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Atomistic simulation of diffuse x-ray scattering from defects in solids
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Diffuse x-ray scattering is a powerful means to study the structure of defects in crystalline solids.
The traditional analysis of diffuse x-ray scattering experiments relies on analytical and numerical
methods which are not well suited for studying complicated defect configurations. We present here
an atomistic simulation method by which the diffuse x-ray scattering can be calculated for an
arbitrary finite-sized defect in any material where reliable interatomic force models exist. We
present results of the method for point defects, defect clusters and dislocations in semiconductors
and metals, and show that surface effects on diffuse scattering, which might be important for the
investigation of shallow implantation damage, will be negligible in most practical cases. We also
compare the results with x-ray experiments on defects in semiconductors to demonstrate how the
method can be used to understand complex damage configurations. ©2000 American Institute of
Physics.@S0021-8979~00!06017-5#
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I. INTRODUCTION

Understanding the properties of point defects and dis
cations is of great importance in many fields of technolo
In semiconductor manufacturing the interactions of intrin
defects and impurities play a crucial role in the doping
silicon.1 In fission and fusion reactors, defects produced
neutrons determine the phase and dimensional stability
well as rate of wall material embrittlement.2

Diffuse x-ray scattering~DXS! is a useful tool for inves-
tigating point defects and defect clusters in solids.3 The at-
tractiveness of this technique derives from its ability to pro
defects of sizes ranging from single point defects to rat
large dislocation loops and to distinguish the type of defe
vacancy or interstitial. Much of what is now known abo
self-interstitials atoms in metals and the interactions of th
defects, for example, has been gained through measurem
of the Huang DXS, which refers to the scattering close to
Bragg peak.3–5 The method is also subject of recent renew
interest due to the development of x-ray microbeams.6 De-
spite the past success of this method, it has the drawback
it is often difficult to relate quantitatively measured scatt
ing intensities to specific defects. The scattering must be
culated for a variety of possible defect configurations a
then compared with experiments. These calculations req
first determining the strain field around the defect and th
evaluating the scattering from the equation,

S~K!5U f K(
i

eiK"RiU2

, ~1!

whereK is a reciprocal lattice vector andRi the position of
atom i in the crystal.5
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For simple point defects and defect clusters, this eq
tion can be performed analytically,5,7 but for more complex
defect structures, this is no longer possible and other m
ods are required. In the present investigation we provid
general framework for using computer simulations to eva
ate the diffuse scattering from virtually any defect in mo
crystalline solids. The only requirement is that a suita
interatomic potential is available describing the solid of
terest. Our present interest in this method concerns prima
defects in semiconductors that are produced by low-ene
ion implantation.8,1,9 For this situation, the computation o
the scattering intensity is complicated by the presence of
surface and the correlations between the vacancy and in
stitial defects.

The deceptively simple nature of Eq.~1! suggests an
obvious approach to obtaining the DXS: simply create
atom positionsRi for a large number of atoms, and evalua
the sum directly. However, there are two main problems w
this approach. The first is that a very large number of ato
~of the order of tens of millions or more! are typically needed
to obtain convergence in the sum for the Huang scatter
The second is obtaining the displacement field.

The first attempts at directly evaluating the sum fro
atom positions were performed by Keating and Goland10

who showed that by modifying Eq.~1! with a convoluting
exponential term,

S~K!5U f K(
i

e2s2Ri
2/2a2

eiK"RiU2

, ~2!

the convergence of the sum some distance from the Br
peak can be speeded up significantly. In the convolution te
8 © 2000 American Institute of Physics
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exp(2s2Ri
2/2a2) Ri is the distance to the defect center anda

the lattice constant. The convolution factors has the effect
of broadening the Bragg peak, but not affecting the DXS
distance proportional tos/a in reciprocal space from the
Bragg peak. Ehrhartet al. have used ‘‘hybrid’’ schemes
where some, but not all, atom positions surrounding a de
have been used in the summation, combined with analyt
averaging schemes to take care of the scattering contribu
from missing atoms.11 But because of its computational cos
and the fact that no good general methods for evaluating
atomic-level strain field existed, the direct summati
method largely has fallen out of use.

Two recent developments, however, revive interest
the direct summation method. First, improvements in cla
cal many-body interatomic potentials have made reliable
culations of strain possible in many materials, as these
tentials can reproduce all first-order elastic constants
many defect properties.12,13 Second, the vast increases
computer processor and memory capacity have made it
sible to treat atomic interactions in systems consisting
millions of atoms.

Hence a combination of the old direct summati
method ~with greatly enhanced computational ability!with
modern interatomic potentials for realistic simulations
possible defect structures opens up the possibility to ca
late the x-ray scattering from even very complex atom c
figurations.

In this work, we present our fully atomistic direct sum
mation method for calculating the DXS from defects in s
ids, and present simulation results for a wide range of def
in different configurations, with an emphasis on cases wh
are difficult or impossible to study with the classical analy
tools. Although some aspects of our simulation method h
been discussed in preliminary form,14–16 neither a complete
presentation of the method and nor discussion of the sim
tion results has been presented before.

This article is organized as follows: In the next sectio
we present our two varieties of the simulation method.
Sec. III we present DXS simulation results for various d
fects configurations in the bulk, and in the following secti
we discuss how the presence of a surface affects the D
from defects. Finally, in Sec. V we discuss some implic
tions of our results for the analysis of DXS measuremen

II. SIMULATION METHOD

A. Large-sphere approach

We have used two approaches for calculating the DXS
simple, brute-force, ‘‘large-sphere’’ approach, and an
trapolation method. These differ in the way the displacem
field is obtained. The large-sphere method is presente
this subsection and the extrapolation method is summar
in the next. To make the presentation of the method concr
we provide numerical examples from our studies on Si,
and FCC metals like Cu.

The basic idea of our methods is to obtain the coor
nates of the displaced atoms surrounding a defect, and
directly evaluate Eq.~2!. The number of atoms needed d
pends on many factors, but the most important is sim
Downloaded 17 Nov 2008 to 128.214.7.60. Redistribution subject to AIP
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where in reciprocal space the scattering is of interest.
scattering between the Bragg peaks, it is possible to us
large value ofs ~typically ;0.2), in which case the numbe
of atoms can be kept small~of the order of one million!. On
the other hand, for Huang scattering, the value ofs must be
reduced, and the number of atoms correspondingly
creased. In the large-sphere approach we have include
many as 20 million atoms, while in the extrapolation meth
we have employed up to several hundreds of millions.

Except for the surface calculations presented in Sec.
we normally surround the defect by a large sphere of ato
with the center of the defect at the center of the sphere. T
geometry introduces possible complications from relaxat
or truncation at the outer surface of the sphere, but beca
of the term exp(2s2Ri

2/2a2) in Eq. ~2!, such surface effects
become negligible and have not been a problem in our si
lations.

The atomic displacements surrounding the defect,
obtained by minimizing the potential energy of the syste
using an appropriate classical interatomic force model.
typical resulting displacement field is illustrated in Fig.
Specifically, we have used the well-teste
Stillinger–Weber17 and Tersoff18,19 interatomic force models
for Si and Ge, and embedded-atom method~EAM! models
for FCC metals.20,12 A reassuring finding for the two model
for Si and Ge is that despite their very different function
forms, and different physical properties used in fittin
them,13 they yield essentially the same scattering intensiti
This behavior was found for a variety of defects in the tw
materials. All interatomic potentials used reproduce the e

FIG. 1. Shape of strain field around a 100 dumbbell in Cu. The ‘‘axis’’
the dumbbell was oriented along the@100# direction. The plots show the
displacement in a 1 unit cell thick slice centered at the defect. The hollo
circles denote the initial positions of the atoms, and the filled ones the
positions. The lines connect the initial and final position of each atom.
make the shape of the strain field better visible, the atom displacements
multiplied by a factor of 0.5r 2, wherer is the distance to the center of th
defect. Note that some neighboring atoms lying along the@100# direction
relax inwards.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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tic constants for cubic systems to within;10%, and give
reasonable surface properties.13,12

We note that the strain field far from the defect cou
also be calculated using finite element modeling~FEM!. An
atomistic approach would still be necessary close to the
fect, however, and so a procedure to seamlessly combine
two method would be necessary. Although this is n
possible,21 nearly all problems of interest can be solved w
the completely atomistic approach and we opted for this
gorithmic simplicity in our calculations.

It was implied in the above that the displacement field
the defect derives directly from our classical interatomic p
tentials. The EAM models are known to describe a w
variety of defect properties in metals well,12,22,23and the di-
rect procedure was, for them, indeed employed. In semic
ductors, however, the charge state of a defect can pla
large role in its structure,24–26and classical interatomic forc
models can in some cases fail miserably in describing e
the structure of a defect. To deal with such cases, we use
atom coordinates obtained from anab initio quantum me-
chanical simulation and fix the coordinates of the ato
which are part of or immediately adjacent to the defect, a
thus incorporate them in the strain calculation. The class
potential is then employed for relaxation of atoms surrou
ing this region.

Once the potential energy minimum has been fou
~with the method described in Sec. II C below!, the diffuse
x-ray scattering is obtained by straightforward summat
using Eq. ~2!. For comparison with experiment, the add
tional step of averaging the scattering intensities over
equivalent orientations of the defect in the lattice must
performed. In practice, the number of averaging directio
can be substantially reduced by taking account of sym
tries of the defect and scanning direction in recipro
space.27 For instance, in a scan along@100# in reciprocal
space through a~400! Bragg peak, the reciprocal lattice ve
tor K5(h,k,l ) has only anh component, whence all permu
tations of atom coordinates involving only they andz coor-
dinates will be equivalent.

The large-sphere approach is mainly limited by availa
computer memory. The approach described in the next
tion greatly reduces the memory requirement.

B. Extrapolation approach

A far larger number of atoms can be employed in t
calculation of the DXS by introducing an extrapolation pr
cedure to obtain the atomic displacements far from the
fect, and using the directly calculated displacements clo
in. The two different regimes must then be smoothed to p
vent artificial boundary effects. The calculation procedure
fairly complicated and involves several different atom ce
We summarize the central features of this method her
detailed description can be found in Ref. 15.

The calculation starts with the defect in a small cub
defect cell. In the first stage of the calculation process
spherical defect cell is created by surrounding the cubic
atoms with atoms at perfect lattice positions out to a rad
RSD . This spherical shell is relaxed to its energy minimu
Downloaded 17 Nov 2008 to 128.214.7.60. Redistribution subject to AIP
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using the relaxation procedure described below. Typica
we use a sphere with a radius of the order of 100–150 Å

Displacements of the atoms outside the spherical cell
obtained by assuming that they fall off as 1/Ri

2 , a basic tenet
of elasticity theory for bulk defects.5 The angular distribution
of the atom displacements is obtained by comparison w
another spherical cell containing perfect atom positions
the same surface relaxation as the defect cell. This distr
tion is then used to obtain the displacements of atoms out
the radiusRSD . A lattice matching process15 is used to en-
sure that the displacements are continuous at the interfac
the radiusRSD .

The diffuse scattering is finally calculated using Eq.~2!
using real atom coordinates insideRSD and by creating ex-
trapolated atom coordinates from the angular distribut
outside this radius. Since the extrapolation approach need
store the positions of only a few hundred thousands of ato
at a time, computer memory capacity is not a serious lim
tion. In principle the approach can be used to obtain the D
scattering arbitrarily close to the Bragg peak, but since
proaching the Bragg peak requires the~temporary! creation
of ever greater number of atoms, the processor CPU sp
becomes the limiting factor. We note, however, that the
eraging scheme used by Ehrhartet al.11 could be used to
circumvent this limitation.

C. Atom relaxation

The problem of finding the strain field surrounding
defect essentially requires finding the closest local poten
energy minimum of the system of atoms consisting of
defect atoms and its surroundings. To achieve this e
ciently, we use either the conventional conjugate gradi
~CG! method described in Ref. 28, or a modification of it.
the standard method, every iteration downward in poten
energy first checks that a minimum exists in the direction
the atom’s movement; it then uses a harmonic approxima
of the potential energy hypersurface to move closer to
minimum. This approach requires about ten potential ene
evaluations per iteration step.

In tests of the standard CG method for our systems
atoms we found that the line minimization step size,28 l, is
almost equal throughout most of the iteration sequence. F
thermore, in the problem at hand it is very plausible tha
minimum always exists in the next conjugate direction. U
ing these observations, we devised an ‘‘adaptive conjug
gradient’’ ~ACG! method, in which the atoms are move
forward by an amountl in the next conjugate direction
without any bracketing of the potential energy minimum.
this move leads to a decrease in potential energy,l is
slightly increased before the next step, and the proces
repeated. If the move leads to an increase in potential ene
the atoms are moved back to their previous positions,l is
decreased by a factor of 2, and a new move is attempted
the ACG method, only slightly more than 1~typically 1.1–
1.2! potential evaluations are on average needed per itera
step. On the other hand, since the ACG method does
follow the ‘‘optimal’’ path of conjugate directions,28 ;3
times more iterations than in the CG method are typica
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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needed. Thus the overall speedup is typically about a fa
of 3.

Comparisons of the two relaxation schemes have sh
that for defect configurations which are initially close
equilibrium, the two methods give essentially identical
sults. We note, however, that the ACG method may not
faster or even reliable in systems starting far from the lo
energy minimum. Since the changes in energy associ
with the long-range strain fields are very small, we usua
carry out the iterations to a precision of 10210– 10215 in the
potential energy.

For the practical evaluation of the forces, we use a co
bined link-cell and neighbor-list to find the nearest neighb
of each atom efficiently.29

To obtain the relaxation volume30 of defects, we embed
ded the defects in a cubic simulation cell with period
boundaries, and used a molecular dynamics pressure r
ation scheme31 to relax the cell to zero pressure, indepe
dently in each dimension. Comparison of the relaxed c
volume with that of a perfect simulation cell gives the rela
ation volume.

III. DEFECTS IN THE BULK

In this section we present a few of our most importa
results for defects in the bulk, and in the discussion~Sec. V!
we will demonstrate how they can be used to underst
experimental results. We emphasize that as most of the
fects treated here are described by classical potentials,
exact properties are not necessarily realistic in themselve
particular, the configurations calculated for the small v
cancy and interstitial clusters in Si have not been verifi
experimentally, however, they are still adequate for our p
pose of examining how increasing defect size and relaxa
volume affect the diffuse scattering line shapes.

In the following presentation of our simulation result
we do not distinguish between results obtained with the
or ACG methods, or with the large-sphere or extrapolat
scheme, as these have been found to give essentially id
cal results. Unless otherwise noted, the defect atoms h
been described by the classical interatomic potential used
the strain field evaluation. All the results for defects in t
bulk are averaged over all equivalent defect orientations.
scans shown are over~511!, ~400! or ~220! Bragg peaks,
since they are commonly used in experiments. Although
results for different Bragg peaks for a given defect do usu
differ somewhat, the qualitative features and trends discus
here are usually independent of the choice of the peak.

A. FCC interstitial

The determination of the structure of the FCC interstit
is a major success of diffuse x-ray scattering, which w
achieved in the early 1970s. The shape of the scattering
ing from different interstitial configurations was predicte
theoretically, and subsequent experiments showed that
interstitial has the split̂100& dumbbell structure, at least i
Al and Cu.32,33

As a test of our model, we calculated the DXS for t
interstitial in Cu, since it is well described by our EAM
models.22 Figure 2 compares the resulting scattering patt
Downloaded 17 Nov 2008 to 128.214.7.60. Redistribution subject to AIP
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with the theoretical prediction of Dederichs5 for a @400#
reflection.34 Figure 2 shows that the two calculations inde
agree very well; not only the dominating ‘‘bow-tie’’ shap
along @100#, but also the weak secondary maxima close
@010# are reproduced by our simulations. We also succe
fully reproduced the isointensity curves around the@110# and
@111# reflections shown in Fig. 1 of Ref. 5.

The small difference of the contours seen in the sha
in Fig. 2 is due to the fact that the theory used by Dederi
only includes nearest-neighbor forces, whereas the E
model also includes interactions farther out. A calculation
the Kanzaki forces giving rise to the dipole tensor show
that the interactions farther than the nearest-neighbor s
contribute about 30% to the total interaction energy. Es
cially the role of the two second-nearest-neighbor atoms
ing along the dumbbell@100# axis direction is interesting
these atoms actually relax slightly inwards~cf. Fig. 1! due to
their interaction with the strongly upward-displaced neare
neighbor atoms.

B. Single defects in Si and Ge

The structure and properties of small defects in semic
ductors is of great current interest owing to their importan
for ion implantation.1 At present these properties are not w
known. DXS methods could in principle be used to det
mine the structure of these defects. Some success has in
been achieved at determining for instance the average
tance between interstitials and vacancies in Frenkel p
produced by electron irradiation,35 and size estimates for in
terstitial and vacancy clusters,6 but difficulties in predicting
the scattering line shape in the diamond crystal struct
have made it difficult to analyze more complex defects ty
cal of ion implantation. We have calculated DXS line-shap
and spacemaps for a wide selection of defects in Si and

We first calculated the scattering from a single vacan
and dumbbell interstitial to check how well it conforms wi
the analytical prediction. In our Stillinger–Weber model, t
vacancy and interstitial have relaxation volumes of21.5 and
11.5 atomic volumes, respectively. These values are pr
ably somewhat too large,36 but as they are nearly equal i

FIG. 2. Simulated iso-intensity curve of the symmetric~Huang! part of the
diffuse scattering pattern for a dumbbell interstitial in Cu around the~400!
Bragg peak. The inset shows the same scattering pattern predicted
analytical calculations~see Ref. 5! for an isotropic interstitial in Cu.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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absolute value the qualitative comparison of the vacancy
interstitial scattering is still relevant. The results are sho
in Fig. 3 as a function ofq, whereq is the distance in recip
rocal space to the Bragg peakG. We plot the results in units
of Sq2, which has proved to be a convenient way to s
deviations from 1/q2 behavior. As expected5 the vacancy has
strong scattering at negativeq, and the interstitial at positive
q. We also verified that the symmetric part of the scatteri
i.e., the average over the positive and negative sides, ha
almost constant 1/q2 dependence close to the Bragg peak,
predicted for Huang scattering.5,4

Thus the results for a simple interstitial and vacan
conform to the classical theory. The use of atomistic sim
lations does have the advantage that it can also treat m
complicated defect structures. Electron paramagnetic r
nance~EPR! experiments and recent DFT calculations sh
that even the structure of the vacancy in Si and Ge can
quite complex for some charge states of the defect.24–26,37

The atomistic simulations can be used to obtain the D
from these defects by incorporating fixed DFT atom po
tions surrounding the defect into the simulations. To dem
strate that this method could, at least in principle, be use
determine the structure of vacancies in semiconductors
have calculated the DXS from different structures of the
cancy in Ge with different symmetries. The coordinates
the atoms surrounding the vacancy were obtained from D
simulations.37 The results are illustrated for three differe
symmetries of the defect in Fig. 4. It is clear that the sy
metry of the scattering profile decreases with decreas
symmetry of the defect. The scattering of the tetrahedr
symmetric defect@Fig. 4~a!# has the familiar figure ‘‘8’’
shape expected for tetrahedrally symmetric defects.3 The de-
fects with lower-symmetry have quite different scatteri
patterns.

FIG. 3. Diffuse scattering of a vacancy~v! and ^110& dumbbell interstitial
~i! in Si. The scattering is plotted in units ofSq2 vs q, where S is the
scattering intensity andq the distance in reciprocal space to the Bragg pe
G. The Bragg peak is left out of the figure, and the scattering lineshap
both defects interpolated in the middle to guide the eye.
Downloaded 17 Nov 2008 to 128.214.7.60. Redistribution subject to AIP
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FIG. 4. Diffuse scattering iso-intensity curves around the (220) Bragg p
for three different vacancy structures in Ge.~a! shows the scattering for a
vacancy with tetrahedral (Td) symmetry, i.e., all four atoms surrounding th
vacancy relaxing inwards toward it;~b! shows one withD2d symmetry, i.e.,
two bonded atom pairs forming symmetrically on both sides of the vacan
and ~c! shows a lower-symmetry structure characteristic of negativ
charged vacancies.
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C. Defect clusters

The classical theory of x-ray scattering5 predicts that the
scattering intensity from defect clusters along radial sc
will have a 1/q2 dependence close to the Bragg peak~Huang
scattering!, and a 1/q4 behavior far from it~Stokes–Wilson
approximation!. For small, very dense defect clusters in C
we do observe this behavior, although the 1/q4 region is
fairly narrow. For small clusters in Si, regions with we
definedq22 and q24 dependencies are not observed. T
likely reason is that in the open crystal structure of Si it
difficult to create a dense defect with a large relaxation v
ume. By plotting the scattering intensities asSq2 plots, how-
ever, the size of the defect cluster can be obtained by lo
ing the value ofq where the scattering is a maximum, as no
illustrated.

FIG. 5. Simulated diffuse scattering for three vacancy clustersv j in Si,
wherej denotes the number of vacancies in the cluster. The Bragg peak
been left out of the figure. The locations of the maxima on the negative
are indicated by tiny vertical lines. The relaxation volumes of the mono-,
and pentavacancy used here are21.5, 23.2 and25.3 atomic volumes,
respectively.

FIG. 6. Simulated diffuse scattering for three interstitials clustersi j in Si,
where j denotes the number of extra atoms in the cluster. The Bragg p
has been left out of the figure. The locations of the maxima on the pos
side are indicated by tiny vertical lines. The relaxation volumes of
mono-, di- and tetrainterstitial used here are11.5, 12.6 and14.3 atomic
volumes, respectively.
Downloaded 17 Nov 2008 to 128.214.7.60. Redistribution subject to AIP
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We calculated the DXS for a number of vacancy a
interstitial clusters in Si. The defect configurations were c
ated simply by adding or removing a few atoms in a sm
region of a crystal, and then relaxing the structure by a sh
molecular dynamics simulation at 300–600 K and sub
quent quench to 0 K. DXS calculations of radial scans fro
vacancy clusters are shown in Fig. 5. We see that the s
tering intensities from vacancy clusters are stronger on
negative side of the Bragg peak, as expected.5 The locations
of the maxima at negativeq in this Sq2 plot are proportional
to the defect size; the larger the defect relaxation volume,
closer the maximum is to the Bragg peak located atq50.
Also, the decrease of the scattering beyond the maximum
more rapid for larger defects, corresponding toq exponents
,22, as predicted by theory for defect clusters.

The scattering from interstitial clusters is illustrated
Fig. 6. The shape of the scattering is qualitatively a mir
image of that for vacancy clusters. The scattering is stron
on the positive side, and the maxima shift toward the Bra
peak with increasing defect size. Similar behavior was s
for larger interstitial and vacancy clusters as well, up to cl
ters containing 64 defects~with relaxation volumes of
roughly 50 atomic volumes!. The integrated diffuse scatter
ing was proportional to the square of the relaxation volu
of the defect, as expected.5

Other defect agglomerates, such as amorphous zones
damage produced by collision cascades, exhibited similar
havior. Damage with a positive or negative relaxation v
umes had stronger scattering at positive or negative q,
spectively. Large amorphous zones produced sharp
distinct peaks in the scattering close to the Bragg peak. S
results are illustrated in Fig. 7. The ‘‘4 keV Au’’ is the dam
age produced by a 4 keV Au recoil in Si. The defect zone
which appears to be amorphous, contains about 900 at
and has a relaxation volume of230 V, where V is the
atomic volume. Whether the Stillinger–Weber~S-W! poten-
tial describes Si amorphized by implantation adequately
questionable, since it has been reported that amorphous

as
e

i-

ak
e

e

FIG. 7. Simulated diffuse scattering for a few amorphous clusters in Si.
‘‘4 keV Au a-Si’’ indicates damage produced in a collision cascade indu
by a 4 keV Au recoil in Si modeled by the Stillinger–Weber potential, a
the two other labels amorphous Si with about 250 and 500 atoms with
experimental density ofa-Si.
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slightly less dense than crystalline Si,38 whereas the S-W
potential predicts a slightly larger density. To account for
possible error in the density, we also createda-Si spheres
with relaxation volumes corresponding to the experimen
density ~1.8% less than that ofc-Si38! simply by adding a
few atoms into thea-Si zone. Thea-Si spheres where relaxe
with a short constant-temperature simulation before the D
calculations. For the spheres shown in Fig. 7 the 250 a
a-Si zone has a relaxation volume of15.1 V and the 500
atom cluster one of110.7V. This shows that amorphous S
inclusions produced, e.g., by ion or neutron irradiation c
be expected to produce a large DXS signal, unless the s
surrounding them is otherwise relieved.

D. Defect pairs and correlation effects

The most common way of introducing defects into sol
is by electron and ion irradiation, which usually produ
Frenkel pairs as the initial state of damage. Hence un
standing the DXS line shape from Frenkel pairs is also
great interest. We have calculated the scattering from sev
Frenkel pairs in Si with different separations between
interstitial and vacancy. The Stillinger–Weber interatom
potential gives about the correct structure for both the@110#
dumbbell interstitial39,40 and the tetrahedral vacancy in S
Most importantly, it gives relaxation volumes for these tw
defects which, in agreement with experiments, cancel alm
exactly,41,42 making it well suited for this study.

The results are shown in Fig. 8. The pairs are listed a
function of the separation between the interstitial and
cancy forming the pair. The scattering decreases close to
Bragg peak due to the cancellation of relaxation volumes
correlation effects between the interstitial and vacancy.36

Analysis of the data shows that the separation betw
the peaks on the negative and positive side is inversely
portional to the distance between the vacancy and inters
— the defect with a separation of 19 Å has both peaks cl
to the Bragg peak, whereas one of the peaks of the 5 Å pair
extends outside the figure. Furthermore, comparison of
scattering calculated for different Bragg peaks showed

FIG. 8. Simulated diffuse scattering for four Frenkel pairs in Si. The Fren
pairs are labeled with the separation between the interstitial and vacanc
form the pair. The relaxation volumes of all pairs are close to zero.
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the separation between the peaks is about the same in
of q. This enables a determination of the average separa
between the vacancy and interstitial that form the pair,
suggested by Ehrhart, who used a simple superposi
model of spherical defects to obtain the displacem
fields.36 The advantage of using an atomistic scheme is t
as interatomic potentials and quantum mechanical fo
models are developed further, they can be expected to
increasingly accurate and detailed results.

To further illustrate the correlation effects, we calculat
the DXS from an eight-interstitial and eight-vacancy clus
both separately and after placing the two defects in the s
simulation cell, separated by 25 Å. The result is shown
Fig. 9. The single defect clusters have maxima either on
positive or negative side of the Bragg peak, as expected f
Sec. III C, and a smooth behavior at the Bragg peak. For
combined cluster, however, the scattering pattern decre
close to the Bragg peak at both positive and negativeq, again
illustrating the correlation effects.

E. Dislocation loops

The scattering expected from perfect and partial dislo
tion loops in FCC metals is relatively well understood due
the calculations of Ehrhart, Trinkaus and Larson.11 Since the
diamond lattice can be viewed as two interpenetrating F
lattices, and the dislocation properties in the two lattice typ
are in many respects similar,43 it may seem reasonable t
assume that the DXS from dislocations in Si would be sim
lar to that in FCC metals. On the other hand, there are o
ous differences between the materials, the most importan
which is the nature of the covalent bonding in Si, leading
a more open crystal structure.

To test whether it is reasonable to assume a simila
between the diamond and FCC structures, we have simul
the DXS from extrinsic stacking faults in Si. In FCC meta
the scattering pattern from a bound extrinsic stacking fa
has a very distinct shape, with scattering ‘‘streaks’’ in rec

l
hat

FIG. 9. Diffuse scattering of an octa-vacancy (v8) and octa-interstitial (i 8)
in Si, and a defect consisting of both thev8 and i 8 separated by 25 Å. The
Bragg peak is left out of the figure, and the scattering lineshape of the si
clusters interpolated in the middle to guide the eye. The relaxation volu
of the i 8 , v8 and combinedi 8 v8 defects used here are18.0,24.0 and14.0
atomic volumes, respectively.
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rocal space extending all the way from one Bragg peak
another.11 Our result is shown in Fig. 10 for the scatterin
around the~220! Bragg peak. The scattering streaks are ve
similar to those in FCC metals, showing that at least in th
case the x-ray scattering is similar in the two crystal stru
tures. The location of the nodal minima in the scatterin
however, are not the same as for the FCC stacking faults

The advantage of using the atomistic simulation to stu
DXS from loops is that it is straightforward to study siz
effects, such as, for instance, determining at what size
stacking fault gives rise to a streak pattern. The inset in F
10 shows how the streak pattern emerges as the size of
stacking fault grows. The streak pattern becomes visible
stacking faults with between 100 and 200 atoms in the sta
ing fault ~double! plane.43 Additional details of these simu-
lations, and a comparison with experiments, will be give
elsewhere.44

We also calculated the scattering pattern of a stacki
fault tetrahedron~SFT! in Cu, i.e., a perfect tetrahedron
formed by four triangular vacancy-type stacking fault loop
lying on intersecting$111% crystal planes.43,45 These defects
are of great interest for understanding fission and fusion
actor wall material embrittlement by neutrons produced
the reactor.45,46,2 Due to their nature of several intersectin
stacking fault planes, and since the SFTs formed during
radiation are commonly only a few nm in size, calculatin
the DXS lineshape from an SFT could be quite difficult wit

FIG. 10. Simulated DXS pattern from a stacking fault formed by about 10
interstitial atoms in Si.~a! Scattering on the positiveq001 side of the Bragg
peak.q110 indicates the distance from the~220! Bragg peak in reciprocal
space along the 110 direction andq001 in the vertical 001 direction.~b!
Shape of thê111& streak emanating from the~220! peak for three stacking
faults with different numbers of interstitial atomsNi . The iso-intensity
curves have been chosen so that their maxima along^111& coincide.
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analytical methods. On the other hand, we have rece
found that the Cu EAM models give a good description
SFTs.23

Our result for the x-ray iso-intensity contours for an SF
with a side length of 10 nearest-neighbor distances~contain-
ing 55 vacancies! is shown in Fig. 11. Overall, the strea
shape of the scattering resembles that from stacking fa
~see Fig. 10 and Ref. 11!. There are differences, howeve
Because of the vacancylike nature of the SFT, no points
vanishing intensity are observed.11 Also since the SFT is a
vacancylike defect, the scattering intensity is somew
stronger on the negative@110# side of the Bragg peak.

IV. DEFECTS CLOSE TO A SURFACE

When a defect is close to a surface, the strain field
viates from the characteristic 1/r 2 dependence. Barabash an
Krivoglaz have derived general expressions for the D
from defects in the vicinity of surfaces.47 They concluded
that the DXS from defects close to the surface will be clo
to the bulk value ifDe@1/q, whereDe is the effective depth
of the defects. For a value ofq;0.1 Å21 this would mean
that only defects very close (;10 Å! to the surface would
have a DXS significantly differing from the bulk value. A
though the Krivoglaz model thus gives a useful guideline
estimating when surface effects may be important, its ma
ematical complexity makes it difficult to obtain a more a
curate estimate for real defects. The model also showed
surface effects can be even more prominent in thin film
which was later confirmed by experiment,48 but this case is
not of concern here. On the other hand, Grotehanset al.have
shown that surface effects may affect the scattering at l
very close to the Bragg peak.49

We simulated surfaces by simply replacing the sphere
the ‘‘large-sphere approach’’ by a hemisphere, placing
defect at some depthd below the~001! surface of the hemi-
sphere. Because the presence of the surface breaks som
the symmetry in the scattering problem, a comparison w
experiments requires a different averaging scheme than

0

FIG. 11. X-ray scattering pattern from a stacking fault tetrahedron in Cu
the plane spanned by the@110# and@001# crystal directions. The scattering
in the streaks starts to increase at the outer edges of the figure becaus
start to approach other Bragg peaks.
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bulk calculations. Otherwise the surface DXS simulati
method is identical to the approach presented in Sec. II A

We first calculated the DXS for scattering directions p
allel to the surface~‘‘in-plane’’ peaks!. We simulated small
vacancy clusters and cascade damage~with 2–20 defects!,
and compared the results to the bulk scattering for the s
defects. For clusters containing 2–20 vacancies 50 Å be
the surface, the DXS showed no effects of the surface wi
the numerical accuracy of the calculation. Figure 12 sho
the scattering as a function of depth for the total dam
produced in a 2 keV cascade~created in a typical collision
cascade simulation50!. The cascade contains 16 Frenk
pairs, some of them in clusters. This damage had a t
relaxation volume of21.4V. Due to the complex nature o
the damage, the scattering line shape is quite complex, m

FIG. 12. Diffuse x-ray scattering for an in-plane peak for the damage
duced by a 2 keV recoil in Si placed at different depths in the simulati
cell. At the depth of 10 Å the surface intersects the damage region, a
small part of the damage is in fact cut off at the surface. It is noteworthy
even at 30 Å, when the damaged region is very close to the surface, the
is only slightly modified from the bulk value.

FIG. 13. Diffuse x-ray scattering for an out-of-plane@004# peak and a close-
to-normal @115# scanning direction for the damage produced by a 2 keV
recoil in Si placed at different depths in the simulation cell. Note that all
surface calculations have a broadened Bragg peak due to the scat
contribution from the crystal truncation rod. The diffuse scattering outs
the truncation rod region is again similar to the bulk value except when
damage depth&30 Å.
Downloaded 17 Nov 2008 to 128.214.7.60. Redistribution subject to AIP
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ing this event a sensitive test for possible surface effe
This damage can be considered a rough representatio
typical ion beam damage for nonoverlapping cascades,
though in a real experiment the DXS result would of cou
be averaged over a large number of damage regions.

It is well-known that a diffraction vector perpendicula
to a surface will exhibit a large diffraction streak, called
crystal truncation rod51 due to the truncation of the crystal a
the surface. Hence it is not useful to attempt to study
DXS in scattering directions exactly normal to the surface
any diffuse contribution would be overshadowed by the tru
cation rod. It is, however, possible to study the DXS in
direction slightly tilted off the normal direction. In such
direction the Bragg peak will be somewhat broadened du
the truncation rod, but outside the broadened region the
fuse scattering will not be affected by the truncation effe
The results for one such simulation are illustrated for the
keV damage in Fig. 13.

For all depths greater than 30 Å the surface effects
negligible, both for the in-plane and out-of-plane peaks.
the out-of-plane peaks some effects of the surface start t
visible for a depth of 30 Å, but the overall shape of the DX
is still similar to the bulk result. We also did simulations
iso-intensity curves in the planes spanned by@110# and
@001# and @100# and @001# crystal directions for the 2 keV
damage at different depths but even in these much la
regions of reciprocal space the results were almost iden
for depths greater than 30 Å.

At the depth of 10 Å the surface strongly affects t
shape of the scattering. The extension of the central dam
region in the cascade defect distribution is roughly 30 Å
each dimension, however, so at this depth the damage in
cell already intersects the surface. For most practical way
introducing defects into materials~such as ion implantation
impurity diffusion and growth! the damaged region is usu
ally at least some hundreds of Angstroms thick. Con
quently the small surface effect found for the defects clos
to the surface will rarely be of significance. Moreover, ev
in grazing incidence x-ray experiments, where the angle
incidence is less than the critical angle for total external
flection, the evanescent waves penetrate a few hundred A
stroms.

From the present simulations we cannot rule out t
there is a larger surface contribution closer to the Bragg p
than what we can simulate now~such as the regimeqa/2p
&0.03 considered by Grotehanset al.49!. However, the range
we have been able to simulate so far (qa/2p*0.05) is usu-
ally also the one studied in experiments.

V. DISCUSSION

One of the major differences of our results for defects
semiconductors compared to most experiments and mo
in metals is that theq dependence is weaker thanq22 close
to the Bragg peak. In theSq2 plots this is clearly visible as a
decreaseof Sq2 close to the Bragg peak. As pointed out b
Ehrhart, the deviation from aq22 dependence arises from
the correlation in the distances between the vacancy and
terstitial in a close Frenkel pair. In most metals, however,
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relaxation volume of the interstitial is nearly ten times larg
than that of the vacancy, and the correlation does not g
rise to a cancellation in the long-range strain field of t
interstitial. In semiconductors, the relaxation volumes of
cancies and interstitials are comparable, giving rise to co
lation effects.

The importance of the correlation effect has not be
fully realized in many x-ray studies of defects in Si. F
instance, Mayer and Peisl reported a deviation fromq22 be-
havior in neutron-irradiated Si,42 attributing it to resolution
effects in the points closest to the Bragg peak. Replotting
data asSq2, however, shows that the deviation fromq22

behavior occurs over a fairly wideq range~see Fig. 14!, with
the maximum occurring atq50.1 Å21. Comparison with
Figs. 9, 6 and 7 shows that this damage resembles tha
cascade damage containing nearby interstitial- and vaca
like point defects or defect clusters. Hence we believe i
very likely that the decrease close to the Bragg peak ar
from a correlation effect.

Figure 15 shows the DXS in 20 keV Ga implanted Si f
different doses below the amorphization threshold. As in
neutron damage, the maximum in theSq2 plot occurs atq

FIG. 14. Symmetric part of the diffuse x-ray scattering in neutron-irradia
Si. Data are taken from Fig. 4 in Ref. 42, and replotted as anSq2 plot.

FIG. 15. Radial scan of diffuse scattering from Ga-implanted Si at 150 K
different doses~given in units of displacements per atom!. From Refs. 52
and 53.
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;0.1 Å21, characteristic for cascade damage. At high dos
the scattering is much stronger on the positive side, indic
ing that the type of damage dominating the DXS is inters
tial clusters, or other defects with a large positive relaxat
volumes~cf. Figs. 6 and 9!. Details of these experiments wi
be published elsewhere.52

VI. CONCLUSIONS

We have described herein a fully atomistic method
analyzing diffuse x-ray scattering. The method is based
using modern interatomic force models and efficient atom
tic simulation algorithms to obtain the strain field surroun
ing the defect. From the positions of the displaced atoms
x-ray scattering is then obtained by direct summation. Co
pared to analytical and numerical tools for analyzing DX
measurements, our method has the advantage that the
formalism can be used for a wide range of defects. We fi
compared the results of our method to those of analyt
calculations for well-understood test cases to demonst
that the method works reliably. We then used the method
evaluate x-ray lineshapes for technologically interesting
fects which are difficult to treat by traditional means, such
stacking fault tetrahedra in metals and small defect clus
and stacking faults in Si. We also showed the effect o
nearby surface on the DXS from defects in a semi-infin
crystal is negligible except when the damaged region st
to intersect with the surface, or possibly very close to
Bragg peak. Finally, by comparison with experiments
have demonstrated how the calculations can be helpful
understanding defect properties in semiconductors.
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