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Diffuse x-ray scattering is a powerful means to study the structure of defects in crystalline solids.
The traditional analysis of diffuse x-ray scattering experiments relies on analytical and numerical
methods which are not well suited for studying complicated defect configurations. We present here
an atomistic simulation method by which the diffuse x-ray scattering can be calculated for an
arbitrary finite-sized defect in any material where reliable interatomic force models exist. We
present results of the method for point defects, defect clusters and dislocations in semiconductors
and metals, and show that surface effects on diffuse scattering, which might be important for the
investigation of shallow implantation damage, will be negligible in most practical cases. We also
compare the results with x-ray experiments on defects in semiconductors to demonstrate how the
method can be used to understand complex damage configuratiorB00®American Institute of
Physics[S0021-89780)06017-3

I. INTRODUCTION For simple point defects and defect clusters, this equa-
) ) ) . tion can be performed analyticaW, but for more complex
‘Understanding the properties of point defects and dislogefect structures, this is no longer possible and other meth-
cations is of great importance in many fields of technology oys gre required. In the present investigation we provide a
In semiconduptor r_n_anufacturing thg intera(_:tions of in_trinsicgenera| framework for using computer simulations to evalu-
dg_fectsl and impurities play a crucial role in the doping Ofyte the diffuse scattering from virtually any defect in most
silicon.” In fission and fusion reactors, defects produced bycrystalline solids. The only requirement is that a suitable

neutrons determine the phase and dimensional stability §§teratomic potential is available describing the solid of in-

well as rate of wall material emb.nttleme?'lt. . terest. Our present interest in this method concerns primarily
_ Diffuse x-ray scatteringDXS) is a useful tool for inves-  yefects in semiconductors that are produced by low-energy
tigating point defects and defect clusters in sofidghe at- {5, implantatiorfX° For this situation, the computation of

tractiveness of this technique derives from its ability to probey,o scattering intensity is complicated by the presence of the

defects of sizes ranging from single point defects to ratheg,itace and the correlations between the vacancy and inter-
large dislocation loops and to distinguish the type of defectgjiial defects.

vacancy or interstitial. Much of what is now known about 1o deceptively simple nature of E¢l) suggests an
self-interstitials atoms in metals and the interactions of thesgy,\ious approach to obtaining the DXS: simply create the
defects, for example, has been gained through measuremen{g), positionsR. for a large number of atoms, and evaluate
of the Huang DXS, which refers to the scattering close to thgye 5 directly. However, there are two main problems with
Bragg peak® The method is also subject of recent renewedy,;g approach. The first is that a very large number of atoms
interest due to the development of x-ray microbedrbe- (of the order of tens of millions or morare typically needed

spite the past success of this method, it has the drawback thgf ohain convergence in the sum for the Huang scattering.
it is often difficult to relate quantitatively measured scatter-the second is obtaining the displacement field.

ing intensities to specific defects. The scattering must be cal-  11¢ first attempts at directly evaluating the sum from

culated for a variety of possible defect configurations and,;,, positions were performed by Keating and Gol4hd

then compared with experiments. These calculations requirg, showed that by modifying Eq1) with a convoluting
first determining the strain field around the defect and the%xponential term

evaluating the scattering from the equation,

2

2 (1) S(K): fKZI e*U'ZRiZIZaZeiK.Ri , (2)

S(K)=‘fKE el KR

whereK is a reciprocal lattice vector arfi@ the position of the convergence of the sum some distance from the Bragg
atomi in the crystaP peak can be speeded up significantly. In the convolution term
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exp(—o?R?/2a%) R; is the distance to the defect center and Snetteessceereves T es2s 7P

the lattice constant. The convolution facterhas the effect e eeeotrcsstsne 20099244242

of broadening the Bragg peak, but not affecting the DXS a cenattreeseosotts 2555803

distance proportional tar/a in reciprocal space from the :::‘g’gggggggz ceees 3%%%333:

Bragg peak. Ehrharet al. have used “hybrid” schemes RRPPIATEL RS PD PP Grapssesses
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where some, but not all, atom positions surrounding a defect sessesentibiaesss Ssseseecse
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have been used in the summation, combined with analytical ceceeceesstttans ®0seccencee
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averaging schemes to take care of the scattering contribution £ seevboe tecccces .
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from missing atoms? But because of its computational cost, E sssece meccecocses .
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and the fact that no good general methods for evaluating the ----.-.::::;.Z‘}?! secsseecoiils

atomic-level strain field existed, the direct summation sscssssceiop oo Weese00cscce
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method largely has fallen out of use. o . _.”;:xﬁﬁ:g.x:”. 2.'2:?.:.::;::00

Two recent developments, however, revive interest in 2000oePPPPPOO0 00 TRUQYRBS GO0 0

. . . . . . CCOOPPPPLLPOOOO0 00 PR VBB

the direct summation method. First, improvements in classi- 1344 S LR SSPPPIPIII SIS S S I PSS

cal many-body interatomic potentials have made reliable cal- s seetines RSP IIIEE RN

i i i i i - * PR X RN RN NN eea
cula_tlons of strain possible in many materlf':lls, as these po Slssesetee SEEEEIIEIE: seaIINNAY
tentials can reproduce all first-order elastic constants and _s,|£€¢¢9¢¢®¢** M il

many defect properti€$:®® Second, the vast increases in -31 [100] (A) 3

cpmputer processo_r a.”d memory gapamty have ma_de. It pOFTG. 1. Shape of strain field around a 100 dumbbell in Cu. The “axis” of
sible to treat atomic interactions in systems consisting o he dumbbell was oriented along th&00] direction. The plots show the

millions of atoms. displacementri a 1 unit cell thick slice centered at the defect. The hollow
Hence a combination of the old direct summationcircles denote the initial positions of the atoms, and the filled ones the final
method (with greatly enhanced computational abifiith 25 S0S S8 TR R R FOE U 08 RO cements were
modern interatomic potentlals for realistic simulations 01Emultiplied by a factor of 0.5%, wherer is the distance to the center of the
possible defect structures opens up the possibility to calcugefect. Note that some neighboring atoms lying along[tt@0] direction
late the x-ray scattering from even very complex atom con+elax inwards.
figurations.
In this work, we present our fully atomistic direct sum-
mation method for calculating the DXS from defects in sol-
ids, and present simulation results for a wide range of defectghere in reciprocal space the scattering is of interest. For
in different configurations, with an emphasis on cases whicRcattering between the Bragg peaks, it is possible to use a
are difficult or impossible to study with the classical analysis|arge value ofo (typically ~0.2), in which case the number
tools. Although some aspects of our simulation method havef atoms can be kept smalhf the order of one million On
been discussed in preliminary fotfy;'® neither a complete  the other hand, for Huang scattering, the valugrahust be
presentation of the method and nor discussion of the simulgeduced, and the number of atoms correspondingly in-
tion results has been presented before. creased. In the large-sphere approach we have included as
This article is organized as follows: In the next section,many as 20 million atoms, while in the extrapolation method
we present our two varieties of the simulation method. Inwe have employed up to several hundreds of millions.
Sec. Il we present DXS simulation results for various de- Except for the surface calculations presented in Sec. IV,
fects configurations in the bulk, and in the following sectionye normally surround the defect by a large sphere of atoms,
we discuss how the presence of a surface affects the DX®ith the center of the defect at the center of the sphere. This
from defects. Finally, in Sec. V we discuss some implica-geometry introduces possible complications from relaxation
tions of our results for the analysis of DXS measurements. or truncation at the outer surface of the sphere, but because
of the term expf 0?R?/2a?) in Eq. (2), such surface effects
II. SIMULATION METHOD become negligible and have not been a problem in our simu-
lations.
The atomic displacements surrounding the defect, are
We have used two approaches for calculating the DXS: abtained by minimizing the potential energy of the system
simple, brute-force, “large-sphere” approach, and an exusing an appropriate classical interatomic force model. A
trapolation method. These differ in the way the displacementypical resulting displacement field is illustrated in Fig. 1.
field is obtained. The large-sphere method is presented iSpecifically, we have used the  well-tested
this subsection and the extrapolation method is summarize8tillinger—Webel” and Tersoff®°interatomic force models
in the next. To make the presentation of the method concretéor Si and Ge, and embedded-atom methiB&M) models
we provide numerical examples from our studies on Si, Gdor FCC metal€*'2A reassuring finding for the two models
and FCC metals like Cu. for Si and Ge is that despite their very different functional
The basic idea of our methods is to obtain the coordiforms, and different physical properties used in fitting
nates of the displaced atoms surrounding a defect, and thehem? they yield essentially the same scattering intensities.
directly evaluate Eq(2). The number of atoms needed de- This behavior was found for a variety of defects in the two
pends on many factors, but the most important is simplymaterials. All interatomic potentials used reproduce the elas-

A. Large-sphere approach
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tic constants for cubic systems to within10%, and give using the relaxation procedure described below. Typically
reasonable surface propertiés? we use a sphere with a radius of the order of 100-150 A.

We note that the strain field far from the defect could Displacements of the atoms outside the spherical cell are
also be calculated using finite element model{r§M). An  obtained by assuming that they fall off asR,aL/, a basic tenet
atomistic approach would still be necessary close to the desf elasticity theory for bulk defectsThe angular distribution
fect, however, and so a procedure to seamlessly combine tlig the atom displacements is obtained by comparison with
two method would be necessary. Although this is nowanother spherical cell containing perfect atom positions and
possible?! nearly all problems of interest can be solved withthe same surface relaxation as the defect cell. This distribu-
the completely atomistic approach and we opted for this altion is then used to obtain the displacements of atoms outside
gorithmic simplicity in our calculations. the radiusRsp. A lattice matching processis used to en-

It was implied in the above that the displacement field ofsure that the displacements are continuous at the interface at
the defect derives directly from our classical interatomic po-the radiusRgp.
tentials. The EAM models are known to describe a wide  The diffuse scattering is finally calculated using E2).
variety of defect properties in metals w&t?>?3and the di-  using real atom coordinates insiéRp and by creating ex-
rect procedure was, for them, indeed employed. In semicortrapolated atom coordinates from the angular distribution
ductors, however, the charge state of a defect can play autside this radius. Since the extrapolation approach needs to
large role in its structur&*~2®and classical interatomic force store the positions of only a few hundred thousands of atoms
models can in some cases fail miserably in describing eveat a time, computer memory capacity is not a serious limita-
the structure of a defect. To deal with such cases, we use th®n. In principle the approach can be used to obtain the DXS
atom coordinates obtained from afb initio quantum me-  scattering arbitrarily close to the Bragg peak, but since ap-
chanical simulation and fix the coordinates of the atomgroaching the Bragg peak requires tttemporary creation
which are part of or immediately adjacent to the defect, andf ever greater number of atoms, the processor CPU speed
thus incorporate them in the strain calculation. The classicabecomes the limiting factor. We note, however, that the av-
potential is then employed for relaxation of atoms surrounderaging scheme used by Ehrhattal!® could be used to
ing this region. circumvent this limitation.

Once the potential energy minimum has been found
(with the method described in Sec. Il C belpwhe diffuse
x-ray scattering is obtained by straightforward summatiorC. Atom relaxation

using Eq.(2). For comparison with experiment, the addi- e proplem of finding the strain field surrounding a

tional step of averaging the scattering intensities over aljjefect essentially requires finding the closest local potential

equivalent orientations of the defect in the lattice must beenergy minimum of the system of atoms consisting of the
performed. In practice, the number of averaging direction§yafect atoms and its surroundings. To achieve this effi-

can be substantially reduced by taking account of symmegjenty we use either the conventional conjugate gradient

tries of the defect and scanning direction in reciprocalcg) method described in Ref. 28, or a modification of it. In

spac€’’ For instance, in a scan alorfg00] in reciprocal  tne srandard method, every iteration downward in potential
space through 6400) Bragg peak, the reciprocal lattice vec- energy first checks that a minimum exists in the direction of
tor K=(h,k,1) has only arh component, whence all permu- e a1om’'s movement; it then uses a harmonic approximation
tations of atom coordinates involving only tygandz coor- 4t the potential energy hypersurface to move closer to this

dinates will be equivalent. , o __minimum. This approach requires about ten potential energy
The large-sphere approach is mainly limited by availabley, 5 1uations per iteration step.

computer memory. The approach described in the next sec-

’ : In tests of the standard CG method for our systems of
tion greatly reduces the memory requirement.

atoms we found that the line minimization step si%a,, is
almost equal throughout most of the iteration sequence. Fur-
thermore, in the problem at hand it is very plausible that a
minimum always exists in the next conjugate direction. Us-
A far larger number of atoms can be employed in theing these observations, we devised an “adaptive conjugate
calculation of the DXS by introducing an extrapolation pro- gradient” (ACG) method, in which the atoms are moved
cedure to obtain the atomic displacements far from the deforward by an amount in the next conjugate direction,
fect, and using the directly calculated displacements closawithout any bracketing of the potential energy minimum. If
in. The two different regimes must then be smoothed to prethis move leads to a decrease in potential eneigyis
vent artificial boundary effects. The calculation procedure islightly increased before the next step, and the process is
fairly complicated and involves several different atom cells.repeated. If the move leads to an increase in potential energy,
We summarize the central features of this method here; the atoms are moved back to their previous positionss
detailed description can be found in Ref. 15. decreased by a factor of 2, and a new move is attempted. In
The calculation starts with the defect in a small cubicthe ACG method, only slightly more than(fypically 1.1—
defect cell. In the first stage of the calculation process, d.2) potential evaluations are on average needed per iteration
spherical defect cell is created by surrounding the cubic celtep. On the other hand, since the ACG method does not
atoms with atoms at perfect lattice positions out to a radiugollow the “optimal” path of conjugate direction® ~3
Rsp. This spherical shell is relaxed to its energy minimumtimes more iterations than in the CG method are typically

B. Extrapolation approach
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needed. Thus the overall speedup is typically about a factor
of 3.

Comparisons of the two relaxation schemes have shown
that for defect configurations which are initially close to

equilibrium, the two methods give essentially identical re-

sults. We note, however, that the ACG method may not be g

faster or even reliable in systems starting far from the local -
energy minimum. Since the changes in energy associated [100]

with the long-range strain fields are very small, we usually
carry out the iterations to a precision of 76-10 °in the
potential energy.

For the practical evaluation of the forces, we use a com-
bined link-cell and neighbor-list to find the nearest neighbors
of each atom efﬁdentlﬁ? FIG. 2. Simulated iso-intensity curve of the symmefiituang part of the

To obtain the relaxation volumi&of defects, we embed- diffuse scattering pattern for a dumbbell interstitial in Cu around(4es)
ded the defects in a cubic simulation cell with periodic Bragg peak. The inset shows the same scattering pattern predicted from
boundaries, and used a molecular dynamics pressure rel‘,j&r]alytlcal calculationgsee Ref. bfor an isotropic interstitial in Cu.
ation schem# to relax the cell to zero pressure, indepen-

dently in _each dimension. Co_mpan_son of the relaxed Cel{Nith the theoretical prediction of Dederichfor a [400]
volume with that of a perfect simulation cell gives the relax-

. reflection®* Figure 2 shows that the two calculations indeed

ation volume. ) T -
agree very well; not only the dominating “bow-tie” shape
along[100], but also the weak secondary maxima close to
[010] are reproduced by our simulations. We also success-

In this section we present a few of our most importantfully reproduced the isointensity curves around[th&0] and
results for defects in the bulk, and in the discusgi®ac. \}  [111] reflections shown in Fig. 1 of Ref. 5.
we will demonstrate how they can be used to understand The small difference of the contours seen in the shapes
experimental results. We emphasize that as most of the dén Fig. 2 is due to the fact that the theory used by Dederichs
fects treated here are described by classical potentials, theshly includes nearest-neighbor forces, whereas the EAM
exact properties are not necessarily realistic in themselves. limodel also includes interactions farther out. A calculation of
particular, the configurations calculated for the small vathe Kanzaki forces giving rise to the dipole tensor showed
cancy and interstitial clusters in Si have not been verifiedhat the interactions farther than the nearest-neighbor shell
experimentally, however, they are still adequate for our purcontribute about 30% to the total interaction energy. Espe-
pose of examining how increasing defect size and relaxatiogially the role of the two second-nearest-neighbor atoms ly-
volume affect the diffuse scattering line shapes. ing along the dumbbell100] axis direction is interesting:

In the following presentation of our simulation results, these atoms actually relax slightly inwar@s$. Fig. 1) due to
we do not distinguish between results obtained with the CGheir interaction with the strongly upward-displaced nearest-
or ACG methods, or with the large-sphere or extrapolatiomeighbor atoms.
scheme, as these have been found to give essentially identi-
cal results. Unless otherwise noted, the defect atoms havg
been described by the classical interatomic potential used for’
the strain field evaluation. All the results for defects in the  The structure and properties of small defects in semicon-
bulk are averaged over all equivalent defect orientations. Thductors is of great current interest owing to their importance
scans shown are oveb11), (400 or (220) Bragg peaks, forion implantation® At present these properties are not well
since they are commonly used in experiments. Although thé&nown. DXS methods could in principle be used to deter-
results for different Bragg peaks for a given defect do usuallynine the structure of these defects. Some success has indeed
differ somewhat, the qualitative features and trends discussdeeen achieved at determining for instance the average dis-
here are usually independent of the choice of the peak. tance between interstitials and vacancies in Frenkel pairs
produced by electron irradiation,and size estimates for in-
terstitial and vacancy clustetyut difficulties in predicting

The determination of the structure of the FCC interstitialthe scattering line shape in the diamond crystal structure
is a major success of diffuse x-ray scattering, which wasave made it difficult to analyze more complex defects typi-
achieved in the early 1970s. The shape of the scattering arisal of ion implantation. We have calculated DXS line-shapes
ing from different interstitial configurations was predicted and spacemaps for a wide selection of defects in Si and Ge.
theoretically, and subsequent experiments showed that the We first calculated the scattering from a single vacancy
interstitial has the spli¢100) dumbbell structure, at least in and dumbbell interstitial to check how well it conforms with
Al and Cu3%3 the analytical prediction. In our Stilinger—Weber model, the

As a test of our model, we calculated the DXS for thevacancy and interstitial have relaxation volumes-df.5 and
interstitial in Cu, since it is well described by our EAM +1.5 atomic volumes, respectively. These values are prob-
models?? Figure 2 compares the resulting scattering patterrably somewhat too larg®, but as they are nearly equal in

Y y ;
@)

IIl. DEFECTS IN THE BULK

Single defects in Si and Ge

A. FCC interstitial
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FIG. 3. Diffuse scattering of a vacang¢y) and(110 dumbbell interstitial (b)
(i) in Si. The scattering is plotted in units & vs g, whereS is the

scattering intensity and the distance in reciprocal space to the Bragg peak

G. The Bragg peak is left out of the figure, and the scattering lineshape of i
both defects interpolated in the middle to guide the eye.

25}

absolute value the qualitative comparison of the vacancy and i
interstitial scattering is still relevant. The results are shown
in Fig. 3 as a function of, whereq is the distance in recip-
rocal space to the Bragg pe&k We plot the results in units X
of Scf, which has proved to be a convenient way to see
deviations from 142 behavior. As expectédhe vacancy has 151
strong scattering at negatigg and the interstitial at positive

g. We also verified that the symmetric part of the scattering,
i.e., the average over the positive and negative sides, has an ' . . .
almost constant @ dependence close to the Bragg peak, as 15 20 25
predicted for Huang scatteririd. h 11 [100]

Thus the results for a simple interstitial and vacancy
conform to the classical theory. The use of atomistic simu-
lations does have the advantage that it can also treat more
complicated defect structures. Electron paramagnetic reso-
nance(EPR experiments and recent DFT calculations show 25t
that even the structure of the vacancy in Si and Ge can be
quite complex for some charge states of the def&ct>’
The atomistic simulations can be used to obtain the DXS
from these defects by incorporating fixed DFT atom posi-
tions surrounding the defect into the simulations. To demon- L
strate that this method could, at least in principle, be used to
determine the structure of vacancies in semiconductors we 151
have calculated the DXS from different structures of the va-
cancy in Ge with different symmetries. The coordinates of
the atoms surrounding the vacancy were obtained from DFT . : PR s .
simulations®” The results are illustrated for three different 15 20 25
symmetries of the defect in Fig. 4. It is clear that the sym- hIF[100]
metry of the scattering profile decreases with d":'Cre""s’ir‘gIG. 4. Diffuse scattering iso-intensity curves around the (220) Bragg peak
symmetry of the defect. The scattering of the tetrahedrallyfor three different vacancy structures in Ga) shows the scattering for a
symmetric defecFig. 4(@)] has the familiar figure “8"  vacancy with tetrahedralli) symmetry, i.e., all four atoms surrounding the

shape expected for tetrahedrally symmetric defd@ise de-  vacancy relaxing inwards toward ity) shows one wittD,4 symmetry, i.e.,
two bonded atom pairs forming symmetrically on both sides of the vacancy;

fects with lower-symmetry have quite different SCattenmz’and (c) shows a lower-symmetry structure characteristic of negatively
patterns. charged vacancies.

20+

k 11 [010]

()

k 11 {010]
[\V]
o
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FIG. 5. Simulated diffuse scattering for three vacancy clusterin Si, FIG. 7. Simulated diffuse scattering for a few amorphous clusters in Si. The

wherej denotes the number of vacancies in the cluster. The Bragg peak hast keV Au a-Si” indicates damage produced in a collision cascade induced
been left out of the figure. The locations of the maxima on the negative sidéy a 4 keV Au recoil in Si modeled by the Stillinger—Weber potential, and
are indicated by tiny vertical lines. The relaxation volumes of the mono-, tri-the two other labels amorphous Si with about 250 and 500 atoms with the
and pentavacancy used here aré.5, —3.2 and —5.3 atomic volumes, experimental density cd-Si.

respectively.

We calculated the DXS for a number of vacancy and
C. Defect clusters interstitial clusters in Si. The defect configurations were cre-

The classical theory of x-ray scattertgredicts that the ated simply by adding or removing a few atoms in a small
scattering intensity from defect clusters along radial scangegion of a crystal, and then relaxing the structure by a short
will have a 1q2 dependence close to the Bragg péﬁ[gang molecular dynamics simulation at 300-600 K and subse-
scattering, and a 14* behavior far from it(Stokes—Wilson ~quent quench to 0 K. DXS calculations of radial scans from
approximatiof. For small, very dense defect clusters in Cuvacancy clusters are shown in Fig. 5. We see that the scat-
we do observe this behavior, although the*Ltegion is  tering intensities from vacancy clusters are stronger on the
fairly narrow. For small clusters in Si, regions with well- negative side of the Bragg peak, as expeCt&te locations
definedq~2 and g * dependencies are not observed. Theof the maxima at negativg in this S¢f plot are proportional
||ke|y reason is that in the open Crysta| structure of Si it isto the defect size; the larger the defect relaxation volume, the
difficult to create a dense defect with a large relaxation vol-closer the maximum is to the Bragg peak located|&t0.
ume. By plotting the scattering intensities@¢ plots, how-  Also, the decrease of the scattering beyond the maximum is
ever, the size of the defect cluster can be obtained by locafhore rapid for larger defects, correspondinggtexponents

ing the value ofj where the scattering is a maximum, as now < — 2, as predicted by theory for defect clusters.
illustrated. The scattering from interstitial clusters is illustrated in

Fig. 6. The shape of the scattering is qualitatively a mirror

image of that for vacancy clusters. The scattering is stronger
r— r r r on the positive side, and the maxima shift toward the Bragg
i peak with increasing defect size. Similar behavior was seen
for larger interstitial and vacancy clusters as well, up to clus-
ters containing 64 defectswith relaxation volumes of
120 roughly 50 atomic volumes The integrated diffuse scatter-
100 ing was proportional to the square of the relaxation volume
of the defect, as expectéd.

Other defect agglomerates, such as amorphous zones and
damage produced by collision cascades, exhibited similar be-
havior. Damage with a positive or negative relaxation vol-
umes had stronger scattering at positive or negative g, re-
spectively. Large amorphous zones produced sharp and
distinct peaks in the scattering close to the Bragg peak. Some
results are illustrated in Fig. 7. The “4 keV Au” is the dam-
age producedya 4 keV Au recoil in Si. The defect zone,
FIG. 6. Simulated diffuse scattering for three interstitials clusigia Si, ~ Which appears to be amorphous, contains about 900 atoms
wherej denotes the number of extra atoms in the cluster. The Bragg pealynd has a relaxation volume 6f30 Q, whereQ is the

has been left out of the figure. The locations of the maxima on the positiv ; I _ s _
side are indicated by tiny vertical lines. The relaxation volumes of theeatomIC volume. Whether the Stillinger—Weti&W) poten

mono-, di- and tetrainterstitial used here ar@.5, +2.6 and+4.3 atomic tial describes S_i amorphized by implantation adequately i_S_
volumes, respectively. guestionable, since it has been reported that amorphous Si is

T T T
G=(511], q Il [511]

160
140

S(q)><q2 (arbitrary units)
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FIG. 8. Simulated diffuse scattering for four Frenkel pairs in Si. The Frenkelrig, 9. Diffuse scattering of an octa-vacanay) and octa-interstitial i)

pairs are labeled with the separation between the interstitial and vacancy thg} Si, and a defect consisting of both thg andis separated by 25 A. The

form the pair. The relaxation volumes of all pairs are close to zero. Bragg peak is left out of the figure, and the scattering lineshape of the single
clusters interpolated in the middle to guide the eye. The relaxation volumes
of theig, vg and combinedg vg defects used here are8.0, —4.0 and+4.0

slightly less dense than crystalline 8iwhereas the S-W atomic volumes, respectively.
potential predicts a slightly larger density. To account for the
possible error in the density, we also create8i spheres

) ) ; - the separation between the peaks is about the same in units
with relaxation volumes corresponding to the experimental

[)f g. This enables a determination of the average separation

. .3 . .
den3|ty(1.8_% less th_an that of-Si 8) simply by adding a between the vacancy and interstitial that form the pair, as
few atoms into th&-Si zone. The-Si spheres where relaxed suggested by Ehrhart, who used a simple superposition

with a short constant-temperature simulation before the DXShodel of spherical defects to obtain the displacement

calc_ulations. For the spheres shown in Fig. 7 the 250 atoMe|gs36 The advantage of using an atomistic scheme is that
a-Si zone has a relaxation volume 7.1 and the 500 ;5 interatomic potentials and quantum mechanical force

gtom ;Iuster one o#10.7 ). This shows that a_morphc_nus Si models are developed further, they can be expected to give
inclusions produced, e.g., by ion or neutron irradiation Car]ncreasingly accurate and detailed results

be expected to produce a large DXS signal, unless the strain 1 ¢, ther illustrate the correlation effects, we calculated

surrounding them is otherwise relieved. the DXS from an eight-interstitial and eight-vacancy cluster

both separately and after placing the two defects in the same
D. Defect pairs and correlation effects simulation cell, separated by 25 A. The result is shown in
. . . ., _Fig. 9. The single defect clusters have maxima either on the
The most common way of introducing defects into SOl'dSpositive or negative side of the Bragg peak, as expected from

is by electron and |o.n.|.rrad|at|on, which usually prOduceSec. Il C, and a smooth behavior at the Bragg peak. For the
Frenkel pairs as the initial state of damage. Hence under-

. ) e ombined cluster, however, the scattering pattern decreases
standing the DXS line shape from Frenkel pairs is also ofc gp

great interest. We have calculated the scattering from sever%ls:,,Ose tq the Bragg peak atboth positive and negajgain
ST T . . ustrating the correlation effects.
Frenkel pairs in Si with different separations between the
interstitial and vacancy. The Stillinger—Weber interatomic
potential gives about the correct structure for both[th&0]
dumbbell interstitiai®“® and the tetrahedral vacancy in Si. The scattering expected from perfect and partial disloca-
Most importantly, it gives relaxation volumes for these twotion loops in FCC metals is relatively well understood due to
defects which, in agreement with experiments, cancel almoshe calculations of Ehrhart, Trinkaus and Larsoince the
exactly***? making it well suited for this study. diamond lattice can be viewed as two interpenetrating FCC
The results are shown in Fig. 8. The pairs are listed as &ttices, and the dislocation properties in the two lattice types
function of the separation between the interstitial and vaare in many respects similét,it may seem reasonable to
cancy forming the pair. The scattering decreases close to tressume that the DXS from dislocations in Si would be simi-
Bragg peak due to the cancellation of relaxation volumes anthr to that in FCC metals. On the other hand, there are obvi-
correlation effects between the interstitial and vacaticy. ous differences between the materials, the most important of
Analysis of the data shows that the separation betweewhich is the nature of the covalent bonding in Si, leading to
the peaks on the negative and positive side is inversely praa more open crystal structure.
portional to the distance between the vacancy and interstitial To test whether it is reasonable to assume a similarity
— the defect with a separation of 19 A has both peaks closbetween the diamond and FCC structures, we have simulated
to the Bragg peak, whereas one of the peaks @& pair  the DXS from extrinsic stacking faults in Si. In FCC metals,
extends outside the figure. Furthermore, comparison of ththe scattering pattern from a bound extrinsic stacking fault
scattering calculated for different Bragg peaks showed thabas a very distinct shape, with scattering “streaks” in recip-

E. Dislocation loops
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0.4 FIG. 11. X-ray scattering pattern from a stacking fault tetrahedron in Cu, in
’ the plane spanned by tfi&10] and[001] crystal directions. The scattering
g in the streaks starts to increase at the outer edges of the figure because they
At start to approach other Bragg peaks.
8
o
01 e Ny = 1086 .
= e Ny = 2282 analytical methods. On the other hand, we have recently
0.0 : . .
00 041 02 03 04 05 06 foundzghat the Cu EAM models give a good description of
] SFTs?
G110 (1/A) Our result for the x-ray iso-intensity contours for an SFT

FIG. 10. Simulated DXS pattern from a stacking fault formed by about 1000With a side length of 10 nearest-neighbor distancestain-
interstitial atoms in Si(a) Scattering on the positivay; side of the Bragg  INg 55 vacanciesis shown in Fig. 11. Overall, the streak
peak.dyo indicates the distance from tH@20) Bragg peak in reciprocal shape of the scattering resembles that from stacking faults
space along the 110 direction amgy; in the vertical 001 direction(b) (see Fig. 10 and Ref. 11There are differences, however.
Shape of th€111) streak emanating from th@20) peak for three stacking . .
faults with different numbers of interstitial atorm;. The iso-intensity Bec_auge O_f the Yacancy“ke nature of the SFT, no po_mts of
curves have been chosen so that their maxima a{afd) coincide. vanishing intensity are observetiAlso since the SFT is a
vacancylike defect, the scattering intensity is somewhat

stronger on the negatiel10] side of the Bragg peak.

rocal space extending all the way from one Bragg peak to
anothert! Our result is shown in Fig. 1Q for the scattering IV. DEFECTS CLOSE TO A SURFACE
around theg220) Bragg peak. The scattering streaks are very
similar to those in FCC metals, showing that at least in this  When a defect is close to a surface, the strain field de-
case the x-ray scattering is similar in the two crystal strucviates from the characteristicrf/dependence. Barabash and
tures. The location of the nodal minima in the scattering,Krivoglaz have derived general expressions for the DXS
however, are not the same as for the FCC stacking faults. from defects in the vicinity of surfacé$.They concluded
The advantage of using the atomistic simulation to studythat the DXS from defects close to the surface will be close
DXS from loops is that it is straightforward to study size to the bulk value ifD > 1/q, whereD, is the effective depth
effects, such as, for instance, determining at what size af the defects. For a value @f~0.1 A~! this would mean
stacking fault gives rise to a streak pattern. The inset in Figthat only defects very close~10 A) to the surface would
10 shows how the streak pattern emerges as the size of thave a DXS significantly differing from the bulk value. Al-
stacking fault grows. The streak pattern becomes visible fothough the Krivoglaz model thus gives a useful guideline for
stacking faults with between 100 and 200 atoms in the stackestimating when surface effects may be important, its math-
ing fault (double plane?® Additional details of these simu- ematical complexity makes it difficult to obtain a more ac-
lations, and a comparison with experiments, will be givencurate estimate for real defects. The model also showed that
elsewherd? surface effects can be even more prominent in thin films,
We also calculated the scattering pattern of a stackingvhich was later confirmed by experiméfitbut this case is
fault tetrahedron(SFT) in Cu, i.e., a perfect tetrahedron not of concern here. On the other hand, Grotelwira. have
formed by four triangular vacancy-type stacking fault loopsshown that surface effects may affect the scattering at least
lying on intersecting 111} crystal plane$3*° These defects very close to the Bragg pedR.
are of great interest for understanding fission and fusion re- We simulated surfaces by simply replacing the sphere in
actor wall material embrittlement by neutrons produced inthe “large-sphere approach” by a hemisphere, placing the
the reactof>*®2Due to their nature of several intersecting defect at some depitth below the(001) surface of the hemi-
stacking fault planes, and since the SFTs formed during irsphere. Because the presence of the surface breaks some of
radiation are commonly only a few nm in size, calculatingthe symmetry in the scattering problem, a comparison with
the DXS lineshape from an SFT could be quite difficult with experiments requires a different averaging scheme than the
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ing this event a sensitive test for possible surface effects.
This damage can be considered a rough representation of
typical ion beam damage for nonoverlapping cascades, al-
though in a real experiment the DXS result would of course
be averaged over a large number of damage regions.

It is well-known that a diffraction vector perpendicular
to a surface will exhibit a large diffraction streak, called a
crystal truncation rott due to the truncation of the crystal at
the surface. Hence it is not useful to attempt to study the
DXS in scattering directions exactly normal to the surface, as
any diffuse contribution would be overshadowed by the trun-
cation rod. It is, however, possible to study the DXS in a
direction slightly tilted off the normal direction. In such a
direction the Bragg peak will be somewhat broadened due to
the truncation rod, but outside the broadened region the dif-

FIG. 12. Diffuse x-ray scattering for an in-plane peak for the damage profse scattering will not be affected by the truncation effect.
duced ly a 2 keV recoil in Si placed at different depths in the simulation

cell. At the depth of 10 A the surface intersects the damage region, and Ihe results fo_r or_1e such simulation are illustrated for the 2
small part of the damage is in fact cut off at the surface. It is noteworthy thak€V damage in Fig. 13.

even at 30 A, when the damaged region is very close to the surface, the DXS  For all depths greater than 30 A the surface effects are
is only slightly modified from the bulk value. negligible, both for the in-plane and out-of-plane peaks. In
the out-of-plane peaks some effects of the surface start to be

) ) . ~visible for a depth of 30 A, but the overall shape of the DXS
bulk calculations. Otherwise the surface DXS simulationjg siill similar to the bulk result. We also did simulations of

method is identical to the approach presented in Sec. Il A. jso-intensity curves in the planes spanned [1y10] and

We first calculated the DXS for scattering directions par-/0o1] and[100] and[001] crystal directions for the 2 keV

allel to the surface"in-plane” peaks. We simulated small - gamage at different depths but even in these much larger
vacancy clusters and cascade damagih 2—20 defects  regions of reciprocal space the results were almost identical
and compared the results to the bulk scattering for the samg gepths greater than 30 A.

defects. For clusters containing 2—20 vacancies 50 A below  at the depth of 10 A the surface strongly affects the

the surface, the DXS showed no effects of the surface withighape of the scattering. The extension of the central damage
the numerical accuracy of the calculation. Figure 12 Sh0W$egion in the cascade defect distribution is roughly 30 A in
the scattering as a function of depth for the total damag@ach dimension, however, so at this depth the damage in the
produced m a 2 keV cascadécreated in a typical collision  ce|| already intersects the surface. For most practical ways of
cascade simulatiéf). The cascade contains 16 Frenkel introducing defects into materia{such as ion implantation,

pairs, some of them in clusters. This damage had a totafpyrity diffusion and growththe damaged region is usu-
relaxation volume of-1.4). Due to the complex nature of gy at least some hundreds of Angstroms thick. Conse-

the damage, the scattering line shape is quite complex, makyently the small surface effect found for the defects closest

to the surface will rarely be of significance. Moreover, even
in grazing incidence x-ray experiments, where the angle of
incidence is less than the critical angle for total external re-
flection, the evanescent waves penetrate a few hundred Ang-
stroms.

From the present simulations we cannot rule out that
there is a larger surface contribution closer to the Bragg peak
than what we can simulate noguch as the regimga/27
=0.03 considered by Grotehaesal *°). However, the range
we have been able to simulate so fga(27=0.05) is usu-
ally also the one studied in experiments.

I T 1 L

1010 r G=[004], q Il [115]
10°F
108 F

log S(q) (arbitrary units)

V. DISCUSSION

-0.4 -0.2 0.0 0.2 0.4

4 One of the major differences of our results for defects in
q(A) semiconductors compared to most experiments and models
. . . 72

FIG. 13. Diffuse x-ray scattering for an out-of-plat®4] peak and a close- in metals is that thﬂ dependence '.S Weaker thq_n_ close
to-normal [115] scanning direction for the damage producedeb2 keV  to the Bragg peak. In th8 ¢ plots this is clearly visible as a
recoil in Si placed at different depths in the simulation cell. Note that all thedecreaseof qu close to the Bragg peak. As pointed out by

surface calculations have a broadened Bragg peak due to the scatterirl‘!_ghrhart the deviation from a2 dependence arises from
contribution from the crystal truncation rod. The diffuse scattering outside ’ q P

the truncation rod region is again similar to the bulk value except when thdh€ (?(_)rre_lation in the diStanC?S between the vacancy and in-
damage deptks30 A. terstitial in a close Frenkel pair. In most metals, however, the
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G=[4‘I¥0], qll '[110] ! ' ' ' ~0.1 A™%, characteristic for cascade damage. At high doses,
i T the scattering is much stronger on the positive side, indicat-
i i ing that the type of damage dominating the DXS is intersti-
N E tial clusters, or other defects with a large positive relaxation
- volumes(cf. Figs. 6 and @ Details of these experiments will
be published elsewheré.

VI. CONCLUSIONS

r - We have described herein a fully atomistic method for
- analyzing diffuse x-ray scattering. The method is based on
L ! ! ! ! . using modern interatomic force models and efficient atomis-
0 10 20 30 40 50 60 70 tic simulation algorithms to obtain the strain field surround-
o/G (10%) ing the defect. From the positions of the displaced atoms the
X-ray scattering is then obtained by direct summation. Com-
FI_G. 14. Symmetric part o_f the _diffuse X-ray scattering in neutron-irradiatedpared to analytical and numerical tools for analyzing DXS
Si. Data are taken from Fig. 4 in Ref. 42, and replotted aSenplot.
measurements, our method has the advantage that the same
formalism can be used for a wide range of defects. We first

relaxation volume of the interstitial is nearly ten times largercompared the results of our method to those of analytical

than that of the vacancy, and the correlation does not givgalculations for well-understood test cases to demonstrate
rise to a cancellation in the long-range strain field of thethat the method works reliably. We then used the method to

interstitial. In semiconductors, the relaxation volumes of va-£valuate x-ray lineshapes for technologically interesting de-

cancies and interstitials are comparable, giving rise to corré€Cts Which are difficult to treat by traditional means, such as
lation effects. stacking fault tetrahedra in metals and small defect clusters

The importance of the correlation effect has not beerfnd stacking faults in Si. We also showed the effect of a
fully realized in many x-ray studies of defects in Si. For nearby surface on the DXS from defects in a semi-infinite

instance, Mayer and Peisl reported a deviation fpr be- cry_stal is negl_igible except when the (_Jlamaged region starts
havior in neutron-irradiated $F attributing it to resolution (© intersect with the surface, or possibly very close to the

effects in the points closest to the Bragg peak. Replotting th&'299 peak. Finally, by comparison with experiments we
data asScf, however, shows that the deviation frogn 2 have demo_nstrated how thepalgulauops can be helpful for
behavior occurs over a fairly widgrange(see Fig. 14 with understanding defect properties in semiconductors.
the maximum occurring atj=0.1 A~'. Comparison with
Figs. 9, 6 and 7 shows that this damage resembles that &#FCKNOWLEDGMENTS
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