-direction.

PACS numbers: 61.72 Tt, 34.50 Bw, 34.10+x

I. INTRODUCTION

Description of the slowing down of energetic ions pene-
trating matter is a long-standing problem of considerable
theoretical and practical interest. Despite much intensive
work during the last 80 years'™®, the models describing
the slowing down of an ion by collisions with electrons
(electronic stopping) may still give results with errors
of several tens of percents®®. Ions moving in crystal
channels, where the atom and electron densities are sig-
nificantly below the average, present a situation that is
particularly difficult. The subject is interesting not only
from the theoretical but also the technological point of
view, mainly because ion implantation plays an impor-
tant role in semiconductor device fabrication!'®. As the
size of the devices decreases, the implantation energies,
annealing times and temperatures decrease as well. At
low energies the channeling of ions during the slowing
down process has an important effect on the concentra-
tion profile in both the lateral and depth directions. At
very low energies, implanting with tilted angles can be
problematic because of shadowing effects!!*2. Conse-
quently the electronic stopping model used should give
accurate results in channels as well as in non-channeling
directions.

Since the importance of collisions between the ion and
substrate atoms (nuclear stopping) is reduced relative to
the electronic stopping in crystal channels, the electronic
energy loss is very important in the calculation of ranges
of channeled ions. Also, because the electron density in
a channel is significantly lower than in other directions, a
nonlocal electronic stopping model is not likely to work.

There have been several previous attempts to predict
electronic slowing down in channels with binary colli-
sion approximation (BCA)!3716 and molecular dynamics

(MD)!5:17 programs. Unfortunately, the models have
been either designed only for one ion-target—combination
or material or contained one or more free parameters.
BCA programs also often contain nonphysical parame-
ters (e.g. a multiple collision parameter to account for si-
multaneous interactions between more than two atoms'®)
or adjust the values of some physical quantities (e.g. the
Debye temperature!'®) to improve the agreement between
simulated and experimental profiles.

Perhaps the best success so far has been achieved
by the stopping model developed by Beardmore and
Grgnbech-Jensen!” (the BGJ model). It achieves re-
markable agreement between simulations and experi-
ments by using one free parameter per ion—target -pair
(motivated by accounting for Z; oscillations!®).

Almost all previous models use a spherically symmet-
ric electron distribution. A few BCA models use three
dimensional (3D) charge distributions but these models
are specific to one ion!32°. In the present paper, we com-
bine the physically best motivated methods available for
calculating stopping powers, namely an MD treatment
of the ion trajectories with electronic slowing down cal-
culated without any free parameters from a 3D electron
charge distribution. At very low energies, nuclear colli-
sions are the dominant energy loss mechanism and any
MD method can be expected to give reasonable results.
To judge the quality of the model at energies where the
electronic stopping dominates, we compare the results to
those of the BGJ model. We also analyze the reasons for
possible shortcomings of previous models and our model.

Our model contains no free parameters and can there-
fore be used to calculate the stopping for any ion in any
target whose electron distribution can be calculated (e.g.
from its structure factors?!) without a parameter fitting
process. Because the stopping is calculated from a realis-



tic electron density, Zy-oscillations?? present no problem.
However, in its current state the model does not take
Z1-oscillations® into account. Although the model is of
a general nature, we first focus on silicon for which both
accurate electron distributions and experimental range
profiles are available in the literature.

In this paper we present ion range profiles calculated
using our electronic stopping model and compare them
with experimental ones measured with secondary-ion
mass spectroscopy (SIMS) and nuclear resonance broa-
dening (NRB). We concentrate on the (100), (110) and
non-channeling directions, where sufficient experimental
data is available. In Sec. II we discuss the molecular
dynamics method and in Sec. III the electronic stopping
model. Results for protons are presented in Sec. IV and
for heavy ions in Sec. V. We discuss the results in Sec.
VI and summarize them in Sec. VII.

II. MOLECULAR DYNAMICS SIMULATIONS

We used a molecular dynamics method?3, which al-
lows us to treat the nuclear stopping very accurately via
the use of repulsive interatomic pair potentials obtained
by density-functional methods?*. This makes us con-
fident that any differences between the simulated and
experimental profiles are caused by the inaccuracy of
the electronic stopping model. Unlike BCA, the MD
method is valid also at low energies. The basic algo-
rithms of the simulation code have been discussed in de-
tail elsewhere?3:25:26 In short, it is an efficient MD code
utilizing domain following and the recoil interaction ap-
proximation. The collisions between the ion and the tar-
get atoms are treated with pair potentials calculated with
the DMol density-functional package®”-28.

The target is silicon, which has a diamond crystalline
structure. The thermal displacement of atoms can have
a considerable effect on channeling. We set the Debye
temperature such that we get the thermal displacements
measured by Buschorn et al.2%. The wafer temperature
was assumed to be 300 K unless the source of the ex-
perimental data specified another value. We use a two-
layered structure with an amorphous oxide layer on the
top. At present, our code does not include any (statisti-
cal) damage model, so the ions always move in a perfect
crystal. The doses used in the experiments are so low
that this is a realistic approximation. If simulation of
high doses is required, a damage model3° can be incor-
porated easily, likewise a rare-event algorithm!7 if the
tails of the range distributions are of particular interest.
A beam divergence of 1 °, typical of most implanters, is
assumed.

ITI. THE ELECTRONIC STOPPING MODEL

A. General considerations

Our model is similar to the BGJ model'”, except that

we use a 3D instead of a spherically symmetric charge
distribution and do not use any free parameters. It is
also similar to the stopping model of Klein et al.3!, ex-
cept that we include the Firsov model for heavy (Z; >
1) ions , use a 3D charge distribution and a different ex-
pression for the ionization fraction. The model is based
on the Brandt-Kitagawa (BK) theory®*? in which elec-
tronic stopping of a heavy ion is the electronic stopping
of a proton scaled by the square of the effective charge,

Se = Ze2ff(pa U)Sp(pa 1)), (1)

where p is the local electron density and v the velocity
of the ion. Obviously, the stopping powers of protons
have to be accurate.The BK theory makes several as-
sumptions concerning e.g. the shape of ions and does
not directly take into account the quantum mechanical
stopping cross section between an ion and the electrons
of the target atoms. A physically more consistent way
would be to calculate the heavy ion stopping directly in
density functional theory (DFT). However, a DFT-based
stopping theory for all ions and targets has yet to be
formulated and even the computational requirements it
would pose are formidable.

As we calculate the stopping from a realistic local elec-
tron density, Z» oscillations should be reproduced. On
the other hand, a source of Z; oscillations is not explicitly
included in the model.

Atomic units will be used throughout the paper unless
indicated otherwise (e =h / 2 m = ap =m, = vo = 1).
The unit of stopping will therefore be 1 hartree / ap =
51.4 eV / A, where a; is the Bohr radius (= 0.529 A).

B. Charge Distribution

The charge distribution of silicon is calculated accor-
ding to the Dawson-Stewart-Coppens?!+33735 formalism
and stored in a file. We employ the Slater-type orbi-
tals of Clementi and Roetti®® and the fitting parameters
determined by Deutsch?!. The resulting charge distribu-
tion yields the measured structure factors®” 39. A cross-
section of the charge distribution is shown in Fig. 1. In
contrast to spherically symmetric charge distributions,
the electron density is strongly anisotropic and the bond
between the nearest neighbours is clearly discernible. We
used the fit obtained by Deutsch for convenience only; the
charge distribution can also be obtained from a set of suf-
ficiently accurate structure factors by an inverse Fouri-
er transform*®4! or calculated by ab-initio methods*?.
During the simulations the local electron density is inter-
polated from a precalculated 3D table.
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FIG. 1. Electron distribution of silicon in a (110) plane.
The silicon atoms are clearly visible, as is the bond between
the nearest neighbours. The contour interval is 0.05 e / A®
with contours going from 0.05 to 1.5 . The electron density
is, of course, extremely high near the nuclei.

C. Protons

For velocities below the Fermi velocity vp, the nonlin-
ear density-functional calculations of Echenique, Ritchie

and Nieminen?34* give the stopping of a proton as
R T . 9
Skch = P (1 +1)sin®(61(EF) — di41(EF)), (2)
s 1=0

where §;(Er) is the phase shift for the scattering of an
electron at the Fermi energy, the one-electron radius 7,
=(3/ (47 p))'/? and k; the Fermi momentum. Because
this is very time-consuming to calculate, the stopping
of protons is calculated from linear response theory and
multiplied by a correction factor!® to obtain the result
of Echenique et al.. The Firsov model is not used in the
calculation of the stopping for protons because it would
lead to a much too strong stopping. This is not suprising,
since the validity of Firsov’s original formulation>46 is
limited to cases where 0.25 < Z;/Z; < 4 and although
later formulations*”*® have tried to overcome this limi-
tation, they still work best when Z; ~ Zs. If one wants
to simulate high-energy implantation, another expression
for the stopping of protons can be inserted into the mod-
el.

D. Heavy ions

To obtain the electronic stopping of a heavy ion we
calculate its effective charge using the formulae in Ref.
5. We do not use any free parameters but rather calculate
it from the local one-electron radius rs. For brevity, only
one equation is subjected to closer examination, namely

the one that gives the ionization fraction ¢ (the number
of electrons in an ion divided by its Z) as a function of
the reduced relative velocity y,,

g=1- exp—o.gs(yr—om) ) (3)

Eq. (3) is taken from Ref. 5 and was also used in Ref.
15. Tt is a fit to experimental data. Ziegler et al.’ note
that because of lack of experimental data at low energies
it should not be used if y. < 0.10 . If y. < 0.07, it
will give negative q values meaning that the ion will gain
electrons. Of the ions simulated here, this situation can
arise with arsenic and indium at low charge densities and
with phosphorus at extremely low charge densities but
not with boron. The value of charge density, where the
ionization fraction goes negative, decreases slightly with
increasing velocity (for 2 keV As this occurs at r5 &~ 1.06
A and for 100 keV As at r, ~ 1.125 A). The stopping will
still be positive because it is proportional to the square
of the effective charge. We made some simulations using
the expression for ionization fraction given by Klein et
al.3!, which is always positive, but the difference in the
results was negligible. An expression good also for low
velocities is still desirable, but since the main objective
of the present work is testing a 3D charge distribution
within existing models, we have not sought another fit.

We include the Firsov model to describe the energy loss
due to inelastic collisions with target atoms by using the
approach derived by Elteckov et al.*®, where the slowing
force is given by

—0.7h Vg
F(R,v) = (ras)?2 A1/3 il
Tay)” (14 0.8aZ4 R/a)
Zh
(1+0.8(1 — a)Zy/>R/a)*

(4)

Jv N,

where Z,4 and Zp (Za > Zp) are the atomic numbers
and a =1/ (1 + (Zp/Za)"®)).

IV. RANGE DISTRIBUTIONS OF PROTONS

Before trying to calculate the stopping for heavy ions,
we had to check the accuracy of the electronic stopping
for protons. Range profiles obtained with our model are
compared with those observed experimentally and those
obtained with the ZBL model. Fig. 2 shows that our
stopping model results in a clear improvement over the
ZBL model. In all figures the depth profiles have been
normalized so that the areas under them are equal.

We also simulated the ranges of 2.5 keV deuterons
in several directions, Figs. 3 and 4. The agreement be-
tween the simulations and experimental data is good. We
are confident in using scaling to obtain the stopping of
heavy ions. A combination of the BK theory and Firsov
model was also tested but gave much too strong stopping
powers. We also tried to reproduce the elastic recoil de-
tection (ERD) data of Bourque and Terreault!, but did
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not achieve good agreement. The maxima of the simu-
lated profiles were some 200 A deeper in all directions,
including the non-channeling directions where our model
shows good agreement with other experiments. The rea-
son for the discrepancy is assumed to be the uncertainty
in the location of the target surface in the ERD profiles.
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FIG. 2. Simulated and measured ranges of 40 keV protons
in silicon (© = 8 °, ¢ = 0). The experimental profile was
measured with NRB*°. The electronic stopping accounts for
approx. 99 % of the energy loss.
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FIG. 3. Simulated and measured ranges of 2.5 keV

deuterons in silicon (© = 11 °). The experimental profile was
measured with SIMS®®. The electronic stopping accounts for
approx. 76 % of the energy loss.

V. RANGE DISTRIBUTIONS OF HEAVY IONS

Our model can be used to calculate the electronic stop-
ping for any ion. We chose arsenic, boron, phosphorus
and indium because they are commonly used dopants and
sufficient as-implanted experimental range data exists to
test the accuracy of our simulations. We ran simulations
for various cases including the data for these ions found
in Refs. 11-17, 31, 52, 46. For brevity, only some repre-
sentative cases for each ion will be shown. The version of

the BGJ model used for comparison uses Equation (4) for
the Firsov model and the same interatomic potentials as
other models shown here. We also tried to simulate the
ranges of Al in silicon but predicted a much too strong
stopping. The BGJ model has similar difficulties with

aluminum?!?.
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FIG. 4. Simulated and measured ranges of 2.5 keV
deuterons in the (100) channel of silicon. The experimental
profile was measured with SIMS®°. The electronic stopping
accounts for approx. 80 % of the energy loss.
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FIG. 5. Simulated and measured ranges of 15 keV B ions
in silicon (© = 7°, ¢ = 30°). The experimental range profile
was measured with SIMS'”. The nuclear stopping accounts
for approx. 50 % of the energy loss and the electronic stopping
for 50 % (of which the Firsov model for 22 percentage points).

A. Boron

We achieve good agreement in non-channeling and
(100) directions, Figs. 5 and 6. In these direction-
s our model is at least as accurate as the BGJ model.
The ZBL stopping performs fairly well in non-channeling
directions but overestimates the stopping in channels.
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FIG. 6. Simulated and measured ranges of B ions in the
(100) channel of silicon. The experimental profiles were mea-
sured with SIMS'S. In (a), the nuclear stopping accounts for
approx. 37 % and the electronic stopping for 63 % (of which
the Firsov model for 27 percentage points) of the energy loss.
In (b), the percentages are 21 % and 78 % (33 pp.) and in
(c), 12 % and 89 % (37 pp.), respectively.

Because the ZBL stopping is a nonlocal parameteriza-
tion, its use in channels also leads to range profiles with
unrealistically sharp end-of-ranges.

In the (110) direction the agreement is not very good,
see Fig. 7. In this case, the experimental profile consist-
s of two peaks, one corresponding to the non-channeled
ions and the other to channeled ions. We predict the first
of these two correctly, but predict too long ranges for the
channeled ions. The most likely explanation is that be-
cause the effective charge is calculated from the electron
density at the center of the ion3!, we calculate it from
the extremely low electron density at the center of the
channel. To take the finite size of the ion into account,
an averaging procedure might be useful. We will explore
this possibility in Sec. VI.
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FIG. 7. Simulated and measured'® ranges of 15 keV B ions
in the (110) channel of silicon. The nuclear stopping accounts
for approx. 30 % of the energy loss and the electronic stopping
70 % (of which the Firsov model for 26 percentage points) .
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FIG. 8. Simulated and measured ranges of P ions in silicon,
(© = 10°, ¢ = 15°). The experimental range profiles were
measured with SIMS'®. The nuclear stopping accounts for 58
% of the energy loss and the electronic stopping for 43 % (of
which the Firsov model for 15 percentage points).



B. Phosphorus

As can be seen in Figs. 8 and 9, reasonable agreemen-
t is achieved for both non-channeling and (100) data.
In the (110) direction, not shown here, the results were
similar to those obtained for boron. Our model does
not perform as well as the BGJ stopping: the peaks of
the simulated profiles are too close to the surface also in
random directions, indicating a need to adjust the mod-
el for Z;- oscillation. The ZBL stopping works well in
non-channeling directions but fails in channels.
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FIG. 9. Simulated and measured® ranges of P ions in the
(100) channel of silicon. In (a), the nuclear stopping accounts
for 70 % of the energy loss and the electronic stopping for 30
% (of which the Firsov model for 10 percentage points). In
(b), the percentages are 22 % and 78 % (27 pp.), respectively

C. Arsenic

Reasonable agreement is achieved also for arsenic, Figs.
10 and 11. The exception is the (110) channel were we

overestimate the ranges. As before, the ZBL electronic
stopping is sufficiently accurate in non-channeling direc-
tions but overestimates the stopping in the channels.
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FIG. 10. Simulated and measured ranges of As ions in the
(100) channel of silicon. The experimental range profiles were
measured with SIMS'®. In (a), the nuclear stopping accounts
for approx. 68 % of the energy loss and the electronic stop-
ping for 32 % (of which the Firsov model for 12 percentage
points). In (b), the percentages are 45 % and 54 % (21 pp.),
respectively

D. Indium

The measured and simulated indium profiles, shown
in Fig. 12, are also in good agreement, the tail of the
calculated range profile having a slightly weaker intensity.
We do not present any data for the BGJ model because
we do not have a value for the one-electron radius. No
experimental data was found for the (110) channel.
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FIG. 11. Simulated and measured ranges of 100 keV As
ions in silicon (@ = 8 °, ¢ = 30 °). The experimental range
profile was measured with SIMS!?. The nuclear stopping ac-
counts for approx. 75 % and the electronic stopping for 25
% (of which the Firsov model for 8 percentage points) of the
energy loss. The figure is cut off at 3300 A because there is
no experimental data beyond 3000 A.

VI. DISCUSSION

The accuracy of the electronic stopping for protons is
good, clearly better than that of the ZBL stopping, even
in non-channeling directions. The results are sufficiently
accurate so that the electronic stopping of a heavy ion
can be calculated by scaling the stopping of protons.

For heavy ions, the model predicts the electronic stop-
ping quite accurately in (100) and non-channeling direc-
tions but runs into trouble in the (110) channel. Two
possible reasons for this are (1) the use of a charge dis-
tribution of a perfect crystal without displacements and
(2) the use of the electron density at the center of the
ion in the calculation of the effective charge. We tested
the former assumption (1) by simulating the ranges of
arsenic ions in the (110) channel using our charge dis-
tribution and the stopping model of Yang et al.'®. This
stopping model is accurate for As implants but unfortu-
nately untransferable for other ions. As the agreement
between simulated and experimental range profiles was
better than with our model, we conclude that the ab-
sence of thermal displacements in the charge distribution
is not likely to play a major role at room temperature.

Testing the latter assumption (2) is slightly more com-
plicated. The finite size of the atoms could be dealt with
by not using the value of electron density at the center of
the ion but rather by taking an average of the charge dis-
tribution. Taking the size of the ion into consideration is
also necessary if one wants to account for Z; oscillations.
We need to do this because we did not get a satisfacto-
ry agreement for aluminum in any direction (this ion—
target -combination presents problems for other models
as well!”). However, we know of no attempt to do this in

the low velocity regime. To test to what extent an averag-
ing scheme improves agreement in channels, we averaged
the charge distribution over a spherical region of radius 7.
As the averaging radius is increased, (100) channels close
first, followed by the (110) channels, see Fig. 13. There
is only a very small effect in non-channeling directions.
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FIG. 12. Simulated and measured ranges of In ions in the
(100) channel of silicon. The experimental range profiles were
measured with SIMS®3, In (a), the nuclear stopping accounts
for 71 % and the electronic stopping for 29 % (of which the
Firsov model for 13 percentage points) of the energy loss. In
(b), the percentages are 63 % and 36 % (16 pp.), respectively.

Of course, we need a physical motivation for the av-
eraging radius. Otherwise we just end up with another
free parameter and there already is a one-parameter mod-
el that works well, the BGJ model. However, the simple
scheme used here is sufficient to demonstrate that much,
if not most, of the remaining problems of stopping in
channels can be dealt with by an averaging scheme. The
results presented here were not very sensitive to the value
of the radius. To take the Z; oscillations properly into
account a more realistic treatment of the electron struc-
ture of the ion, instead of the exponential decay used in



the BK-theory, should be introduced. There is also the
question of finding a better expression for the ionization
fraction. We intend to address these matters in the near
future.
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FIG. 13. Effect of taking an average of the charge distri-
bution when calculating heavy ion stopping. The results are
not very sensitive to the value of the averaging radius.

To gauge the advantages of using a 3D distribution we
also ran some simulations using our model and a spher-
ically symmetric charge distribution® used e.g. in the
BGJ model. As can be seen in Fig. 14, the difference in
charge distributions does show in the range profiles.

The agreement between the simulated and experimen-
tal profiles is generally slightly better at lower energies,
which are also more interesting from the technological
point of view. This is mostly due to the fact that the nu-
clear stopping, which the MD method takes into account
very accurately, is more important there. Even at high-
er energies, where the electronic energy loss dominates,
the agreement does not get markedly worse. OQur equa-
tion for the stopping of protons assumes that the velocity
of the ion is small compared to the Bohr velocity. This
assumption, which is inherent in all models using the

Echenique stopping for protons'* 1743, and the result-

ing velocity-proportional stopping begin to break down
at high energies.
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FIG. 14. Effect of the charge distribution on the range pro-
files.

VII. CONCLUSIONS

We have developed a local electronic stopping model
with no free parameters. It can be used to calculate the
electronic stopping for any ion in any target whose elec-
tron density distribution can be acquired. As a first test
of this model, we implemented it into an MD method
and used it to calculate as-implanted range profiles in
crystalline silicon. For hydrogen, the agreement between
simulated and measured profiles is good. For the heavy
ions examined, the agreement with experimental profiles
is good in non-channeling directions and (100) crystal
channels but not very good in the (110) channels known
to be difficult to handle accurately. Our simulations show
that a major reason for this is the unrealistic treatmen-
t of the ion as point-like when calculating the effective
charge. Nevertheless, the results obtained in this study
show that the use of realistic 3D electronic charge distri-
butions provides a good ground for accurate and trans-
ferable electronic slowing down models.
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