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We have analyzed in detail the mechanism leading to tip growth on a
surface which operates via nucleation of dislocations on a near-surface void
under tensile surface stress. We derived a simplified analytical model
describing the relevant physical factors related to the observed linearity
between the void radius and the maximum depth of the void for the growth
to occur. The model is based on the direct numerical calculation of atomic
level stresses in the simulated system. Based on the present model we can
estimate this maximum depth for a void of a certain size under a given
stress in the size range which is beyond the feasibility of the molecular
dynamics simulation method.

Keywords: void; surface protrusion; dislocations; metal; surface; electrical
breakdown; copper

1. Introduction

Understanding the initiation mechanisms of vacuum electrical breakdown under
high electric fields is of great scientific and technological interest. For example, the
development of the next generation of linear colliders is impeded by the frequent
occurrence of electrical breakdowns near the metal surfaces of accelerating structures
[1,2]. Damage due to electrical breakdowns is also relevant in the context of the
future fusion test reactor, ITER, where the erosion of material due to electrical arcs
on tungsten divertors [3] has been found to be comparable to the erosion due to
sputtering [4].

Prior to breakdown, electron currents are measured originating from random
spots on the cathode [5]. These currents can be explained by the local enhancement of
the electric field due to the formation of protrusions on the cathode surface [5,6].

In this study, we investigate the effect of the tensile stress applied on a metal
surface under the electric field due to the interaction of the surface charge and the
field. The magnitude of the tensile stresses at high electric fields (4�100MV/m) can
be sufficient to stimulate dislocation activity near the surface. This can lead to
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significant topological modifications on the surface. In a previous study we showed
that a near-surface void acting as a stress concentrator can cause repetitive
nucleation of dislocations, leading to the formation of a protrusion on the surface [7].

Dislocation nucleation on voids has been studied in numerous publications [8],
however not in the context of a near-surface void. For instance, it has been well
established that a void can grow under external stress by emitting dislocation
loops [9]. By considering the elastic equilibrium between emitted dislocation loops
and the void and lattice resistance, it has been found that the void growth depends on
both external stress and void size [9]. The relation between the threshold stress
needed to form a dislocation loop on a void and the size of the void has been studied
in [10]. Considering the interaction between a dislocation loop and the void (but
neglecting the nucleation event) the authors found that the formation of the loop on
a �100 Å radius void requires a stress of 2�y, where �y is the yield strength of the
material. Such stress might be present in structural applications [10]. For copper the
required stress would be 140 MPa. Based on a two-dimensional analytical model
[11,12] it was also shown that the critical stress for dislocation emission decreases as
the void size increases.

The molecular dynamics (MD) method has been employed widely to study the
subject [13–16]. It has been found that the coalescence of voids is dependent on
geometrical factors, namely the void radius and the distance between the voids
[15,16]. A quasi-continuum method has been used to investigate nano-void growth in
aluminum and deformation under shear by dislocation nucleation and dislocation
interactions during stress loading and unloading stages. It was shown that during the
unloading stage, most of the dislocation population and void volume is recovered,
but some residual dislocation density remained [17,18]. Studies of void deformation
via the emission of specific shear loops can be found in [11,19], although the
suggested mechanism is still under debate, which illustrates the necessity of further
studies [19–21].

Earlier [7] we investigated dislocation nucleation on a near-surface void under
tensile stress exerted on the surface using MD simulation. The dislocations that move
perpendicular to the surface are of particular interest, since they are the main cause
for the growth of a protrusion on the surface above the void. In the simulations we
found that there is a maximal depth of void location where the nucleation of such a
dislocation is still possible and that this parameter, Hmax, depends linearly on the
void radius r for nano-sized voids. The geometry is illustrated in Figure 1.

Here we have performed additional simulations and analyzed the results in more
detail. Moreover, we present a model that gives a physical explanation for the
constants of linearity obtained from a least squares fit to the simulation data.

2. Simulations

The simulations were performed in a similar manner to those reported in [7] by using
the PARCASMD code [22]. We also used LAMMPS [23] to analyze the atomic-level
stresses of the system in detail. We chose Cu for the modeling surface, applying the
Sabochick–Lam interatomic potential [24], well tested with respect to melting point
and point defect properties [25]. The potential has been used earlier in a study [26]
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involving surface properties (sintering) and dislocations. It was found that the
surface energy calculated by the potential is in reasonable agreement with
experimental values. We also found previously that the Mishin et al. [27] potential
yielded qualitatively similar results to the Sabochick–Lam potential. In particular,
the maximum depth Hmax depended linearly on the radius of the void r in both cases,
although the values of the constants of linearity were different. In the current
simulations, a cell with a {110} surface in the z-direction was constructed, with
x- and y-axes in the h111i and h211i crystal directions, respectively. A schematic of
the initial structure is shown in Figure 2. The size of the simulation cell was
22.4� 22.1� 16.8 nm3 for voids of radius r¼ 2.0, . . . , 4.0 nm under 4.58GPa stress,
33.6� 33.5� 16.8 nm3 for voids of radius r¼ 3.5, . . . , 5.0 nm under 3.05GPa stress
and 33.6� 33.5� 21.9 nm3 for voids of radius r¼ 5.5 nm under 3.05GPa stress.

The tensile stress was applied on the surface in the following manner. In the
beginning, the system was relaxed for 20 ps. After the relaxation, a linearly increasing
force was applied to all atoms that initially formed the two top atomic layers until
the maximum desired force was reached. Thus, initially in order to reach the
equilibrium stress distribution and avoid the artificial rise of the stress waves, the
stress was applied gradually with _� ¼ 3.05GPa/100 ps. We have also paid particular
attention to the fact that no dislocations were nucleated in the direction perpen-
dicular to the surface during the stress ramping process. After that the system was
held at the desired constant stress during the last 300 ps of the simulation time. The
atoms located in the three atomic layers at the bottom of the simulation cell were not
allowed to move, in order to prevent an undesired drift of the simulation box.

Since we were simulating the cells held under the different stresses, special
attention was paid to the stress ramping process. If the desired stress is higher or
lower, applying the same strain rate (to exclude the effect of the different strain rates
on the dislocation nucleation process) in all cases will lead to an increase or decrease

Figure 1. Illustration of the geometry of a near-surface void. The parameters relevant to the
discussed mechanism are indicated. The maximum depth of the void,Hmax, is defined in such a
way that if the same void is placed below this depth, a dislocation never appeared during the
MD simulation time.
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of the total simulation time, since the time for the constant stress simulations was
fixed.

In order to examine the effect of time, we also performed simulations where the
strain rate was not kept constant; on the contrary, it was allowed to change in order
to keep fixed the duration of the ramping process and hence the entire simulation
time (100 ps in all simulations, total time was 420 ps). Since the emission of
dislocations perpendicular to surface direction was not observed during the ramping
process in either sets of simulations, the different ramping scenarios did not affect the
main conclusion of the maximum depth of the void. The observed differences were
within the error bars.

To test how the simulation results could be extrapolated for larger voids or for
lower surface stress, we conducted additional simulations. The simulation with
3.0GPa surface stress with a void of radius r¼ 9 nm had cell dimensions
49.3� 44.3� 27.1 nm3. In order to increase the feasibility of the MD approach on
this scale (a further lowering of the stress will inevitably lead to an increase of size
dimensions), we changed the geometry of the simulation cell. Since we were
interested in the maximal shear stress located on the upper hemisphere of the void,
we bisected the simulation cell at the middle of the void. Using as the simulation cell
only the upper part of the cell, we were able to increase the size of the void
considerably, while the absent lower part was imitated by the three layers of fixed
atoms around the void’s cross-section. This also prevented cell drift during
simulations. The atoms terminating the void surface above the level of fixed atoms
were left to move freely. Such a trick enabled the systematic study of the nucleation
process at fairly low stresses as well. We checked carefully that the stress distribution
in the cell including half of the void was similar to the stress distribution in
the cell with the whole void, confirming the possibility of such replacement.

Figure 2. The simulation setup. A linearly increasing force was exerted on the top two layers
of atoms. The atoms that formed the three bottom layers were held fixed during the
simulation. The atoms within 7 Å of the lateral (x- and y-) boundaries were only allowed to
move in the z-direction.
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In the simulations with 1.6GPa surface stress and voids with 13 nm and 15 nm
radius, the size of the simulation cell was 66.2� 93.7� 20.2 nm3. In the simulation
with 1.6GPa surface stress and 11 nm radius void the simulation cell size was
66.2� 93.7� 10.8 nm3.

Also, in the current work we performed the simulations assuming a special variety
of boundary conditions in addition to the periodic ones. The atoms on the side borders
were fixed in the x- and y-directions, while they were allowed to move in the
z-direction. In this fashion the diagonal stacking faults, which appear during the
simulation, are pinned at the borders without reappearing in the cell as would happen
with periodic boundary conditions: The reappearance of the stacking faults in the
cell occurs since the dislocations that move away from the void in diagonal directions
cross the boundaries multiple times before arriving at the surface or the bottom of
the simulation cell, causing artificial deformation and additional stress in the system.

A void with radius r was systematically placed with an interval of 2 Å at different
depths below the surface. When the void was near to the surface, dislocations moving
perpendicular to the surface were observed to cause growth of a tip on the surface.
When the depth was increased, at some point the nucleation of such dislocations
was not observed during the simulation time. This depth was defined as the critical
depth, Hmax.

The stacking faults, which appear between the leading and trailing partial
dislocation, are shown in the snapshot of the 5 Å slice of the simulation cell
(Figure 3). The atoms belonging to the stacking faults and surfaces were identified by
calculating the centrosymmetry parameter P for the atoms

P ¼
Xi¼6
i¼1

jRi þ R�ij
2 ð1Þ

where Ri and R�i are the vectors corresponding to the six pairs of opposite nearest
neighbors in the fcc lattice [28,29]. The dislocations which move perpendicular to the
surface are the main reason for the formation of a protrusion on the surface. Prior to
the nucleation of these dislocations, dislocations along {111} planes, which are not
perpendicular to the surface, are nucleated in the simulations with a higher surface
stress. In the simulations with the lower surface stress (�1.6GPa) the nucleation of
these dislocations was not observed.

Since the shear stress on the slip plane is the driving force for dislocation
nucleation, we analyzed the stress acting on the {111} slip plane, which has the
normal in the x-direction in the simulation setup. The zx-component of the stress
tensor, �zx, at the atomic positions was calculated using LAMMPS [23]. To avoid the
random thermal fluctuations, the value of the stress tensor component was averaged
over 1 ps.

3. Analytical model

In order to analyze the simulation results quantitatively, we postulate that the
dislocation is nucleated at the point of maximum shear during the simulation, when
the shear stress near the void surface exceeds a certain threshold value. It is well
known that the dislocation nucleation mechanism on a free surface occurs via a
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formation of a glide loop under shear stress. Once a glide loop (a dislocation line

starting and ending on the void, and thus enclosing a certain area) bows out larger

than a certain critical size, it will continue expanding [30–32]. We will hereafter refer

to such a glide loop of critical size as a dislocation nucleus. Thus to expect the

dislocation to be nucleated on the void surface it is necessary that the stress

concentrated in the vicinity of the void is sufficient for the dislocation nucleus to be

formed.
The geometry, which we shall use in the following description of the model, is

illustrated in Figure 4a. In the description we employ the following definition of the

stress vector: assume a closed surface S bounding a volume V. A vector surface

element DA~v on the surface S with the unit surface normal ~v and area DA experiences

a total force ~F by the exterior of S. The stress vector is defined as

~T ~v :¼ lim
DA!0

~F

DA
: ð2Þ

Figure 3. Stacking faults (black) created by dislocations which have nucleated on the void
surface. The dislocations which move perpendicular to the surface are the main reason for the
eventual formation of the protrusion on the surface. The atoms located on surfaces are colored
gray. Only a 5 Å thick slice of the simulation frame is shown. The crystallographic orientations
are the same as in Figure 2. The atoms belonging to the stacking faults and surfaces were
identified by calculating the centrosymmetry parameter [28,29].
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Since the stress vector depends on the orientation of the surface element, it is denoted

by the superscript on the left-hand side of Equation (2) [33].
In equilibrium, the integral of the z-component of the stress vector over the entire

surface S circumscribing the cylindrical volume depicted in Figure 4 yields zero:Z
S

T ~v
z ¼ 0: ð3Þ

Dividing the surface into four subsurfaces, as illustrated in Figure 4b, we obtainZ
A1

T ~v
z þ

Z
A2

T ~v
z þ

Z
A3

T ~v
z þ

Z
A4

T ~v
z ¼ 0 ð4Þ

where A1 is the top of the cylinder located on the surface of the material, and A2 and

A3 are the walls of the two sub-cylinders having heights hcyl� d and d, where hcyl is

the height of the original cylinder and d is the height of the lower sub-cylinder.

The latter can also be understood as the height of the dislocation nucleus. The rim of

the cylinder is contained in A3. A4 is the bottom of the cylindrical volume. The

integral over A4 is zero since there is no force applied downwards in this region (the

ceiling of the void) by the exterior of S. The integrals can be replaced by the product

of the average of the function T~vz over the surface area where this function is

integrated and the area itself, yielding

�r2cylhT
~v
z iA1
þ 2�rcylðhcyl � d ÞhT ~v

z iA2
þ 2�rcyldhT

~v
z iA3
¼ 0 ð5Þ

where rcyl is the radius of the cylinder. Regions where the stress is averaged are

indicated by the subscript. We define the threshold average stress B3 as the minimum

Figure 4. (a) The maximum shear stress is at the point where the shear direction is at a 45�

angle to the void surface [11]. (b) The description of the criterion for growth is obtained when
the surface integral of the stress vector over the glide cylinder of the dislocation is divided into
four subsurfaces.
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average stress exerted on A3 required for a dislocation to be nucleated at a given time
and temperature. Assuming homogeneous external surface stress of magnitude Text

directed in the z-direction, we can lighten the notation and denote hT ~v
z iA1
¼ Text.

To compare the results derived from our model to the values obtained by others,
we calculate an estimate for the activation volume � based on the parameter d of the
model. Observations of the simulation results (see Figure 8) show that we can
approximate the parameter d as the radius of the semicircular dislocation nucleus
(cf. Figure 8): � ¼ Acj

~bj, where ~b is the Burgers vector of the nucleating partial
dislocation and Ac is the area enclosed by the dislocation nucleus [34]. This yields

� ¼
�d2

2
j ~bj: ð6Þ

The activation volume is a function of the local shear stress and temperature. Since
the local shear stress is constant, B3, in the model, the parameter d has no
dependence on surface stress.

We saw in our simulations that the dislocation was nucleated almost immediately
if the void was located very near to the surface. We did not observe the nucleation of
dislocations at the deeper voids, at least during the simulation time span. Hence we
conclude that there must exist a maximum depth, hmax

cyl , for the dislocation to be
nucleated. Assume that the void is located at this maximal depth, hcyl ¼ hmax

cyl ðrcylÞ.
At this depth, the stress needed to nucleate the dislocation B3 ¼ hT

~v
z iA3

can be
determined as a constant for a given material and temperature. It is possible that
over longer times the dislocation could nucleate under lower stress, hence B3 can
depend on the simulation time. Now we solve Equation (4) with respect to the value
of the stress applied to the region A2, denoted B2:

B2 ¼
�T extrcyl � 2dB3

2ðhmax
cyl ðrcylÞ � d Þ

: ð7Þ

This equation gives us the opportunity to define the depth where the concentration
of the shear stress can still be sufficient to emit the dislocation. Thus in the steady
state a dislocation will be emitted if

hcyl � hmax
cyl ðrcylÞ ¼

�T ext

2B2
rcyl þ d 1�

B3

B2

� �
: ð8Þ

In general, this criterion is applicable to a wide range of times and temperatures.
However, we note that the parameters B2 and B3 can be overestimated if the system
evolution is analyzed during a short time as dictated by the limited MD time span
(B2 and B3 are the shear stress averaged over the different areas). The exaggeration of
the stress in the system allows us to observe the dislocation nucleation during the
simulation time span because the local shear stress affects the activation barriers for
the nucleation of dislocations (the nucleation event is thermally activated).
The different simulation times and temperatures might introduce an uncertainty in
the estimation of these parameters; this is why for consistency we performed all the
simulations at a fixed time and temperature. Moreover, it is not clear whether these
parameters exhibit the void-size dependence. We analyzed the critical average
stresses B2 and B3 by calculating the atomic level stress on each atom for the voids

8 A.S. Pohjonen et al.
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positioned 1 Å below the maximum depth for dislocation nucleation. We found that

in the range of radii of the voids investigated in the present study, both parameters

B2 and B3 remained independent of rcyl within the accuracy obtained in the

simulations (cf. Figure 10).
Here we investigate the dependence of hmax

cyl instead of Hmax on r as in [7], shown

in Figures 1 and 4. The super/subscript ‘max’ again denotes the extreme case when

the void is located at the depth where the growth of the tip still occurs within the

simulation time at the given stress and temperature. The radius of the void r is related

to rcyl as

rcyl ¼
rffiffiffi
2
p ð9Þ

and hmax
cyl is related to Hmax as

hmax
cyl ¼ Hmax þ

ffiffiffi
2
p
� 1

� �
rcyl ð10Þ

by geometry, as shown in Figure 4. The observed linearity in the variables hmax
cyl and

rcyl is equivalent to the linearity between the variables Hmax and r:

hmax
cyl ¼ arcyl þ c, Hmax ¼

aþ 1ffiffiffi
2
p � 1

� �
rþ c: ð11Þ

4. Results

Comparison of the results of our analytical model and the simulation results can give

an insight into the mechanisms of the growth of a surface protrusion under static

tensile stress. For this purpose we numerically analyzed the zx-component of the

stress acting on the {111}-slip plane, calculated for each atom with MD. This result is

shown in Figure 6.
The maximum shear stress is found approximately at the point where the void

surface is at a 45� degree angle to the shear (dotted line, Figure 5), as suggested by

Lubarda et al. [11]. We further analyzed the shear stress field along the vertical line

which passes through the point of maximum shear. From Cauchy’s postulate [35] it

follows directly that the absolute values of the stress vector with surface normal in

the x-direction and the zx-component of the stress tensor are equal: jTx̂
z j ¼ j�zxj.

We have performed a set of systematic simulations using the technique described

in Section 2. In Figure 6 we plot the maximum height of the cylinder versus the

radius of the cylinder hmax
cyl ðrcylÞ in accordance with the model described in Section 3

for two external stresses 4.58GPa and 3.05GPa applied at the surface (Figure 6).

The error bars indicate the uncertainty of defining the maximum depth where the

concentrated stress near the void reaches the critical value sufficient to create a

dislocation nucleus. The simulation results can be linearly fit as follows:

hmax
cyl ðrcylÞ ¼ arcyl þ c: ð12Þ
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Figure 5. The shear stress field �zx perpendicular to the slip plane (the slip plane is in the
direction of the x-axis) when the void is 1 Å below Hmax. The void radius r¼ 40 Å. The vertical
line where the shear stresses of atoms were further analyzed is marked with a dashed line.
Dislocations that move in diagonal directions have been nucleated, but no dislocation moving
perpendicular to the surface has nucleated on the analyzed {111} slip plane.

Figure 6. The least squares fit to the (rcyl, hmax
cyl ) data shows that the dependence

is approximately linear for the simulated nano-scale voids. The corresponding void radii
were r¼ 20, . . . , 40 Å for 4.58 GPa surface stress and r¼ 35, . . . , 55 Å for 3.05GPa surface
stress.
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The coefficients of the fit a and c give a quantitative description of the dependence

hmax
cyl ðhT

~v
z iÞ. Comparing (12) and (8) we find:

a ¼
�Text

2B2
ð13Þ

and

c ¼ d 1�
B3

B2

� �
: ð14Þ

The investigation of these coefficients can assist in understanding the void size effect

on dislocation nucleation on a near-surface void under tensile stress.
The parameters a and c are obtained from the fit (12). However, there are three

unknowns in Equations (13) and (14): d, B2 and B3. The values of B2 and B3 depend
on the distance d, hence it is natural to take d as the free parameter which is to be

determined based on the calculation of atomic level stress by the following

procedure. We calculated the average shear stress Batomic
3 within the different heights

d from the void surface as an average of the atom-level stress for voids of different

radii. This value was compared to the value Bfit
3 obtained from the least squares

fitting of data in Figure 6 in terms of Equations (13) and (14). Testing the different
values of d we minimized the difference DB3 ¼ Batomic

3 � Bfit
3 as shown in Figure 7.

It is clear that the best correspondence is found for the approximate value d ¼ 3j ~bj,
where j ~bj is the Burgers vector of the nucleating partial dislocation with Burgers
vector ~b ¼ a=6h112i, where a is the lattice constant. Then, adopting the estimated

value of d, Equation (6) gives the value of the activation volume � ¼ 22j ~bj3, which is

comparable to the values obtained by other groups for dislocation nucleation on the
surface (nano-pillars), � ¼ ð1� 10Þj ~bj3 [30] and � ¼ ð2� 30Þj ~bj3 [31]. The shear

stress �zx along the axes drawn through the point of maximum shear stress (the

vertical line in Figure 5) is shown in Figure 9. The points which were averaged to
obtain the parameters Batomic

3 within the obtained value of d, and Batomic
2 , which is

further than d from the void surface, are indicated separately.
The nucleation event of the leading partial dislocation on the void surface is

shown in Figure 8. The inset demonstrates the dislocation nucleus with the height
compared to the distance d.

Now, knowing the value d ¼ 3j ~bj we can estimate the parameters B2 and B3 from

Equations (13) and (14). In Table 1 we report these parameters for two different sets
of simulations (the different surface stresses). The obtained value of B3¼ 5.4GPa is

consistent for both cases and can be compared to the theoretical shear strength of

copper � �
15 ¼ 3.1GPa [32,36] (� is the shear modulus of copper) or the ideal simple

shear strength, �3.4GPa [37]. The analysis of the parameter B2 is more obscure since

the small difference in these values for both stresses might lie within the error bars

determined for this quantity.
In order to investigate whether the parameters B2 and B3 depend on the size of

the void, in Figure 10 we plot the averages of the �zx stress component on the atoms

further away from the void (Batomic
2 ) and right at the void surface within the distance

d (Batomic
3 ) versus the void radii. Visual inspection of the graph confirms that both

parameters steadily fluctuate around the average values (5.4� 0.3GPa for Batomic
3
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and 1.3� 0.1GPa for Batomic
2 ). For comparison we also added the values taken from

Table 1 (horizontal lines). As one can see the values of both parameters calculated in
two different ways agree very well. The discrepancy between the values of Batomic

2 and
Bfit
2 can be explained by the simplifications of the analytical model underlying the

Figure 8. Nucleation of dislocation on the slip plane which is perpendicular to the surface.
The mechanism proceeds when the dislocation loop grows larger than the critical size [30–32].
The distance d, which was obtained by comparing the analytical model to the atomic level
stress, shows the critical size of the loop. Atoms belonging to a stacking fault, which is formed
behind the leading partial dislocation, are colored in black and atoms belonging to a surface
are colored in gray. Only a 5 Å thick slice of the simulation snapshot is shown.

Figure 7. The difference DB3(d) between Batomic
3 obtained by calculating the atomic level stress,

and Bfit
3 obtained from the least squares fit to the simulation results for different values of

the distance d (dots). A fourth-order polynomial is fitted to the data (solid line). The difference
reaches zero at approximately d ¼ 3j ~bj, where ~b is the Burgers vector of the nucleating partial
dislocation.
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value Bfit
2 obtained from the fitting to the simulation data. Thus the direct calculation

of �zx shows that B2 can indeed be approximated as a constant at the given stress, as

assumed in the model.
The superposition of the nucleation rim radii rcyl of the cylindrical volume used in

the model and the shape of the protrusion (viewed from above) that was grown on

the surface due to dislocations moving perpendicular to the surface gives good

agreement (Figure 11). The shape of the protrusion is rhomboidal, which was

discussed in [7] and can be explained by the face-centered-cubic crystal structure,

which has two glissile {111} planes, perpendicular to the {110} surface and forming a

71� angle in-between. The difference in the shapes of a protrusion and the assumed

cylinder can also affect the discrepancy for B2 seen in Figure 10.
The suggested model aims to give a comprehensive view of the dislocation

nucleation event on a near-surface void under tensile stress applied on the surface

due to a high electric field and extract information useful for the prediction of the

relevance of this mechanism on the experimental time scales. Since the simulated

voids are of nano-size, it is of prime importance to understand the finite-size effect on

this mechanism. With this purpose we studied the geometric properties of the

proposed mechanism. Namely, we investigated the aspect ratio � of the depth hmax
cyl of

the point where the concentration of the shear stress on the void surface is maximal

Figure 9. The shear stress of the atoms on the vertical line shown in Figure 5 through the
point of maximum shear as a function of the z-coordinate of the atoms when the void is
directly below Hmax. The stress of the atoms used to calculate the average stresses B2 and B3

are indicated by the ellipses.

Table 1. The average stresses over areas A1, A2 and A3, when the
void is 1 Å below the maximal depth Hmax for dislocation nucleation.
Bfit
2 and Bfit

3 stand for the average stress over regions A2 and A3,
respectively.

Surface stress, Text (GPa) Bfit
2 (GPa) Bfit

3 (GPa)

4.58 �0.56� 0.07 �5.4� 1.5
3.05 �0.69� 0.06 �5.4� 1.1
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and sufficient to create a dislocation nucleus to the radius r of the void, � ¼ hmax
cyl =r.

Using Equation (9), Equation (8) can be rewritten as follows:

� ¼
hmax
cyl

r
¼
�Text

2
ffiffiffi
2
p

B2

þ
d 1� B3

B2

� �
r

: ð15Þ

The analysis of this dependence reveals that for large voids (r� d ð1� B3

B2
Þ) the

second term describing the finite-size effect becomes insignificant and � of

the considered geometry will be defined only by the relation of the external stress

to the shear stress created between the void and the surface. We plotted the

simulation results interpreted in terms of Equation (15) for both investigated stresses

3.05GPa and 4.58GPa (Figure 12). As one can see in both cases we are in the regime

when the finite-size effect is significant and the considered aspect ratio does not

remain constant with the void radius. Using again the least squares fitting technique,

we obtain the inverse function

� ¼
hmax
cyl ðrÞ

r
¼

affiffiffi
2
p þ

c

r
,

where a and c are similar fitting coefficients as in Figure 6.
In order to test our model we made additional simulations with an external stress

of about half of 3.05GPa (1.6GPa) for the larger voids (r4 10 nm). In this case we

were forced to use the cell with the hemisphere as described in Section 2. The results

are also present in the same graph in Figure 12. In this case it is clear that we

overcame the region of the finite-size effect as all three points are clearly lying almost

on the same line. The best fit to this data we obtained assuming the increase of the

parameter B2 is linear, and the coefficient of linear proportionality is estimated from

the values of B2 presented in Table 1. We explain this observation by the change of

the geometry (the void size versus the depth of the maximum shear stress) for each

Figure 10. The average value of the �zx stress component within distance d ¼ 3j ~bj from the
void surface (triangles) corresponding to the value of Batomic

3 (dashed line for Bfit
3 ) and

the average value of the stress component further away (circles) corresponding to Batomic
2 (solid

line for Bfit
2 ) as a function of the void radius when the void depth is directly below Hmax.

The surface stress magnitude was 4.58GPa.
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stress, which will definitely affect the distribution of the stresses between the void and
the surface. More information from this graph can be derived on the saturated value
of � denoted as �sat, when the scale invariance of the stress distribution holds for a
given external stress. This information can be used to estimate the potential risk of
the formation of prismatic loops [7] on a void of macroscopic size, which is certainly
beyond the range of the atomistic simulations. We emphasize that the model does

Figure 12. Aspect ratio � of the depth of the maximal shear stress sufficient to create a
dislocation nucleus and the radius of the void as a function of the void radius. The results are
shown for two investigated external stresses 3.05 GPa and 4.58 GPa. The points obtained for
the lower stress (1.6 GPa) are added for prediction purposes. The lines are the inverse
functions (Equation 15), where a and c are calculated with the parameters B2 and B3 from
Table 1. The low stress data was fit based on the same value B3; B2 was increased with the
linear proportionality assumed for the increase in B2 from the higher value (B2 of external
stress (T¼ 4.58 GPa) to the lower one T¼ 3.05 GPa) in Table 1 (see text). The horizontal lines
on the right side of the figure indicate the corresponding level of �sat¼ a, where a is defined in
Equation (13).

Figure 11. The shape of the tip grown on the surface viewed from above (solid line) is
compared to the void shape (dashed line) and to the nucleation rim of radius rcyl (dotted line)
used in the analytical model.
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not depend directly on the absolute values of the parameters B2 and B3, which were
defined in this work based on the atomistic simulations. Using instead the values
estimated from the macroscopic considerations in the regime of �sat, the model can
also be used on macroscopic time scales.

5. Conclusions

We have analyzed the effect of void size on the mechanism that can lead to the
growth of a tip on a surface under an electric-field-induced stress. Such a stress can
appear on the metal surface as a result of the effect of high electric fields (for
instance, E� 10GV/m corresponds to surface stress T¼ 0.9GPa). The mechanism
operates via nucleation of dislocations on near-surface voids under static tensile
stress exerted on the surface [7]. Here we propose an analytical model to explain the
process of tip growth via this mechanism. Based on the model, we give a physical
explanation of the coefficients of linearity in the criterion for growth observed
earlier [7]. We observed that the dislocations are nucleated on the void during the
simulation if the shear stress is concentrated sufficiently near the surface of the void
to create a dislocation nucleus. The ratio of the critical depth, where such a nucleus is
still created, to the radius of the void defines the geometric aspect ratio � that gives a
high probability of dislocation nucleation for a given stress. We also observed a clear
finite-size effect, which decreases the value of �, and must be taken into account
when the size of the void is comparable to the size of the dislocation nucleus. In the
macroscopic limit, � reaches the value �sat ¼ Text=2

ffiffiffi
2
p
h�zxi, where T

ext is the external
tensile stress on the surface and h�zxi is the average shear stress distributed between
the point of �max

zx on the surface of the void and the surface.
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