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Diffuse X-ray streaks from stacking faults in Si analyzed by atomistic simulations
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Since extrinsic stacking faults can form during post-implantation annealing of Si, understanding
their properties is important for reliable control of semiconductor manufacturing processes. We
demonstrate how grazing incidence X-ray scattering methods can be used as a nondestructive means
for detecting extrinsic stacking faults in Si. Atomistic analysis of diffuse intensity streaks is used to
determine the size of the faults, the minimum size at which the streak pattern in the scattering will
be visible, and the magnitude of atomic displacements in the center of the stacking fault.

Ion implantation of silicon and subsequent high-
temperature annealing plays a central role in present-
day semiconductor manufacturing. Although the overall
development of the implantation damage production and
annealing is relatively well understood!?, many details
remain unclear. The analysis of defect states during
annealing is usually done using transmission electron
microscopy. Although the method has many advantages,
it works only for very thin samples, and it is possible
that the sample thinning process affects the nature of
the defects in the sample. Hence it could be very useful
to have complementary methods for analyzing the nature
of defects in Si.

The “diffuse” X-ray scattering distribution from a
defective crystal is the weak part of the scattering
between Bragg peaks which arises from the strain field
in the lattice surrounding the defects. The diffuse X-ray
scattering (DXS) method is a fast and nondestructive
means to analyze damage in lattices, such as point and
extended defects®*. Although the method has been much
used for metals®®, its application to semiconductors has
been hampered by the difficulty of analyzing the results.
Nordlund et al. have recently developed a method
enabling atomistic simulations of DXS measurements
even for very complex defect configurations. We have
found that the using the method it is, at least in
principle, possible to distinguish different interstitial and
vacancy configurations’, determine the size of vacancy
and interstitial clusters in semiconductors, and the
average separation between interstitial- and vacancy-like
defects®.

Here we will describe how the atomistic analysis
method can be used for detection of stacking faults in Si,
and use the method to determine the average size and
the magnitude of atomic displacements of stacking faults
formed in boron implanted Si after thermal processing.

For the measurements of the diffuse x-ray scattering we
have applied the geometry of grazing incidence and exit?,
which allows accurate control of the scattering depth

by choosing values for the incidence angle «; and the
exit angle o close to the critical angle of total external
reflection .'°. Thus we could probe the near surface
region affected by the implantation process. The vicinity
of surface reflections with scattering planes perpendicular
to the sample surface were investigated.

For data collection a one-dimensional position sensitive
detector (PSD) was used, which could be operated in
two different modes. The PSD is placed parallel to the
sample surface at a fixed exit angle. Thus the vicinity
of the surface peak could be mapped in terms of a
Q+-Qy-plane of reciprocal space at constant @).. In the
perpendicular mode the PSD is normal to the sample
surface, so that @)-Q. mappings could be efficiently
recorded. The details of the measurement procedure are
described elsewhere!!.

Dislocation free, floating-zone Si (001) single crystals
were implanted with 32 keV boron to a boron dose of
6 x 10'° ions/cm?. The implanted samples were rapid
thermal annealed at 1070 °C for 10 seconds.

The resulting scattering pattern is illustrated in Fig.
1. The streaks observed along (111) directions in the
experiments are quite similar to the streaks predicted
to arise from bound stacking faults (Frank loops) in
face-centered cubic metals?. Also, previous transmission
electron microscopy studies of boron implanted and
annealed Si as well as annealed silicon with high oxygen
content show extrinsic Frank type stacking faults'2. This
strongly suggests that the streaks now seen in Si arise
from extrinsic stacking faults produced by interstitials
precipitating on {111} planes. To gain certainty of this,
and enable a more detailed analysis than that provided
by the traditional analytical and numerical methods, we
used the new atomistic method®7 to simulate DXS from
stacking faults in Si.

In the atomistic analysis method of Nordlund, Partyka
and Averback®7, the DXS from a defect is calculated
by forming the atom coordinates of a defect, and
surrounding it by a large sphere (usually having of the



order of 1 - 100 million atoms) of undisturbed lattice
atoms. All the atoms in this sphere are relaxed to
the closest potential energy minimum by an efficient
adaptive-step conjugate gradient method, which gives the
strain field surrounding the defect®. The potential energy
of the system is calculated from a classical interatomic
potential known to describe the elastic properties of
the material well. The X-ray scattering intensity S(K)
can then be calculated from the relaxed atom cell by
straightforward summation over atom coordinates R;,

2
S(K) — fKZe—a2Rf/2a26iK-Ri , (1)

where o is a convolution factor speeding up convergence
of the sum, a the lattice constant and fp- is the atomic
form factor®!®14,  Although the atomistic analysis
scheme requires large computer capacity, it has the
advantage that once it is implemented, the same method
can be used to deal with any kind of defect, including
very complex ones. Additional details of the method are
given elsewhere®7.

We created interstitial loop (extrinsic stacking fault)
configurations of different sizes by adding an extra double
(111) atom plane'® in the center of a large atomistic
simulation cell. The extra plane had the shape of
either a regular triangle or a regular hexagon bound by
dislocation line segments along (110) crystal directions.
To study size effects, we used lengths between 8 and 20
1(110)a (a is the lattice constant) for one side of the
triangle or hexagon, corresponding to between 72 (for
the 8-sided triangle), and 2282 (for the 20-sided hexagon)
extra atoms in the stacking fault. The X-ray scattering
was then calculated using the method outlined above,
using spheres with radii of at least 200 A. The well-
tested Stillinger-Weber'® and Tersoff IIT'7 force models
were used to describe the potential energy of the atoms.

Figure 2 illustrates the simulated streaks produced
by a hexagonal stacking fault with a side length of 14
%(llﬂ)a, averaged over all four possible stacking fault
orientations. The reason that the simulated (111) streak
appears to have a peak is the presence of zero-intensity
nodal points similar to those reported in metals*. The
strong streak in the (111) direction (upper right) and the
somewhat weaker streak seen in the (111) direction are
very similar to those seen in the experiments. The iso-
intensity contours are not quite equal in shape because we
were not able to simulate as large loops as those present
in the experiment, or the scattering quite as close to the
Bragg peak. But as we shall see below, we were still able
to give a size estimate for the defects.

Although the basic features of the scattering are thus
the same as those predicted by numerical methods?, the
atomistic analysis method allowed us to quantitatively
examine atomistic effects in the scattering. The inset in
Fig. 2 shows iso-intensity contours for the scattering from
stacking fault triangles of varying sizes. The results show
that the characteristic streak pattern becomes visible
between side lengths of 8 and 16 2(110)a , i.e. when the
number of interstitial atoms in the fault is in the range
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FIG. 1. Streaked X-ray scattering pattern along (111) from
B implanted Si after a 10 s anneal at 1070 °C. qi110 indicates
the distance from the (220) Bragg peak in reciprocal space
along the 110 direction and qoo: in the vertical 001 direction.
Because of experimental limitations the |gii0] < 0.03 1/A
region in reciprocal space was not measured.
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FIG. 2. As Figure 1, but with a simulated DXS pattern
from a stacking fault formed by about 1000 interstitial atoms.
Because we were not able to simulate as large faults as the
experimental ones, the plotting range is different from that
in the experimental figure. The pattern is averaged over
the four equivalent orientations of a {111} stacking fault.
The inset shows one iso-intensity curve on the positive side
of the (220) peak for three stacking faults with different
numbers of interstitial atoms V;. The scattering pattern is
qualitatively very similar to the experimental pattern, with a
strong scattering streak extending along the (111) direction
and a somewhat weaker streak in the (111) direction. The
inset shows that as the stacking fault size grows the streak
will become narrower.

100 — 200. Comparison of the streak shapes and widths
for triangular and hexagonal faults further showed that
the scattering pattern is very similar when the number of
atoms in the fault is the same, i.e. that the streak shape
is not sensitive to the exact shape of the loop.

We further used the atomistic simulations to test
Vaclav Holy’s analytical model for the width of the (111)
streaks'!. The model predicts the shape of the scattering
for a circular Frank loop of diameter d. When we defined
the effective diameter d* of a hexagonal stacking fault
to be the average of the major and minor axes (i.e.
d* = 1+ /3/2)l, where [ is the length of one side), we
obtained excellent agreement between Holy’s model and
the simulations. This shows that Holy’s model can be
used to give a reliable size estimate even for non-circular
loops. Using Holy’s model to analyze the experimental
data showed that the average effective diameter d* of the



stacking faults in Fig. 1 is 710 A.

Analysis of the experimental intensity profile along the
(111) direction along the streak shows a characteristic
crossover between 1/¢? and 1/g*-dependence of the
intensity (¢ is the distance to the Bragg peak in
reciprocal space), similar to that occurring for large
defect clusters®. The experimental value for the crossover
point is 0.34 1/A (Fig. 3). The simulations showed
that the location of this crossover is independent of the
diameter of the loop over the entire size range examined.
This indicates that the crossover must be related to the
“strength” of the stacking fault, i.e. the thickness of the
fault and the displacements of the atoms in the center of
the fault.
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FIG. 3. Scattering intensity along the [111] direction off
the (220) Bragg peak. The straight solid lines indicate
perfect 1/¢* and l/q4 dependence of the scattering, and the
vertical dotted lines the location of the crossover between 1/¢?
and 1/¢* behaviour. The two different simulation models
are calculated for stacking faults which have exactly the
same shape and numbers of interstitial atoms, but different
displacements in the stacking fault plane.
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To further examine this, we simulated DXS from the
same stacking fault with different displacements in the
center of the fault. Since most Si interatomic potentials
only have nearest-neighbour interactions, and all atoms
in the center of a perfect stacking fault in Si have the
ideal nearest-neighbour environment, the potentials give
a stacking fault energy of zero, and thus no atomic
displacements due to the incorrect stacking sequence of
the diamond lattice'®. Therefore we modified the length
scale of the Stillinger-Weber (SW) interatomic potential
for the atoms in the stacking fault center to be able
to examine the effect of the atomic displacements on
the 1/¢> — 1/¢* — crossover. The tested modifications
ranged from a 2 — 8 % increase in the nearest-neighbour
separation and cutoff distance. The atoms outside the
stacking fault center were still described by the ordinary
SW potential, ensuring that the long-range strain field
is realistic. The results are shown in Fig. 3. “Model
1” is the plain SW potential scattering. The location of
the crossover was found to be reproduced well by models
for which the average separation between double (111)
atom layers (counted along the nearest-neighbour atom
bond separating the layers) at and next to the stacking
fault center plane was 2.4240.02 A. One of these models
is shown as “Model 2” in Fig. 3. In the present case

a more accurate determination of the displacements was
not possible due to the artificial nature of the potential
modification, but we note that with the method outlined
here it will be possible to determine the displacements
accurately when Si force models with realistic long-range
interactions become available, or alternatively to test
candidates for such models.

In conclusion, using diffuse X-ray scattering methods,
we have detected extrinsic stacking faults in boron-
implanted Si after a rapid-thermal anneal. We have
further shown how atomistic analysis of X-ray scattering
experiments can be used to determine the size of the
fault and the magnitude of atomic displacements in the
stacking fault plane.
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