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Abstract 

Binary collision approximation methods have been conventionally used to describe the slowing down of recoiling 
ions. In order to better understand the slowing-down process, molecular dynamics methods are more and more used 
in the literature. However, the computer capacity limits the usefulness of the methods in most practical cases where 
ion implantation in the l-100 keV energy range is used. We present an efficient molecular dynamics method for 

calculating ion ranges and deposited energies in the recoil energy region 100 eV to 100 keV. By taking into account 
only the interactions that are involved in the slowing-down process, range and deposited energy distributions at 
higher energies can be simulated. The method is demonstrated by range calculations of 40 keV H atoms in Si, 40 
keV He atoms in Ta and 100 eV to 10 keV Si atoms in Si. 

1. Introduction 

Ion implantation is commonly used in the fab- 
rication of integrated circuits [l--3] and is a 
method for improving the wear behaviour of met- 
als [4]. The doping depth is determined by the 
range of the implanted ions. The nature of the 
damage produced during implantation strongly 
affects the final properties of the specimen [51. 
The damage production processes have been sub- 
ject to extensive study in recent years, see e.g. 
Refs. [6- 111. 

The estimation of range and damage distribu- 
tions is related to the description of the slowing 
down of energetic ions. To obtain detailed infor- 
mation of range and damage distributions in the 

low energy range (namely below about 100 keV1 
where elastic collisions dominate the slowing- 
down process, computer simulation methods have 
been developed [ 121. Binary collision approxima- 
tion (BCA) methods provide a fairly efficient 
means for calculating ion ranges, and have been 
used much since the 1960’s [8,12-171. Molecular 
dynamics (MD) methods describe the interactions 
involved in ion implantation more realistically, 
but require much larger amounts of computer 
capacity than BCA methods [18]. As computers 
have become more powerful, interest has started 
to shift towards MD methods [9,11,19] 

In both BCA and classical MD simulations the 
interactions between atoms in the sample are 
described with an interatomic potential V(F). If 
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the potential is assumed to depend only on the 
distance r between two atoms i and j, it can be 
written in the form 

v.j(r) = 
ZiZje2 
ym 

where the Coulombic term denotes the repulsion 
between the bare nuclei and the function 4(r) 
the screening of the nuclei due to the electron 
cloud [13]. The electronic stopping is taken into 
account as a frictional force. 

In the forthcoming sections we will point out 
some problems of BCA simulations in calculating 
ion ranges, and illustrate why ordinary MD meth- 
ods are not suited for calculations of range distri- 
butions of high-energy ions. We proceed by pre- 
senting new principles for calculating ion ranges 
and show that our method overcomes several of 
the drawbacks of both BCA and ordinary MD 
simulations. 

2. Problems in binary collision approximation 
methods 

In BCA calculations the movement of the 
atoms in the implanted sample is usually treated 
as a succession of individual collisions between 
the recoil ion and atoms in the sample. For each 
individual collision the classical scattering inte- 
gral is solved by numerical integration [17]. 

The impact parameter used in the scattering 
integral is determined either from a stochastic 
distribution (in programs like TRIM [12,20]) or in 
a way that takes into account the crystal structure 
of the sample [17]. The former method is suitable 
only in simulations of implantation into amor- 
phous materials. 

When the forces Fi have been calculated for 
all moving atoms in the system, the equations of 
motion for the system are solved using some 
suitable algorithm, for instance the one given in 
Ref. [24]. The solution yields the change in the 
atom positions, velocities and accelerations over a 
finite time step At. The smaller the time step is, 
the more accurate is the solution of the equations 
of motion. After the changes have been per- 
formed the process is continued by calculating 
the forces in the new positions. 

Thus, contrary to BCA methods, all interac- 
tions experienced by an atom are taken into 
consideration simultaneously in MD simulations. 

Although the BCA methods have been suc- Despite their wide use in other fields of physics, 
cessfully used in describing many physical pro- MD simulations have been very little used for 
cesses, they have some obstacles to describing the calculating ion ranges at keV and higher ener- 
slowing-down process of energetic ions realisti- gies. The main reason is that the MD methods 
cally. Owing to the basic assumption that colli- used so far require very much larger amounts of 
sions are binary, problems arise when trying to computer capacity than BCA calculations. One 
take multiple interactions into account [13,17]. reason for this is that the BCA approach of 
Also, the form of the scattering integral does not numerically solving the scattering integral re- 
allow for incorporating angle-dependent poten- quires fewer calculation steps than solving the 
tials, which are necessary to describe covalently equations of motion. 

bonded materials like silicon [21,22]. These fac- 
tors make it difficult to describe collision cas- 
cades realistically in BCA simulations. 

3. Problems in molecular dynamics simulations 

In molecular dynamics simulations the time 
evolution of a system of atoms is calculated by 
solving the equations of motion numerically. In 
the Newtonian formalism the force Fi acting on 
an atom i in the system is calculated as 

E(() = CF,j(rij) = - cv~j(rij), 
j#i j#i 

where Fij is the force acting between atoms i and 
j and F/ij (rij> is the potential energy function 
given in Eq. (1). The sum over j is taken over all 
atoms whose interaction with atom i is stronger 
than a threshold value I&,, [23]. 

By incorporating a sum in Eq. (2) that depends 
on the positions of three or more atoms, one can 
include angular-dependent potentials in MD cal- 
culations [211. 
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Another reason is that when calculating ion 
ranges with BCA simulations, it is sufficient to 
calculate the motion of the recoil atom. In con- 
ventional MD simulation methods (see e.g. Refs 
[9,11,18,25,26]) the movements of all energetic 
ions have been calculated. Recently some schemes 
where weak interactions are neglected have been 
presented when treating collision cascades [27,281. 

In calculating ion ranges and deposited ener- 
gies at high energies (2 1 keV), the interactions 
between the recoil ion and its nearest neighbours 
are much stronger than the interactions between 
lattice atoms. It would therefore seem natural to 
treat only the recoil ion interactions. This approx- 
imation is hereafter called the recoil interaction 
approximation (RIA). 

In the next section we will describe our MD 
method for calculating ion ranges using the RIA 
and relatively few atoms in the simulation cell. 

4. Method for calculating ranges of high energy 
ions using MD simulations 

To calculate ranges of ions with keV and higher 
energies we have modified the computer code 
MOLDY used previously in our laboratory to 
describe the slowing down of low-velocity atoms 
[29]. The modified code has been successfully 
used for range calculations in earlier publications 
[7,30], but to date no detailed description of the 
range calculation method has been given. 

For efficiency the MOLDY range code uses a 
small simulation cell for the range calculation. 
However, the MOLDY code does not employ the 
RIA. 

For performing RIA calculations a new pro- 
gram, MDRANGE [31], has been written. It was 
designed specifically for high-energy MD calcula- 
tions and leaves out many redundant features in 
the original MOLDY code. Unless otherwise 
stated, the features described below apply both to 
the MOLDY and MDRANGE programs. 

Our simulation algorithms are based on the 
conventional Newton formalism described above. 
A Verlet neighbour list [321 is employed to make 
the simulations more efficient. During each time 
step, the interactions of all atoms with their 
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Fig. 1. Conservation of energy during an initial displacement 

calculation in the MDRANGE program. 

neighbours in the simulation cell are calculated. 
In the MDRANGE program one can also choose 
to use the RIA during a range calculation. 

To obtain realistic thermal displacements of 
the atoms in the sample an initial displacement 
calculation is performed at the beginning of each 
range calculation. The atom positions in the sim- 
ulation cell are initialized to a crystalline or 
amorphous structure. The atoms are given initial 
velocities in random directions according to the 
Maxwell velocity distribution for a desired simu- 
lation temperature T. A simulation of thermal 
movement is performed to yield realistic displace- 
ments from the initial sites. The simulation is 
carried out until the average temperature taken 
over the last 100 times steps yields the desired 
temperature T (within the error bounds). 

In the initial displacement calculation periodic 
boundary conditions [23] and a constant time step 
are used. The calculation can also be used to test 
the stability of the solution of the equations of 
motion. In Fig. 1 the kinetic, potential and total 
energy in a simulation cell of 512 silicon atoms is 
shown for a 1000 fs simulation of movement at 
300 K. The time step employed in the simulation 
was 1 fs. The simulation was performed with the 
MDRANGE program. 

If all interactions between the lattice atoms 
are calculated during the actual range calcula- 
tion, an attractive interatomic potential is em- 
ployed to treat the interactions between lattice 
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atoms. In the RIA lattice-lattice interactions are 
not calculated. The lattice atoms which do not 
interact with the recoil atom are held fiied at the 
positions they obtained in the initial displacement 
calculation. When they start to interact with the 
recoil atom they are given the velocity vector they 
obtained in the initial displacement calculation. 

The interaction between the recoil atom and 
the lattice atoms is always described by a two-body 
repulsive potential. 

In addition to the RIA, two features in our 
method differ significantly from typical MD simu- 
lations: the selection process of the time step, 
and the treatment of the simulation cell borders. 

4.1. Time step 

During the actual range (“recoil event”) calcu- 
lation, when drastic changes occur in the maxi- 
mum atom velocity in the system, a variable time 
step At is employed to speed up the simulations. 
Three criteria are used to determine At. Firstly, 
the time step is made inversely proportional to 
the recoil velocity u using a proportionality con- 
stant k,. This approach is used e.g. in Ref. 1241. 
However, detailed analysis of very strong colli- 
sions in the keV energy range showed that the 
solution of the equations of motion did not de- 
scribe strong collisions realistically if the time 
step was calculated from k, alone. To obtain 
smaller time steps in strong collisions, the time 
step is also made inversely proportional to the 
product of the total force F the recoil atom 
experiences and its velocity u using a proportion- 
ality constant E,. Since large increases of the 
time step make the solution of the equations of 
motion inexact [24], the value of the time step is 
never allowed to increase more than 10% from its 
previous value. 

The final time step is determined from the 
criterion yielding the smallest value, that is 

4ew (3) 

With smaller values of k, and E, the error in the 
solution of the equations of motion gets smaller. 
On the other hand, the simulations get slower 
with small values of k, and E,, so it is advanta- 

geous to use the biggest possible values of E, and 
k, that do not affect the simulation results. 

4.2. Simulation cell 

In practical MD calculations the criterion that 
the potential between two atoms must be above a 
threshold value of Vmin for the interaction to be 
taken into account is replaced by defining a criti- 
cal radius r0 so that V(r,> I Vmin. The interaction 
between two atoms is included in the calculations 
only if their distance from each other is less than 
rO. For typical repulsive interatomic potentials, 
like the commonly used ZBL (universal) repulsive 
potential [12], r0 typically has a value between 2 
and 3 A. 

The most important criterion for selecting the 
size of the simulation cell during a recoil event 
calculation is that all atoms nearer than r,, to the 
recoil atom must be present at all times during 
the simulation. Since the radius r0 usually has a 
value around 3 4, a simulation cell with a side 
length of lo-15 A is large enough to contain all 
atoms that interact with the recoil atom. This 
typically amounts to a cell containing 50-100 
atoms. 

Because of efficiency considerations it is ad- 
vantageous to keep the simulation cell as small as 
possible. On the other hand it is guite clear that a 
cell with a side length of lo-15 A cannot contain 
the entire path of an implanted ion in the keV 
energy range that may move several hundreds or 
thousands of %ngstroms in the implanted sample. 
Therefore, a mechanism for ensuring that the 
recoil atom is always surrounded by lattice atoms 
is needed. Using conventional periodic boundary 
conditions would not be realistic, since the recoil 
atom would move in a simulation cell damaged by 
its own previous motion, 

We have developed a translation method for 
ensuring that the recoil atom moves in a structure 
unaffected by its previous motion. The method is 
similar to translation techniques used in BCA 
simulations [17], but has to our knowledge not 
been used earlier in MD simulations together 
with the RIA. 

In our approach critical distances Rsi are de- 
fined for the three space coordinates i = 1,2,3. If 
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b) 

Fig. 2. Schematic two-dimensional view of the way atoms are 

moved during the calculation of ion ranges. In the figure a 

two-dimensional view of the simulation cell is shown before 

(a) and after (b) the atoms have been moved. In (a) the recoil 

atom (which is marked with a grey interior) has come closer 

than Rs, to the simulation cell border. When this has hap- 

pened, all atoms within the shaded area are moved away from 

the cell border, and new atoms that have not been affected by 

the ion movement are placed in front of the recoil atom. 

the recoil atom during the simulation gets nearer 
than R,, to the simulation cell border, for any 
coordinate i, then the recoil atom and all atoms 
surrounding it are moved this distance R,, away 
from the simulation cell border. The moved atoms 
retain their previous velocities and accelerations. 
The moving of atoms creates an empty region in 
the simulation cell “in front of’ the recoil atom, 
which is filled with atoms whose positions and 
velocities are taken from an initial displacement 
calculation described above. The process is illus- 
trated in Fig. 2. 

In this way movement of the recoil atom can 
be simulated in an arbitrarily large sample with- 
out including more than a few hundred atoms in 
the simulations. 

The size of R, must obviously be 2 r. and 
less than half the ‘size of the simulation cell. In 
simulating crystalline materials it is often advan- 
tageous to select R,, to equal the size of the unit 
cell or some integer fraction of the unit cell size. 

Open boundary conditions are applied to the 
cell to prevent cascade damage from spreading 
back in the simulation cell over the borders. 

4.3. Structure of the sample 

The simulation codes 
MDRANGE support several 

MOLDY and 
different sample 

structures. The atom coordinates of all atoms 
except the recoil atom are read in from a file at 
the beginning of the simulation. Crystalline and 
amorphous materials can be simulated by using 
perfect lattice positions or an amorphous struc- 
ture obtained e.g. from ab initio MD calculations 
1331. Any number of different isotopes or ele- 
ments can be included in the structure. 

In simulating polycrystalline materials the grain 
size is calculated using a Gaussian distribution 
from an average grain size and a value defining 
the variance from the average size. During the 
recoil event calculation, each time the grain 
boundary is reached the recoil atom is injected 
into a new grain. The orientation of each grain is 
selected randomly. In this way polycrystalline 
nanostructures can be simulated. 

The program also supports simulation of multi- 
layered structures with an arbitrary number of 
layers. For each layer the atom coordinates are 
read in from a separate file, and the layer is given 
a depth region (z,~,,, z,,) in which the recoil 
atom will enter the layer. The only restriction on 
the different layer structures is that the size of 
the simulation cell must always remain the same. 

Several layer structures can be placed in the 
same z region, and given different probabilities 
for occurring. The type of the atoms within a 
layer structure can be selected randomly. These 
features allow simulation of ion implantation even 
into very complex sample structures. 

In this paper results of simulations in amor- 
phous, crystalline and polycrystalline structures 
are presented (cf. Section 5). 

4.4. Recoil event calculation 

The simulation of one recoil event is initiated 
by placing the recoil atom a few A outside the 
simulation cell, and giving it the desired energy 
and velocity direction. The initial position of the 
atom is selected randomly. The surface of the 
simulation cell is set at z = 0; no moving of the 
cell atoms is performed until the z coordinate of 
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the recoil atom has become greater than RS3. 
The movement of the recoil atom is then fol- 
lowed until it has slowed down below some 
threshold energy, e.g. 1 eV. The movement of the 
simulation cell atoms is stored during the calcula- 
tion, and taken into account when the final range 
of the recoil atom is calculated. 

The electronic stopping S, is incorporated in 
the simulations by subtracting the recoil atom 
velocity with 

Au = Ats- (4) m 
(where m is the ion mass) at each time step. 

To obtain a reliable range distribution, 
ranges of at least a few thousand recoils 
simulated. 

the 
are 

To obtain a theoretical estimate of primary 
damage the nuclear and electronic deposited en- 
ergies F,,(z) and F,!z), respectively, are also 
calculated during the range simulation. The en- 
ergy losses of the recoil atom are evaluated for 
each time step and stored in arrays as a function 

To test our simulation method a number of 
implantation simulations were carried out. The 
ions and ion energies were selected to test im- 
plantation at ion velocities encompassing two or- 
ders of magnitude. Different pairs of ions and 
sample structures were selected to test implanta- 
tion of both light and heavy ions into both light 
and heavy backings. All the implantations used 
for the tests have been previously studied in our 
laboratory [7,25,30,34]. The simulations are listed 
in Table 1. 

For the implantations in silicon (numbers 1, 2 
and 4-6 in the table) the angle of incidence was 

Table 1 
Range results for the various simulations. The error given for the range is the statistical error of the simulation, and does not take 
into account the uncertainties of the nuclear and electronic stoppings. The MOLDY program was used to perform full MD 
simulations, whereas the MDRANGE program used the RIA. The efficiency factor in the last column tells how many events were 
calculated in one CPU hour on a Decstation 3100 using the Ultrix operating system. Since the TRIM91 program is usually run on a 
PC platform, the TRIM efficiency factor is given for simulations performed on an IBM PC-compatible 386SX computer with a 33 
MHz clock speed 

of the depth. The nuclear energy loss is calcu- 
lated by subtracting the electronic energy loss 
obtained from Eq. (4) from the total energy loss 
of the recoil ion. The final deposited energy 
distributions are obtained by taking the average 
of the distributions of each individual recoil event. 

5. Test of the method and discussion 

Implantation 

1. 10 keV 3 ‘Si + a-Si 

(10 keV A 2.53 A/fs) 

2.40 keV ‘H -+ c-Si 

(40 keV A 27.8 A/fs) 

3.40 keV He + Ta 

(40 keV A 13.9 A/fsl 

4. 1 keV 3oSi + c-Si 

(1 keV 2 0.80 A/fs) 

5. 300 eV 3oSi + c-Si 

(300 eV A 0.44 A/fs) 

6. 100 eV 3oSi + c-Si 

(100 eV 4 0.25 a/f,) 

Program 

MOLDY 

MDRANGE 
TRIM 

MOLDY 

MDRANGE 
TRIM 

MOLDY 

MDRANGE 
TRIM 

MOLDY 

MDRANGE 

MOLDY 

MDRANGE 

MOLDY 

MDRANGE 

Mean range Straggling 

(8, (ZQ 

I72 +3 93 +2 

170 +_l 87 +1 
185 *1 82 +l 

4580 +20 727 f 7 

4555 of: 6 738 f 3 
4140 *lo 664 f 3 

1540 +20 810 +10 

1490 +20 760 + 10 
1280 +10 602 f 3 

31.2 + 0.2 21 f 0.1 

32.5 rt 0.3 22 + 0.2 

11.6 f 0.1 6.3 f 0.1 

12.1 f 0.1 6.2 f 0.1 

5.09* 0.03 2.50+ 0.01 

5.35+ 0.02 2.29+ 0.01 

Effect 

fevents/CPUh) 

81 

1200 
4700 

2.9 

51 
6300 

2.5 

46 
1400 

550 

7400 

830 

13000 

900 
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tilted 6” from the [OOl] crystal direction against 
the [OlO] direction. The initial position of the 
recoil atom was selected randomly over a square 
with a side length of 5.43 A to account for all 
possible incidence positions in a ynit cell in sili- 
con. The square was located 2.7 A above the cell 
surface. 

- - MOLDY 

The initial atom coordinates in implantation 2 
were the coordinates for amorphous silicon (aSi) 
given in Ref. [33]. 

During the initial displacement calculation the 
time step At was given the constant value 2 fs. 
During the range calculationOAt was determined 
from Eq. (3) with k, = 0.1 A and E, = 300 eV. 
These values we obtained from a number of test 
simulations where k, and E, were varied. 

0 1000 2000 3000 4000 5000 6000 

Depth (A) 

Fig. 4. MD and BCA range profiles of 40 keV H implantation 

in c-Si. 

The structure of Ta in implantation 3 was 
assumed to be polycrystalline with a grain size 
much larger than the implantation range. Poly- 
crystallinity was modeled by selecting the implan- 
tation angles randomly (the polar angle 0 be- 
tween 0 and 45”, the azimuthal angle 4 between 
0 and 360”) to describe implantation in all crystal 
directions. The interatomic potential and elec- 
tronic stopping employed for all the simulations 
were those given by Ziegler et al. in Ref. [12]. 

ping and repulsive interatomic potential as the 
MD simulations. Since the version of the TRIM 
program used (TRIM91) does not take into ac- 
count the crystal structure of the sample, the 
results are not directly comparable. Inspection of 
Table 1 shows that the MD and TRIM results 
differ by up to 20%. 

5. I. Test of the RLA method 

To give an impression of how much the results The validity of the RIA was tested by compar- 
of our method and conventional BCA methods ing RIA results to results of full MD calculations 
differ, the high-energy test simulations (implanta- (where all interactions are taken into account). In 
tions l-3) were also carried out with the TRIM Figs. 3-5 and Table 1 the results of RIA simula- 
program commonly used to calculate ion ranges tions have been compared with results from full 
[20]. The program uses the same electronic stop- MD simulations. The results from the full MD 

g 10 keV Si +a-Si - MOLDY 
5- ” MDRANGE - 

0 100 200 300 400 

Depth (A) 
Fig. 3. MD and BCA range profiles of 10 keV Si implantation 

in a-% 

g 40keVHe-+Ta - MOLDY 
3 “’ ” MDRANGE 

0 1000 2000 3000 4000 5000 

Depth (8) 

Fig. 5. MD and BCA range profiles of 40 keV He implanta- 
tion in Ta. 
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simulations in Figs. 3 and 4 have been success- 
fully compared with experimental range profiles 
in earlier works at our laboratory, see Refs. [7,30]. 

A very good correspondence between the full 
MD and RIA results can be seen in the figures 
and table, indicating that the RIA method is valid 
at keV energies. 

At lower energies the interaction energy be- 
tween the recoil ion and lattice atoms approaches 
the energies by which the lattice atoms interact 
with each other. Therefore one would expect the 
RIA to break down at sufficiently low energies. 
Simulations of implantation of 3oSi into c-Si were 
performed to find out the low energy limit of the 
validity of the RIA. The results are given in Table 
1. It was found that RIA simulations give practi- 
cally the same results as full MD calculations at 
implantation energies as low as 100 eV. Below 
about 300 eV there is a statistically significant 
difference in the mean range, but since it is less 
than one fourth of the interatomic distance 2.35 
A, the difference is of very little physical impor- 
tance. 

5.2. Calculation of deposited energies 

The calculation of deposited energies using 
the TRIM91 and MDRANGE programs is 
demonstrated in Fig. 6. The range and deposited 
nuclear energy distributions for implantation of 

a 10 keV Si + a-% - Fq (MD) k 
..,..,,.,,.,,, Fan (TRIM) _ 5 

- Range(MD) d 
‘~~‘~~~~~ Range (TRIM) - z 

0 100 200 3ocl 400 

Depth (A) 
Fig. 6. Deposited energies and range profiles for implantation 
of 10 keV 3oSi in a-5 calculated with the TRIM and 
MDRANGE programs. 

10 keV 3oSi in amorphous silicon are shown. The 
deposited nuclear energy is the energy deposited 
to primary knock-on atoms by the recoil atom. 
The deposited energy calculated using the 
MDRANGE program shows a distinct peak near 
the sample surface which is not visible in the 
profile calculated with the TRIM program. The 
total nuclear deposited energies per implanted 
ion were 8400 and 7500 eV in the MDRANGE 
and TRIM simulations, respectively. 

The difference shows how the different ways 
of describing amorphous silicon lead to differ- 
ences in primary damage distributions. 

5.3. Efficiency of the simulations 

In the last column of Table 1 efficiency figures 
are given for the simulations. The numbers show 
that the use of the RIA in the MD simulations is 
highly advantageous. The RIA simulations per- 
formed with MDRANGE are on the average 15 
times faster than the corresponding MOLDY 
simulations. The TRIM program, although run 
on a slower computer (see the table caption) still 
performs far better than the MD simulations. 

Besides the obvious advantage of shorter cal- 
culation times, the RIA method also increases 
the range of physical problems that can be treated 
with MD simulations. For instance, implantation 
at high energies which are much used in the 
semiconductor industry [l] can now be simulated 
realistically. Also, the size of the implanted sam- 
ple is not limited in our method. 

We also believe that our method can be devel- 
oped further to treat, for instance, full collision 
cascades efficiently. Some provisions have already 
been made in writing the MDRANGE code to 
enable it to be expanded to calculate the move- 
ment of primary knock-on atoms. 

6. Conclusions 

We have presented the first practical method 
based on molecular dynamics simulations to cal- 
culate ion ranges and deposited energies in the 
l-100 keV energy range. The method combines 
cell translation techniques and the RIA within 
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the framework of molecular dynamics simula- 
tions. 

We calculated range distributions of 40 keV H 
implantation of Si, 40 keV He implantation of Ta 
and 100 eV-10 keV Si implantation of Si with the 
MD method. The results showed that one can 
ignore interactions between lattice atoms when 
calculating the distribution of primary damage 
during ion implantation. 

We also presented principles by which one can 
simulate implantation in polycrystalline or com- 
plexly damaged materials. 

We conclude that our algorithms offer the 
most realistic practical method for calculating the 
distribution of primary damage in keV ion im- 
plantations. 
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