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Defect Cores Investigated by X-Ray Scattering close to Forbidden Reflections in Silicon
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A new x-ray scattering method is presented making possible the detection of defects and the
investigation of the structure of their cores. The method uses diffuse x-ray scattering measured close to
a forbidden diffraction peak, in which the intensity scattered from the distorted crystal lattice around the
defects is minimized. As a first example of this nondestructive method we demonstrate how the local
compression of the extra {111} double planes in extrinsic stacking faults in Si can be probed and quantified
using a continuum approach for the simulation of the displacements. The results of the theory developed
are found to be in very good agreement with atomistic simulations and experiments.
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In silicon implantation, the interaction of defects and
impurities play a crucial role in the doping of silicon [1,2].
In device fabrication, an important issue is that the nano-
structure interfaces must be kept free of defects in order to
obtain the desired electronic properties [3]. For instance,
misfit dislocations at interfaces cause increases in the off-
leakage current of metal-oxide-semiconductor field effect
transistors (MOSFETs) [4]. The most important extended
defects observed in such systems are stacking faults,
“311” defects, and perfect dislocation loops [5]. Trans-
mission electron microscopy (TEM) is a technique of
choice to determine the structure, nature, and location of
these defects. However, TEM experiments remain a de-
structive analysis. Diffuse x-ray scattering is a well-
established method for the investigation of defects in crys-
tals [6,7]. This method is based on the measurement of the
distribution of the scattered intensity / in reciprocal space,
i.e., as a function of the scattering vector Q = K, — K;,
where K; ; are the wave vectors of the primary and scat-
tered radiations. The measured intensity distribution 7(Q)
is a coherent superposition of two contributions—scatter-
ing from the defects core and scattering from the deformed
lattice around the defect (displacement-field scattering; see
also Ref. [8]). Usually, the displacement-field scattering
close to allowed Bragg peaks (the Huang scattering) is
used for the defect investigation. However, close to an
allowed Bragg peak, the contribution of the defect cores
is very weak due to very small volumes of the defect cores
and to the high contribution of the Huang scattering, so that
the investigation of the structure of the defect core is
difficult or only indirect, via the measurement of the dis-
placement field around the defect core. Not only diffuse
scattering measurements around allowed reflections but
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also high-resolution TEM (HRTEM) experiments toil in
observing the atomic displacement field of the atoms in the
core of defects [9].

In this Letter, we present a novel x-ray method how to
study the defect cores directly. Recently, A. Malachias [10]
reported on the idea to use forbidden reflection to detect the
formation of atomic ordering inside SiGe nanostructures.
In contrary to that work, we use a forbidden reflection for
the suppression of the displacement-field scattering so that
the scattered intensity consists mainly of the core scatter-
ing. Using this method, we investigate the structure of the
cores of extrinsic stacking faults created in Si crystal after
amorphizing ion implantation and subsequent annealing.
We probe the small and local deformation field inside the
defect cores in determining the distance A between two
adjacent {111} planes (denoted by Aa in [11]) creating the
core of the stacking fault and we compare this distance
with the results of atomistic simulations.

Restricting ourselves to the kinematical approximation
and assuming only one type of atoms present in the crystal
(Si atoms, in our case), the amplitude of the wave scattered
by a distorted crystal is

E(Q) = f(Q)[ZeiQ(Rnﬂx)eiQ.u(Rnﬂx) Y }

n,s c

ey

where the sum » , runs over the unit cells (with nondis-
turbed positions R,,), > is over the atoms within one unit
cell, having the nondisturbed positions r,. Because of the
defects, the atoms are displaced from their ideal positions
by u(R, +r,), f(Q) is the atomic scattering factor (as-
sumed not affected by the disturbance). The second term in
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Eq. (1) expresses the contribution of extra atoms (atoms of
the defect cores) in the positions R..

Let us assume that the investigated crystal contains
small defects in noncorrelated random positions. We re-
strict ourselves to weak defects (see the defect classifica-
tion in Ref. [6]). After averaging over random defect
positions we find that the diffuse part of the scattered
intensity is a coherent superposition of two contributions
1(Q) ~ |E,(Q) + E,(Q)|?, where E, describes the scatter-
ing from the displacement field around a single defect and
E, = f(Q)> . Q(R,)exp(—iQ.R,) is the scattering from
the defect core, {)(r) is the shape function of a single defect
core (unity in the core and zero outside it). Expressing the
sum ), over the lattice points by the sum } , over the
reciprocal lattice points (RELPs) g we obtain the
displacement-field term in the form

)
E(Q =5

> Fo@w(Q - g Q) (2)
g

where Fy(g) = Y ;e 8" the structure factor of a nonde-
formed unit cell, V. = a is the volume of the unit cell,
and

$p(Q—-gQ = fd3re”'(Q’g)"[e’iQ'v(r) -1 3

v(r) is the displacement field around a single defect.
According to Eq. (2), the intensity of the displacement-
field scattering in a given point Q in reciprocal space is a
coherent superposition of contributions centered in various
RELPs g. If we can neglect the overlapping of the contri-
butions from different g’s, in the sum ), only the term
with minimum deviation Q — g is not negligible (say, the
term g = h). If, in addition, the diffraction h is forbidden
[i.e., Fy(h) = 0; 200 in Si, for instance], the displacement-
scattering term can be neglected and the diffuse scattering
stems only from the defect cores. Even if this overlapping
cannot be neglected, the E; contribution to the diffusely
scattered intensity close to a forbidden RELP h is sup-
pressed and the intensity is mainly influenced by the core
term, i.e., by the atomic positions in the defect cores.

In order to demonstrate the sensitivity of the scattered
intensity to the defect core structure, we have simulated the
intensity scattered from a Si crystal containing randomly
distributed small circular stacking faults; the faults lie in
{111} planes having the Burgers vector b = 1/3(111) per-
pendicular to the planes (the Frank loops [11]). For the
sake of simplicity, we have assumed that all the loops have
the same radius R,. For Huang scattering, i.e., for |Q —
h| < |h|, the asymptotic long-range deformation field of a
defect lim_v(r) plays a role. Such an asymptotic field
has been derived by means of the elastic Green-function
approach [12] and it can be expressed quite easily by
means of a double-force tensor of the defect. However, in
our simulation the asymptotic expression is not sufficient,
since we are dealing with the intensity distribution far

away from a RELP, where the displacement field v(r) in
the vicinity of the defect becomes important. Therefore, we
have used a more exact Burgers formula [11] describing
the displacement field of a fault loop also in its close
neighborhood. It has been demonstrated in Ref. [13] that
the intensity of diffuse x-ray scattering calculated by this
formula compares well with the result of atomistic simu-
lations. The core of a Frank loop consists of two extra {111}
planes (denoted A and a in [11]), having the nominal
distance A, = a\/§ /4. The atoms in these planes are ar-
ranged in a hexagonal array; the distance of nearest atoms
in the plane is a+/2/2. From symmetry considerations it
follows that the reciprocal-space distribution of the scat-
tered intensity 7(Q) is concentrated along lines (111) per-
pendicular to the loop planes.

In Fig. 1 we have plotted the distribution of the scattered
intensity calculated along the [111] direction perpendicular
to the fault plane around the forbidden RELP h = [200], in
which q = Q — h = 0. From the figure it follows that the
intensity 7(Q) around the forbidden RELP h = [200] very
sensitively depends on small changes in the plane distance
A, while the intensity close to an allowed RELP (311 or
111, for instance) is almost A independent. Figure 1 illus-
trates the origin of this behavior. Around an allowed RELP
the term E(Q) is dominant and the core term E,(Q) can be
neglected. Around a forbidden RELP h, only more distant
allowed RELPs g # h contribute to E,(Q) and the result-
ing term E;(Q) is comparable or even smaller than the core
term E,(Q). A small change in A only slightly affects the
intensity |E,|? of the core term but it changes substantially
its phase and also the total intensity around the forbidden
RELP, being proportional to |E;(Q) + E(Q)|?.

We have used this approach for the investigation of the
core structure of small stacking faults generated in Si(001)
by Xe-implantation and subsequent annealing [14]. The
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FIG. 1. The distribution of diffusely scattered intensity from

circular stacking faults calculated along the line [111] perpen-
dicular to the loop plane. The loop radius is Ry = 30 nm, the
point g, = 0 corresponds to the forbidden RELP 200. In
figure (a), the contributions of the defect cores are plotted for
various distances A of the defect (111) planes; figure (b) shows
the total intensities as well as the displacement-field contribution
|E,|? that does not depend on A (points).
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annealing results in the formation of extended defects in
Si(001) in a depth of about 100 nm, i.e., faulted extrinsic
dislocation loops. The diffuse x-ray scattering has been
measured on the beamline IDO1 at ESRF, Grenoble using
the x-ray energy of 8 keV in the grazing-incidence geome-
try, in which the diffraction vector h = [200] was parallel
to the sample surface. We kept constant the incidence angle
to 0.35°, i.e., 0.13° above the critical angle of total external
reflection. The scattered radiation was collected by a linear
detector perpendicular to the sample surface. A three-
dimensional intensity distribution 7(Q) around the 200
reciprocal lattice point was recorded. The diffuse scatter-
ing was concentrated in intensity streaks along (111) di-
rections visible in Fig. 2. Because of the grazing-incidence
geometry used, only half of reciprocal space above the
sample horizon (Q, > 0) can be covered. The full width
at half maximum (FWHM) 8¢ of the streak cross-section
is 8q) = 27/(2R,). From the fit the mean radius R, =
(30 = 2) nm of the faults follows.

The intensity distribution along the streaks I(g) is
plotted in Fig. 3. The intensity has been corrected by the
polarization factor and beam footprint [15]. Here ¢ | is the
coordinate of q along the trajectory depicted in Fig. 2 (see
white dashed lines); g, = 0 corresponds to the forbidden
RELP h = [200]. We have fitted this distribution to the
theory described above; in the fit we relied on only one free
parameter A; from the fit A = (2.1 =0.2) A follows.
Calculating the scattered intensity, we took into account
the defect-free surface layer mentioned above, and the
dependence of the irradiated sample depth L on the inci-
dence and exit angles. The correspondence of the measured
and fitted intensity distribution is good (see Fig. 3, full
line).

It is worthy to note that the diffusely scattered intensity
cannot be explained only by the core scattering, even if the
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FIG. 2 (color online). Reciprocal-space distribution of the
scattered intensity measured in forbidden grazing-incidence
diffraction h = [200]; the white dashed lines denote the trajec-
tory along which the line scan in Fig. 3 was measured. g, , are
the radial and angular coordinates parallel and perpendicular to
h, respectively. g, is the out-of-plane coordinate. The (111)
planar defects are two-dimensional objects in real space; their
Fourier Transform yields 1D intensity rods perpendicular to the
(111) planar defects. The rods are thus along the (111) direc-
tions, perpendicular to the four possible {111} fault planes.

nearest RELP is forbidden. Since the defects are very thin
in the direction perpendicular to the loop plane, the exten-
sion of the | E;(Q)|? term in this direction is comparable to
the distance of nearest RELPs, and this term is not negli-
gible even around a forbidden RELP. If we neglect com-
pletely E;(Q), the asymmetry of the experimental intensity
distribution around 200 can be explained only by nonreal-
istically small value of A. As demonstrated by previous
works on a different system [16], we show that the local
information is not only encoded in the diffuse scattering
near forbidden reflection. The scattering around several
allowed reciprocal-space points need to be taken into
account to analytically simulate and quantify the defect
cores.

We have compared the simulated intensity distribution
with the result of atomistic simulations [13]. An extrinsic
stacking fault was created by adding an extra double (111)
atom plane in the center of a large simulation cell, with a
length of 204[110]a (a is the lattice constant). Because of
computational limitation, the size of the defect is chosen 4
times smaller than the average measured stacking fault
size. Using the positions of atoms following from the
atomistic simulations, we have calculated the scattered
intensity directly using Eq. (1), plotted as the dashed line
in Fig. 3. In the simulation, we averaged the scattered
intensity over all four possible {111} orientations of a
stacking fault. We studied size effects and show that the
stacking fault size has no impact on the shape of the fault’s
core signal. The dashed line in Fig. 3 exhibits a small sharp
maximum also in the forbidden 200 point (¢; = 0). This
maximum is caused by the size truncation of the crystal
that was included in the atomistic simulation. Except for
this maximum, the correspondence between the measured
and simulated curves is very good.

Figure 4 schematically depicts the sequence of (111)
layers and positions of the atoms obtained by the atomistic
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FIG. 3. Distribution of the measured intensity (points) along
the trajectory denoted in Fig. 2, along with its theoretical fit
using the Burgers formula (full line) and atomistic simulations
for the displacement field (dashed line).
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FIG. 4. Schematic sketch of the stacking of the sequence of
(111) layers, the defect core (gray rectangle) is represented by a
pair of inserted Aa layers. In the inset, the atomic positions are
plotted around the edge of the defect core, following from the
atomistic simulations. The full horizontal lines represent the
ideal distance A of the core planes, the dashed lines denote
the distance A of these plane following from the fit of the
measured intensities (full line in Fig. 3).

simulation in a close vicinity of the defect core (a double
layer denoted Aa) inserted between the double layers Bb
and Cc of the crystal matrix. For clarity, we have plotted
only the atoms with small coordinates along [112]. Here
we compare the ideal distance A, of the Aa layers creating
the defect core (denoted by a pair of straight full lines) with
the distance A following from the fit of the measured
intensity distribution (dashed straight lines). From the
atomistic simulation it follows that the atoms in the defect
core close to its periphery are displaced along the [111]
Burgers vector so that the inserted Aa discs are not plane.
Most likely, this distortion at the edge of the defect core is
the reason of the difference between the measured intensity
distribution and the intensity profile simulated using the
theory in Egs. (1)—(3) (full line in Fig. 3), in which no
distortion of the inserted Aa planes was assumed.
Nevertheless, the value of A obtained from the fit corre-
sponds well to the mean distance between the atoms in the
A and a core planes in [111] direction.

In summary, we have demonstrated that diffuse x-ray
scattering around a forbidden reciprocal lattice point is
well suited for the study of the cores of extrinsic stacking
faults in Si. The diffuse scattering from the distorted
neighborhood of the defects is fairly suppressed in this
case which makes it possible to study directly the atomic
structure of the defect cores. From the comparison of the
measured intensity with a simulation based on the contin-
uum displacement model we have revealed a compression
of the {111} planes in the defect cores. This finding was
supported by atomistic simulations. Thus, diffuse x-ray
scattering near forbidden reflection appears as a fine,
unique and destruction-free technique to detect stacking

faults and characterize their small compression in the core.
This x-ray method can be easily combined with in situ
growth [17] to detect, for instance, the formation of stack-
ing faults inside nanostructures. The method can also be
used for other defects, as long as the lattice of the defect
cores contributes to the scattered intensity close to a dif-
fraction that is forbidden for the host lattice. The signature
in the x-ray scattering profile near forbidden reflections
will depend on the nature of the defects.
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