
Modelling of compound semiconductors: Analytical

bond-order potential for gallium, nitrogen and gallium

nitride

J Nordy, K Albez, P Erhartzand K H Nordlundy

y University of Helsinki, Accelerator Laboratory, P. O. Box 43, FIN-00014 University of
Helsinki, Finland
z Technische Universität Darmstadt, Institut für Materialwissenschaft, Petersenstr. 23,
D-64287 Darmstadt, Germany

E-mail: albe@hrzpub.tu-darmstadt.de

Abstract. An analytical bond-order potential for GaN is presented that describes a wide
range of structural properties of GaN as well as bonding and structure of the pure constituents.
For the systematic fit of the potential parameters reference data are taken from total energy
calculations within the density functional theory if not available from experiments. Although
long-range interactions are not explicitly included in the potential, the present model provides
a good fit to different structural geometries including defects and high pressure phases of GaN.

Submitted to: J. Phys.: Condens. Matter

PACS numbers:

1. Introduction

Gallium nitride is a semiconducting compound material of high technological importance
with a variety of applications in optoelectronics, high-power and high-temperature devices
(Nakamura & Fasol 1997). An important requirement for the production of such devices
is the modification of materials properties by controlled introduction of impurities into the
material during growth or alternatively by ion implantation. On the other hand, despite
of the impressive advances in the growth of GaN, even the best samples still contain high
concentrations of as-yet-unidentified microscopic and mesoscopic defects. Therefore a
fundamental understanding of growth mechanisms and processes like dopant implantation
and defect formation is of great technological importance.

Atomic scale computer simulations, such as molecular–dynamics (MD) or kinetic
Monte–Carlo (KMC) simulations, are nowadays a standard method to perform detailed
investigations and allow to gain a deeper understanding of the relevant materials processes.
For the success of any atomistic simulation, however, that can describe experimentally
relevant time and lengths scales, computationally efficient and reliable interatomic potentials
are a prerequisite condition. In the past much effort has been devoted to the development of
such potentials for ionic oxides, covalent systems and metals. There are, however, only a few
attempts to describe group–III nitrides by analytical interatomic potentials.
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Gallium nitride is a semiconducting material with mixed covalent-ionic bonds. Therefore
an analytical potential in principle has to include a proper description of both the chemical and
electrostatic interactions. The latter is usually described by means of coulombic terms in the
potential. Due to the long-range forces, however, the computational efficiency is significantly
affected. On the other hand, many materials properties, such as amorphization behavior or
stacking fault energies, can only be reproduced if the Coulomb interactions as well as the
directional character of the covalent bonds are considered in the potential description.

In the past Zapol et al. (Zapol et al. 1997) have presented a two-body potential consisting
of a long-range Coulombic part and a Buckingham form, where the shell-model approach
was used for the nitrogen ions. Although the directional character of the covalent bonding
usually requires angular terms, the authors argue that a sum of two body terms with partial
charges can account for this. Their model reproduces the wurtzite, zinc-blende and rocksalt
structures and was used to calculate defect and surface properties. Angularity was explicitly
included in a potential proposed by Wang et. al (Wang et al. 2000), where the Coulomb term
was combined with a Keating potential. In contrast, an emperical tight-binding formalism that
explicitly neglects long-range forces has been derived by Boucher et al. (Boucher et al. 1999).
Representing Ga and N with an sp3–basis set they are able to reproduce some bulk and defect
properties of GaN. Another short range potential based on the Stillinger–Weber formalism
was proposed by Aı̈choune et al. (Aı̈choune et al. 2000) and used in a modified version for
modelling dislocation core in GaN (Béré & Serra 2002).

All of these potentials give parameter sets for Ga–Ga and N–N mostly fitted from defect
configurations. Structural properties of the pure constituents like the N

2

molecule or the �–
Ga structure, however, are not considered in all previous studies and therefore simulations of
surfaces (Northrup et al. 2000), defect clusters, growth or melting behavior are not possible.

In the present paper we devise a new analytical bond–order potential for GaN that is
able to describe even the pure constituents. In doing so, we follow the same route as chosen
in a preceeding paper on gallium arsenide (Albe et al. 2002), where the materials properties
of the pure constituents were explicitly included in the fitting scheme. Although long-range
interactions are formally neglected, the use of a short-ranged angular dependent potential
for modelling the ionic-covalent interaction in GaN can partly be justified by the fact that
Madelung energies for this compound are implicitly included in the input data set as taken
from experiments or density functional theory (DFT) calculations.

The paper is organized as follows. First, we briefly review the basic algorithm of the
potential. Then we give a short description of the fitting scheme and the parametrizations for
nitrogen, gallium and GaN, seperately. Finally, we discuss the solubility of nitrogen ind liquid
Ga as a first application of the current model.

2. Basic methodology and energy functional

In what follows we briefly report the analytical form of the potential which is discussed in
detail in Ref. (Albe et al. 2002). The basic idea is to use a bond-order potential of the
Tersoff-Brenner (Brenner 1989) form, where the total potential energy is written as a sum
over individual bond energies:
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The pairlike attractive and repulsive energies are given as Morse-like terms,
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that depend on the dimer bond energy D

o

, the dimer bond distance and the adjustable
parameter S. The parameter � can be determined by the ground state oscillation frequency of
the dimer. The interaction to the next neighbor sphere is restricted by a cutoff-function
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where D and R are adjustable quantities.
The bond-order parameter B

ij

includes the angular dependencies, which are necessary
to accurately model the deformation of covalent bonds:
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Here again the cutoff-function is included, while the indices monitor the type-
dependence of the parameters, which is important for the description of compounds. The
angular function g(�) is given by:
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If r
b

is the equilibrium bonding distance and E
b

the energy per individual bond, a simple
relation that sometimes is called Pauling-relation can be derived and is valid for any bonded
structure independent of the specific choice for the bond-order term:
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This equation is used to fit bond lengths and energies of structures with different atomic
coordinations by adjusting parameters D

o

; S; r

b

and �.

3. Fitting procedure

The parameter sets for Ga-Ga, N-N, and Ga-N were adjusted independently. Those structures
and properties, that are affected by the interplay of the different parameters were not included
in the fitting procedure, but were analyzed later. The parameters in the pairlike terms were
chosen in accordance to the dimer properties if possible, while the slope of the energy-
bond relation was adjusted to the total energy data by varying S. Finally, elastic moduli
and structural properties were fitted simultaneously using the Levenberg-Marquardt method
(Press et al. 1992).
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Table 1. Parameter sets for the three interaction types.
ij Ga-Ga N-N Ga-N
 0.007874 0.76612 0.001632
S 1.11 1.4922 1.1122
�(Å

�1

) 1.08 2.05945 1.968
D

e

(eV) 1.40 9.91 2.45
R

e

(Å) 2.3235 1.11 1.921
 1.918 0.178493 65.207
d 0.75 0.20172 2.821
h = os(�

o

) 0.3013 0.045238 0.518
2�(Å

�1

) 1.846 0 0
R

ut

(Å) 2.87 2.2 2.9
D (Å) 0.15 0.2 0.2

3.1. Gallium

The parametrization for the gallium interaction is the same as used before in the GaAs
potential (Albe et al. 2002) (Table 1). In the context of the GaAs potential(Albe et al. 2002),
however, the cutoff interval for Ga was taken as 2.8–3.1 Å. In GaN the next neighbor distance
is shorter and therefore the cutoff-range for the Ga-Ga interaction was readjusted to 2.72-3.02
Å . This prevents that Ga atoms in the second neighbor shell are interacting with each other
at low temperatures. This modification affects the thermal properties of the �-Ga structure as
reported in Ref. (Albe et al. 2002), where the longest bond length is 2.7 Å with the current
parameter set. We found that the melting point increases to 700(100) K with the modified
range of the Ga-Ga interaction. In this context it should be noted that our cutoff range is
similar to that chosen in the empirical TB potential of Boucher et al. (Boucher et al. 1999).
In contrast to their work, however, we did not have problems to fit the elastic properties of the
GaN compound structures using our first neighbor shell model.

3.2. Nitrogen

Diatomic nitrogen is characterized by strong triple covalent bonds and has among the highest
binding energy of any molecule. At low temperatures and pressures it forms a molecular
crystal with weak van–der–Waals interaction between molecules. It is the only group V
element that does not polymerize to single-bonded systems as phosporous and arsenic (A7)
do. A couple of years ago Mailhiot et al. (Mailhiot et al. 1992) presented a theoretical study
based on DFT calculations. They investigated the stability of several crystalline structures
and concluded that a cubic structure of nitrogen might form at pressures of about 50 GPa. In
recent experiments Eremets et al. (Eremets et al. 2001) found evidence for a non-molecular
structure of solid nitrogen forming at about 100 GPa which stays stable at ambient pressure
for temperatures below 100 K. For fitting the Pauling relation shown in figure 1 we used
Mailhots data on the high-symmetric metallic structures fcc, sc, bcc and diamond, but not the
polymeric modifications.

It turned out that a reasonable description of all energies was only possible by choosing
a ground state frequency of 1840 m�1 that is somewhat lower than the theoretical prediction
of 2291 m�1. The final parameter set provides a very good description of the reference bond
lengths and energies. As can be seen from table 2 the theoretical bulk moduli as given by
Mailhiot et al. (Mailhiot et al. 1992) are consistently higher than the values obtained with
the analytical potential. This is a direct consequence of the choice for the parameter � or
equivalently the lower ground state oscillation frequency ! of the diatomic molecule. At
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Figure 1. Semi-logarithmic plot of the bond energy/bond length relation for different N-
structures: Shown are results calculated with the analytical potential compared to LDA
calculations of Mailhiot et al. (Mailhiot et al. 1992).
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Table 2. Energy and structural parameters of different nitrogen phases.
N

2

LDA [(Mailhiot et al. 1992)] Exper. Anal. Pot.
r

o

(Å) 1.11 1.11
D

o

(eV) 9.91 9.91
!

o

(m�1) 2291 (Huber & Herzberg 1979) 1840
lin:N

3

r

o

(Å) 1.272
E

oh

(eV) -3.712
graphite
r

o

(Å) 1.515
E

oh

(eV) -3.513
diamond
a

o

(Å3) 4.10 4.044
E

oh

. (eV) -2.145 -2.022
B (GPa) 218.83 117.7
sc
a

o

(Å3) 1.84 1.837
E

oh

/f.u. (eV) -2.235 -2.231
B (GPa) 228.21 175.7
bcc
a

o

(Å3) 2.41 2.391
E

oh

(eV) -1.135 -1.297
B (GPa) 212.81 119.0
fcc
a

o

(Å3) 3.08 3.167
E

oh

(eV) -0.895 -1.086
B (GPa) 167.68 101.3
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this point the formalism is not flexible enough to reproduce the Pauling-relation using the
reference value for !.

With the current parameter set a number of quenching simulations were performed. From
these we were not able to spot artificial spurious minima and theN

2

molecule always appeared
as the thermodynamically stable ground structure.

3.3. Gallium Nitride

The increasing interest in GaN has not only stimulated a large number of experimental
studies but also quantum-mechanical based calculations of bulk properties (Muñoz &
Kune 1991, Kim et al. 1997, Shimada et al. 1998, Stampfl & van de Walle 1999, Serrano
et al. 2000, Limpijumnong & Lambrecht 2001a, Limpijumnong & Lambrecht 2001b),
defects (Neugebauer & Walle 1994, Boguslawski et al. 1995, Mattila et al. 1996, Mattila
& Nieminen 1997, Gorczyca et al. 1999, Gorczyca et al. 1997, Northrup 2002) and surfaces
(Northrup & Neugebauer 1996, Miotto et al. 1999, Northrup et al. 2000). The more ionic of
the compound semiconductors exhibit a high-pressure phase transition from the tetrahedrally
bonded structure to an octahedrally bonded structure, which has been investigated both
experimentally (Ueno et al. 1994) and theoretically (Limpijumnong & Lambrecht 2001a) for
GaN. In the present context we used results of density functional theory calculations on the
structure and energy of different solid GaN phases of Serrano et al. (Serrano et al. 2000) as
well as data of Muñoz and Kunc (Muñoz & Kune 1991).

The dimer properties of the diatomic molecule GaN have to our knowledge only been
calculated by Kandalam et al.(Kandalam et al. 2000) using nonlocal density functional theory.
They report a bond distance of 2.06 Å, which is well above the next neighbor distance
in tetrahedrally bonded GaN, and therefore cannot be fitted with the present analytical
formalism. We therefore decided to choose a dimer bonding distance of 1.921 Å , while
keeping the bond energy at the theoretical value. Moreover, we found that the ground state

Figure 2. Semi-logarithmic plot of the bond energy/bond length relation for different GaN-
structures: Shown are the results of the analytical potential and literature values of DFT-
calculations (Muñoz & Kune 1991, Serrano et al. 2000, Kandalam et al. 2000)
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Table 3. Energy and structural parameters of different GaN-phases. Given are experimental
values and theoretical results from DFT-calculations in comparison to the corresponding
numbers as described with the analytical model.

GaN dimer LCAO (Kandalam et al. 2000) Exp. y Anal. Pot.
r

o

(Å) 2.06 1.921
D

o

(eV) 2.45 2.45
!

o

(m�1) 447 678
Zincblende GaN LDA (Serrano et al. 2000)
a

o

(Å3) 4.497 4.50 4.498
E

oh

/f.u. (eV) 9.048 9.056
B (GPa) 196 205
B

0 4.2 4.14
Wurtzite GaN
a

o

(Å3) 3.180 3.190 3.180
=a 1.632 1.627 1.633
r

o

(Å3) 1.948 1.956 1.948
u 0.376 0.377 0.375
E

oh

/f.u. (eV) 9.058 9.058 9.056
E

bond

(eV) 2.264 2.264 2.263
B (GPa) 196 188-245 205
B

0 4.3 3.2-4.3
T

melt

(K)
B1 LDA [(Muñoz & Kune 1991)]
a

o

(Å3) 4.225 4.304
E

oh

/f.u. (eV) 8.150 7.460
B (GPa) 240 233.0
B

0 4.5 4.7
B2
a

o

(Å3) 2.802 2.676
E

oh

/f.u. (eV) 5.75 6.09
B (GPa) 230.8
B

0 5.0

y Data reported in Ref. (Serrano et al. 2000)

oscillation frequency as determined by DFT-calculations (Kandalam et al. 2000) is too small
to describe the bond stiffness, correctly. Therefore we adjusted the parameter � in such way
that the bulk moduli of the solid GaN structures are well reproduced. After � and S were
adjusted using the Pauling relation shown in figure 2, the remaining parameters were fitted by
taking into account structures and energies of all high pressure phases listed in table 3 as well
as elastic properties.

For fitting the bulk properties of GaN in wurtzite and high pressure structures the
cohesive energies are required. Interestingly the values from literature are fairly diverse. If
we take the cohesive energies of N

2

as 9.91 eV/molecule and 2.81 eV/atom for the cohesive
energies of solid �-Ga, then the corresponding experimental values for the cohesive energy
of w-GaN are 8.96 eV/f.u. (Harrison 1989), 9.4 eV/f.u. (Edgar 1994) and 11.4 eV/f.u. (Jones
& Rose 1984). In the present context we took 9.058 eV/f.u. for the cohesive energy of w-
GaN as reported in the work of Stampfl et al. (Stampfl & van de Walle 1999). This is close
to the theoretical average of DFT calculations obtained in local and nonlocal approximation.
All other energies listed in table 3 were taken relative to this number. With S=1.1122 the
B2 (CsCl) as well as the B1 (NaCl) structure can be well reproduced. The calculated bulk
modulus for the B1 phase is 233 GPa compared to 240 GPa from the LDFT-calculation
(Serrano et al. 2000).
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Table 4. Elastic constance for zinc-blende and wurtzite GaN. Lines label with a star (*)
indicate elastic constants calculated with the transformation method of Martin(Martin 1972,
n.d.).
ZB Calc. y Calc. y Calc. y Exp.y Exp. y Exp. y CBP y Anal. Pot


11

285 282 293 300 287


12

161 159 159 191 169


44

149 142 155 160 128


o

44

202 200 244
B 202 200 204 227 208
WZ


11

350 367 390 365 377 386 347
? 354 346 363 377 343


12

140 135 145 135 160 160 154
? 150 148 147 183 159


13

104 103 106 114 114 141 123
? 103 105 100 121 123


33

376 405 405 398 381 209 391 381
? 401 389 410 440 379


44

101 95 105 109 81.4 115 81
? 77 76 83 70 72


66

115 116 123 115 109 113 98
? 101 99 108 97 92
B 197 202 210 204 173 227 208
? 202 200 204 227 208

y LDA pseudopotential calculation (Shimada et al. 1998)
y FP-LMTO LDA calc. (Kim et al. 1997)
y LDA pseudopotential calculation (Wright 1997)
y Brillouin scattering (Polian et al. 1996)
y Brillouin scattering (Yamaguchi et al. 1997)
y Resonance Ultrasound (Schwarz et al. 1997)
y Coulomb-Buckingham potential (Zapol et al. 1997)

The elastic moduli of wurtzite GaN have been studied experimentally (Polian et al.
1996, Yamaguchi et al. 1997, Schwarz et al. 1997) and theoretically (Kim et al. 1996, Kim
et al. 1997, Wright 1997, Shimada et al. 1998) by a number of groups. Their results are listed
in table 4 and show significant deviations. This is most likely due to the fact that internal strain
leads to atomic relaxations, which is treated differently by the relaxation procedures applied.
Therefore we decided to fit the potential parameters to the elastic properties of zinc-blende
GaN, where only the shear modulus 

44

is affected by internal strain, and then to validate the
results for w-GaN.

Since both structures are characterized by identical tetrahedral building blocks, the
elastic tensor of the wurtzite structure (wij) can be directly obtained from the moduli of
the zinc-blende structure (z

ij

), if structural differences of the third and fourth neighbor shells
are negligible. Martin devised a transformation procedure (Martin 1972, n.d.) for wurtzite
structures with an ideal c/a ratio and ideal displacement vector u, which can be summarized
by
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with � =

p

2

6

(

z

11
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z

12

� 2

z

44

) and 

w

66

= 1=2(

w

11

� 

w

12

). The unrelaxed moduli


w

ij

are obtained by applying the transformation matrix only without taking into account
the second correction term. Since our short-ranged model potential cannot distinguish the
different stacking sequences and predicts an ideal c/a ratio, it is appropriate for testing
Martin’s transformation method.

For fitting the elastic moduli, we have used the static elastic moduli for zinc-blende GaN
as given by Shimamura et al.(Shimada et al. 1998). With the final parameter set all tensor
components were calculated direcly by molecular statics allowing for full internal relaxations.
The results compared to the transformation method and literature data are given in table 4.
All elastic moduli are well reproduced within the uncertainty limits of the reference data.
The relative differences of directly calculated values and those obtained by the transformation
procedure are most significant for 

44

. Since our model fullfills all formal criteria of the
transformation method, these differences are due to relaxations of the 3. and 4. neighbor
shells and some influence of the relaxation method. Please note, that the results reported by
Zapol et al. (Zapol et al. 1997) for their Coulomb-Buckingham potential show a similarly
good agreement with experiments and data calculated by DFT methods, although the bulk
modulus is too high. The lacking angular dependency only seems to affect z

12

and w
13

.

4. Defect properties

Although there has been much progress in growing GaN during the last decade, there are many
open questions related to native point defects and impurities. The sources of n-conductivity
and yellow luminescence, for example, are still under discussion and the state of knowlegde
on electronic properties of defects in GaN in general is still far from being complete, although
there is a number of recent theoretical studies (Neugebauer & Walle 1994, Boguslawski
et al. 1995, Mattila et al. 1996, Mattila & Nieminen 1997, Gorczyca et al. 1999, Gorczyca
et al. 1997).

The formation energy of a defect in neutral charge state is given by




D

= E

tot

(q)� n

Ga

�

Ga

� n

N

�

N

(7)

where n

Ga

and n

N

are the number of gallium and nitrogen atoms and �

Ga

and �

N

the
corresponding chemical potentials.

The chemical potentials of the pure constituents can vary depending on the chemical
environment, but are limited by the chemical potentials of solid gallium �

s

Ga

and gaseous
nitrogen �g

N

2

. Since the boundary condition �
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= �

s

GaN

= �

g

N
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applies,
where �s

GaN

is the chemical potential and �H
f

the formation energy of w-GaN, respectively,
the defect formation energy at zero temperature can be rewritten as follows (Qian et al. 1988):
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where �� is restricted to the range ��H
f

< �� < �H

f

.
Fairly diverse results were reported in literature on the formation energies of interstitials,

which strongly depend on the charge state, while the data for antisites and vacancies are
widely consistent. A major caveat, however, in comparing our results with theoretical
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values from literature is that different authors have been using fairly diverse values for the
chemical potentials. In our calculation we have chosen �

g

N

2

=9.91/2 eV, �s
Ga

=2.81 eV and
�H

f

=1.29 eV, which are the formation energies of the corresponding structures as given by
the present potential. Moreover, it should be noted that most total energy calculations are
carried out at fixed volumes and therefore neglect the defect formation volumina.

Although the present analytic potential cannot account for charge effects, the basic
requirement was to reproduce the hierarchy in formation energies of the different point
defects, which are to a large extent determined by the significant difference in the atomic
covalent radii of nitrogen and gallium atoms. Defects were investigated for a system that
was thermally equilibrated at 600K and then slowly cooled down to 0 K at zero pressure.
The defect formation energy then was determined from the potential energy E

D

of the cell
containing the defect.

The minimum energy position for interstitials was obtained by relaxing 100 cells with
random interstitial position. All our defect simulations contained 64 atoms. Since strong
internal relaxations may lead to finite size effects, simulations were repeated with a larger cell
of 512 atoms.

The corresponding defect formation energies are given in table 5.

Table 5. Defect formation energies and volume changes for some defects in GaN. The values
are for N-rich conditions unless otherwise stated. Energies are given in eV, formation volumes
in Å3 .

defect 


D




D

�V 


D

y 


D

y 


D

y 


D

y
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I
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y LDA-DFT pseudopot. calc.,Ref. (Neugebauer & Walle 1994)
y LDA-DFT pseudopot. calc., calculated in ZB, Ref. (Mattila et al. 1996, Mattila & Nieminen 1997)
y DFT-LMTO calc., Ref. (Gorczyca et al. 1999)
y Car-Parinello, Ref. (Boguslawski et al. 1995)

Obviously, the potential is describing the nitrogen vacancy very well, which is the
most important point defect in GaN. Even the other point defects are reproduced with
good accuracy, taking into account the uncertainties of the reference data. Only the
formation energy of the Ga antisite, which should be the energetically least favored defect, is
significantly too small. Finite size effects are only significant for the antisite defects and the
gallium vacancy, where atomic relaxations exceed the 64 atoms cell.

For the N-intersitital we find a minimum energy configuration in a split interstital state
with N-N separation of 1.16 Å. The ab-initio calculations predict a similar configuration,
but with a somewhat greater N-N separation of about 1.25 Å(Neugebauer & Walle 1994,
Boguslawski et al. 1995). The equilibrium position of the Ga interstitial has been found to be
strongly charge dependent in ab-initio (Neugebauer & Walle 1994) calculations. Our model
predicts a displacement in the same direction as the DFT, but the relaxation is smaller (for
the neutral charge state). However, for higher charge states the difference decreases due to
the reduced relaxation in the ab-initio model. In wurtzite GaN there are two high symmetry
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interstitial positions, T and O. The T site is located in the middle of nonbonded Ga and N
atoms with two nearest neighbors and six next nearest neighbors.

The Ga(O) interstitial has six nearest neighbors and moves about 0.4 Å from the ideal
position during relaxation, which is in agreement with DFT calculations. Also, the energy
difference between T and O sites is small, as in ab-initio calculations.The energy difference
of the Ga(O) and Ga(T ) sites is found to be very small in our model in agreement with DFT
calculations(Neugebauer & Walle 1994).

Here, it should be noted again that none of the defect properties reported here has been
used for fitting the potential parameters, but are just the result of the potential formalism.

5. Melting point

The melting point of GaN is not known due to experimental difficulties related to the very high
temperature and N

2

pressure necessary for melting. Experiments in a high pressure anvil cell
showed that GaN does not melt at temperatures as high as 2573 K at 68 kbar (Edgar 1994).

For testing the melting behavior we used two kinds of simulations. One consisted of
heating up crystalline cells until they melt, and subsequently cooling them slowly (over 100
ps - 10 ns) to 0 K, checking that the final structure is higher in potential energy than the
desired ground state. Although this method is good for finding structures with energy minima
far below the ground state, it is not good enough to spot minima lying just slightly lower (�
0.1 eV) in energy than the desired state. To test the potential against such local minima, we
used simulations of a liquid and solid in equilibrium (the same simulations were also used to
determine the melting point, see below). If other energy minima are present, a phase transition
to the lower minimum is likely to be initiated at the liquid-solid interface over long time scales.

The cutoff values of the potential were not systematically optimized in the fit of the
potential to the different phases. Hence we could somewhat modify them to obtain a better fit
to the melting point. Possible cutoff values were limited from below by the nearest neighbour
distance of the fitted structures of materials. The second nearest neighbour defined an upper
limit. The final cutoff was then chosen by testing several values between these limits for
melting properties.

The melting properties of the potential model were tested by simulating a 5000 atom
system at several temperatures and pressures. The simulation box, which initially consisted
of liquid and crystalline phases, was equilibrated near the predicted melting point. Berendsen
pressure control (Berendsen et al. 1984) to zero pressure was used in the melting simulations,
independently in the x, y and z dimensions.

The equilibrated system was simulated for 1 - 5 ns at several temperatures. Since
crystallization was observed at 3000 K and 20 kbar, and the system melted completely at
4000 K, we conclude that the melting point at this pressure is 3500�500 K. This is in a
reasonable agreement with the theoretical estimate of the melting point of about 2791 K at 45
kbar (Vechten 1973).

6. Solubility

Additionaly, we employed the potential to study the solubility of atomic N in liquid
Ga at temperatures and pressures typical for the direct high-pressure synthesis of GaN
(Boćkowski 1999) using molecular dynamics (MD) and Monte-Carlo (MC) simulations.
Initially, the simulation cell contained randomly phases of Ga and N

2

separated by a sharp
interface. The system consisted of 1500 atoms and roughly twice as many Ga atoms as N
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atoms. The sample was quenched in a MD simulation to 0 K and 0 kbar. This configuration
was used for the MD as well as the MC runs. For the MD simulations the equations of
motion were integrated for up to 4 ns at temperatures between 2000, and 3200 K and pressures
between 20, and 200 kbar.

We used NPT-Monte Carlo to sample the configuration and volume space. The MC
simulations essentially gave values within the errorbars of the MD results.

Figure 3. Solubility of N in liquid Ga as a function of temperature at a pressure of 200 kbar.
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Figure 4. Solubility of N in liquid Ga as a function of pressure for temperatures between 2800
and 3200 K.
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In order to distinguish atomic nitrogen and N
2

dimers a simple energy criterion was
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applied. The potential energy of a dimer is known to be -4.9 eV. We determined that a cut-
off energy of -4.1 eV allows a simple distinction of atomic nitrogen (E

pot

> �4:1 eV ) and
molecular nitrogen (E

pot

< �4:1 eV ).
The nitrogen concentration in the Ga melt was plotted as a function of time to ensure

that a steady-state had been reached. The solubility was calculated as the average over the
equilibrated datapoints. Figure 3 shows the temperature dependence of the solubility of N in
liquid Ga at a pressure of 200 kbar. At this pressure a clear trend of the solubility to increase
with temperature can be observed. However, at lower pressures the solubility is found to be
essentially unaffected by a raise in temperature. On the other hand, there is a pronounced
pressure dependence for all temperatures tested here as illustrated in figure 4.

7. Conclusions

We have presented a new analytical potential for modelling Ga, As and GaN using a short-
ranged bond-order algorithm. The potential describes with good accuray different dimer
properties and several solid structures of the pure elements and the compound including
metastable configurations. Important point defect properties, like the nitrogen vacancies,
are in line with theoretial results from DFT-calculations. Moreover, the potential gives
a reasonable description of melting behavior and solubility of nitrogen. This is to our
knowledge the only classical potential that describes structure and bonding of Ga, N and
GaN within one analytical form and therefore allows atomistic computer simulations of a
wide range of materials problems related to GaN. Most importantly, this study shows that
a number of relevant materials properties of GaN without including long-range forces. The
energy difference of wurtzite and zinc blende, however, cannot be described with the current
approach. Wherever these subtleties do not affect the materials process one wants to simulate,
this new GaN potential should be an appropriate model for atomistic computer simulations of
GaN.
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