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Repulsive interatomic potentials calculated at three levels of theory
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The high-energy repulsive interaction between nuclei at distances much smaller than the equilibrium bond
length is the key quantity determining the nuclear stopping power and atom scattering in keV and MeV radiation
events. This interaction is traditionally modeled within orbital-free density functional theory with frozen atomic
electron densities, following the Ziegler-Biersack-Littmark (ZBL) model. In this work, we calculate atom
pair-specific repulsive interatomic potentials with the ZBL model, and compare them to two kinds of quantum
chemical calculations (second-order Møller-Plesset perturbation theory in flexible Gaussian basis sets as well as
density functional theory with numerical atomic orbital basis sets) which go well beyond the limitations in the
ZBL model, allowing the density to relax in the calculations. We show that the repulsive interatomic potentials
predicted by the two quantum chemical models agree within ∼1% for potential energies above 30 eV, while the
ZBL pair-specific potentials and universal ZBL potentials differ much more from either of these calculations.
We provide pair-specific fits of the screening functions in terms of three exponentials to the calculations for all
pairs Z1-Z2 for 1 � Zi � 92, and show that they agree within ∼2% with the raw data. We use these potentials to
simulate ion implantation depth profiles in single-crystalline Si and show very good agreement with experiment.
However, we also show that under channeling conditions, the attractive part of the potential can affect the depth
profiles.
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I. INTRODUCTION

Radiation effects occur widely in nature, both here on
Earth and in space, and are important in numerous fields
of human technology. Technologies where radiation effects
need to be considered include nuclear reactors and particle
accelerators [1,2]. Moreover, radiation is also widely used in
material science: for example, ion implantation has become an
indispensable process in the manufacture of integrated circuits
[3], and irradiation is therefore one of the key technologies
behind the information revolution that began in the late 20th
century.

Even though radiation events can be induced by many
kinds of particles (e.g., natural fission fragments, neutrons
in a reactor, cosmic muons, accelerated atoms or electrons,
and x-ray and gamma photons), the final damage is deter-
mined by the collision cascade that the energetic nucleus
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causes with the atoms in the sample [4,5]. In other words,
the final material modification is induced by nuclei in the
material that have received a recoil energy from the initially
energetic particle [1,6,7]. The interaction of such high-energy
nuclei with each other is dominated by the highly repulsive
part of the potential energy V ({ri}) [8], where ri are nuclear
coordinates. Because the potential energy increases rapidly
in decreasing internuclear distance, the high-energy region of
the potential is associated with atoms that are close to one
another. In the case of secondary radiation effects, V ({ri})
thus mainly depends on the interatomic separations ri j , and
not also on, e.g., the angles between the various chemical
bonds, or the number of neighbors that the atoms have, as
equilibrium potentials often do [9]. As a result, it is commonly
considered that the irradiation process can be modeled as a
set of independent binary collisions [5,10]. The kinetics of
these binary collisions (energy transfer, scattering angle) that
controls the nuclear stopping power is then fully determined
by the repulsive interatomic potential.

Several types of repulsive interatomic potentials have
been developed in this general formalism since the 1940s
[8,11–14]. However, there have been no published reports
on using first-principles methods to examine systematically
all interatomic potentials at first-principles levels of the-
ory. In this work we carry out ab initio calculations of
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interatomic potentials at three different levels of theory. First,
we present calculations performed with second-order Møller-
Plesset (MP2) perturbation theory with flexible Gaussian-type
orbital (GTO) basis sets for all atom pairs for which the sum
of the atomic numbers Z1 + Z2 � 36, for which relativistic
effects are expected to be insignificant. Second, we present
density functional calculations carried out with numerical
atomic orbital (NAO) basis sets using the DMOL code that
includes relativistic effects for all pairs up to Z1, Z2 � 92.
Third, we present calculations with the orbital-free density
functional (OF-DFT) model that underlies the widely used
Ziegler-Biersack-Littmark (ZBL) universal potential used in
the stopping and range of ions in matter (SRIM) software [15]
for all pairs of stable atoms up to Z1, Z2 � 92. In contrast to
the first two models, the OF-DFT calculations employ fixed
atomic electron densities, that is, the electron density has not
been optimized in the OF-DFT calculations.

The layout of this work is as follows. In Sec. II, we discuss
the general theoretical basis of calculating repulsive inter-
atomic potentials with quantum chemical methods, and then
in Sec. III the specific three approaches we use in this work for
calculating repulsive potentials. In Sec. IV, we systematically
compare the potentials computed with these approaches for all
atom pairs. We study the differences of our potentials to the
ZBL potentials for select systems in Sec. IV B. We contrast
our quantum chemical calculations to our OF-DFT calcula-
tions in Sec. IV C, and find significant differences between the
quantum chemical calculations and the approximate OF-DFT
calculations carried out following ZBL. We proceed with a
systematic analysis of the differences in Sec. IV D, finding
that our quantum mechanical data indeed agree well with each
other. We then use our best data set to fit analytical potentials
for all atom pairs in Sec. V. Finally, to explore how sensi-
tive experimentally measurable quantities are to the choice
of potential, we study differences of range profiles computed
with various potentials and compare them with experiments in
Sec. VI. The paper ends with a summary and conclusions in
Sec. VII.

II. QUANTUM CHEMISTRY OF REPULSIVE
INTERATOMIC POTENTIALS

A. Screening function formalism for repulsive potentials

To understand the scientific basis of the repulsive potential
calculations, we first discuss the approaches used including re-
cent developments that lay the basis of the results of the paper.
The interaction of bare nuclei without any electrons (in the
absence of nuclear resonances, which are beyond the scope
of this work) is given by the Coulomb potential, expressed in
international standard (SI) units as

VCoul(r) = 1

4πε0

Z1eZ2e

r
. (1)

Here ε0 is the dielectric constant = 8.854 187 817×10−12

F/m, Z1 and Z2 are the atomic numbers of the two colliding
atoms, e the elemental charge = 1.602 176 634×10−19 C, and
r the distance between the two atoms.

For nuclei with electrons, the interaction can be described
within the Born-Oppenheimer (BO) approximation [16]: the
motion of the nuclei is decoupled from that of the electrons.

The coupled motion, including all kinds of excitation and
ionization effects, is included in electronic stopping power
[5,17–20]. The interatomic potential V (r) can be computed
quantum mechanically for binary collisions in the BO ap-
proach as the difference between the total energy E tot

1+2(r)
of a diatomic system with nuclei Z1 and Z2 separated by an
internuclear distance r, and the total energies of the two atoms
at dissociation E tot

1 and E tot
2 , respectively, as

V (r) = E tot
1+2(r) − E tot

1 − E tot
2 . (2)

This expression can be rearranged into

V (r) = VCoul(r) + E el
1+2(r) − E el

1 − E el
2 , (3)

where E el
1+2(r), E el

1 , and E el
2 are the electronic energies of the

diatomic molecule and the two atoms, respectively. The total
energies E tot

1+2(r), E tot
1 , and E tot

2 [or the electronic energies
E el

1+2(r), E el
1 , and E el

2 ] can then be computed with established
electronic structure methods (cf. Sec. III).

As the Coulomb term VCoul(r) ∝ r−1 diverges in the limit
r → 0, while the electronic energy tends to a finite value (the
electronic energy E el

A+B of the united atom A + B) the inter-
atomic potential is dominated by the Coulomb potential at
small internuclear distances (r � 0.1 Å). Therefore, repulsive
potentials are commonly described in the form

V (r) = VCoul(r)φ(r), (4)

where the screening function φ(r), whose determination is the
main focus of our work, is defined by

φ(r) = V (r)/VCoul(r). (5)

The dominance of the Coulomb term at close range yields the
property φ(r) → 1 when r → 0.

In contrast, at large internuclear distances, the electrons
surrounding the atoms screen the bare Coulomb interaction
between the two nuclei, resulting in an interaction poten-
tial V (r) that is weaker than the pure Coulomb potential
VCoul(r) ∝ r−1; for example, it is well known that V (r) ∝
−r−6 in the van der Waals limit [21]. Since V (r) approaches
zero faster than VCoul(r) does, one therefore observes that
φ(r) → 0 when r → ∞.

The two features discussed above make the screening
function attractive for use in simulations: unlike the bare in-
teratomic potential V (r), φ(r) has a limited numerical range
and varies smoothly across all internuclear distances, making
it easy to interpolate it accurately from a moderate number
of tabulated points, for example. It is worth noting that also
chemical interactions can be considered in this formalism,
since the mapping r → VCoul(r) is invertible, and it is easy to
see that the description of a bonded diatomic molecule leads
to φ(r) < 0 at chemically bound interaction distances r [12].
Recently, one of us has shown that also antiproton-atom in-
teractions can be modeled in this formalism [22], even though
the Coulomb interaction between the nuclei is then attractive
instead of repulsive.

The simplest analytic expression for φ(r) of a repul-
sive potential that satisfies the criteria limr→0 φ(r) = 1 and
limr→∞ φ(r) = 0 is an exponential, as proposed by Bohr [8].
However, as a single exponential cannot adequately describe
interatomic interactions over the relevant range of internuclear
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distances r that spans several orders of magnitude, a sum
of exponentials is commonly used instead [11,13,23]. Other
functions suitable for expansions of φ(r) have been proposed,
as well [14,24–28].

The most widely used repulsive interatomic potential to
date is the “universal” ZBL potential, named after Ziegler,
Biersack, and Littmark, who are the authors of [13]. ZBL
carried out simplified quantum mechanical calculations for a
large number of atom pairs Z1-Z2, and then fitted the results
to an analytic universal form assumed to be valid for all Z1-Z2

pairs. The quantum calculations of ZBL were based on the
assumptions that (i) the electron densities of the two atoms
do not change as the atoms approach each other, and that (ii)
the change in energy due to overlapping electron densities
can be modeled within the local density approximation (LDA)
[29–32] of orbital-free density functional theory (OF-DFT)
[33] by applying the expressions for the homogeneous elec-
tron gas to the inhomogeneous system of electrons moving in
the field of the two nuclei.

B. United atom approach for repulsive potentials

Although the superposition of atomic densities assumed in
the ZBL scheme is a reasonable approximation at distances
beyond the equilibrium distance r � requi [34–36], it does not
take into account that when the two atoms approach one an-
other, the exact electronic wave function is strongly modified
from the ground state of the atoms at dissociation [37].

To understand this, let us consider a simple thought exper-
iment: when r → 0, the electron density of the system of two
atoms Z1 and Z2 must in fact approach the electron density
of the united atom with atomic number Z1 + Z2. This case is
achieved in practice already when the internuclear distance is
smaller than the 1s orbital of the united atom; we denote this
distance rua, where “ua” stands for united atom. This united
atom approach has been recently introduced for repulsive
potentials [38], and in this work we apply and analyze it
systematically for all atom pairs in the nonrelativistic limit.

If superposition could be applied when Z1 = Z2 = Z , the
electron density of the united atom with atomic number 2Z
would be simply twice that of Z . Yet, already the analysis of
the hydrogenic atom shows that this is not true: the radius of
the 1s orbital of the united atom is actually half that of the
separate atoms. As screening effects are negligible for the 1s
orbital, this simple argument shows that the superposition of
atomic densities leads to a completely incorrect form for the
density at the united atom limit.

The correct electronic structure is easy to determine at the
united atom limit, and the resulting electron density is indeed
found to differ from the superposed electron densities of the
two atoms assumed by the ZBL model. Figure 1 illustrates
that the electron density of 28Ni is not twice the electron
density of 14Si, which is not twice the electron density of 7N,
as the radial structures of the electron densities of the three
atoms are pronouncedly different. One can also note that while
the real electronic wave function satisfies the Pauli exclusion
principle, the superposition of atomic densities breaks this in
a striking fashion by placing the electrons from both atoms in
the same orbital at the united atom limit.

FIG. 1. Electron densities of the gas-phase N, Si, and Ni atoms
from the GRASP code [45,46]. Also indicated are the equilibrium
nearest-neighbor interatomic separations requi in the N2 dimer and
in solid crystalline Si and Ni. The inset shows the distances r � rua

where the united atom approximation may be used. Also shown are
the electron densities used in the ZBL model (dashed lines).

With a correct description of the united atom limit, the
interatomic potential can be reliably computed at small r,
r � rua, using perturbation theory [39], for example. However,
capturing the electronic structure at intermediate separations,
rua < r � requi, where the inner electronic shells of the two
atoms partly overlap while the outermost shells resemble
those of the united atom [40], is quite challenging. Excluding
the case of hydrides, where the united atom model yields a
qualitatively correct model of the electronic structure of the
diatomic molecule [41,42], in the general case, the orbitals of
the diatomic molecule undergo significant relaxation effects
from those of the free atoms, and the chemistry of the high-
energy region remains relatively unexplored.

In interesting cases, the occupied orbitals undergo thor-
ough changes in character at intermediate separations: for
example, in the NeCa � Zn, MgAr � Zn, and Ar2 � Kr
barriers studied in [38], one goes from s and p electrons of
the incoming atoms at separation to s, p, and d electrons
in the united atom limit. These shell reorganizations occur
somewhere in the intermediate region, and are associated with
huge changes in the total energy: for example, the relaxation
induced by allowing d orbital occupation in the Zn atom is
around 600 eV, and in the Kr atom around 2000 eV.

The ground spin state can also change along the internu-
clear distance. For example, the collision of two Mg atoms,
each of which has a singlet ground state, will produce a Cr
atom at r → 0, whose ground state is a septet. It therefore
appears that a systematic study of this system should consider
the whole manifold of spin states from the singlet to the septet,
as the transition from the singlet state at separation to the
septet for the united atom may also involve the triplet and
quintet states along specific internuclear distances.

Only around the chemical equilibrium distance requi is
there broad knowledge of the electronic structure of diatomic
molecules from conventional quantum chemistry. Yet, the
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electronic structure of many diatomic molecules around the
equilibrium distance remains unknown to this day, especially
for systems involving open d or f shells, that is, molecules
containing transition metals or lanthanides. As an example,
the ground states of many carbides and chlorides of first-row
transition metals are still unknown [43], and molecules with,
e.g., two transition metal atoms are even more challenging.

Previous work in Ref. [44] has shown that the error in φ(r)
is almost totally governed by the quality of the one-particle
basis set, with the differences between various levels of the-
ory (e.g.. Hartree-Fock vs coupled-cluster theory vs density
functional theory) being negligible with respect to the pursued
level of accuracy. Similarly, the role of the employed charge
state is expected to have a negligible effect on the repulsive
barrier, as differences of the order of 1 eV, that would be
unacceptable for modeling the chemical equilibrium, become
negligible in the highly repulsive part of the interatomic po-
tential dominated by VCoul(r).

As most electronic structure methods have been developed
for the region r ≈ requi, a major problem in the present effort
is to find a stable numerical representation that can adapt
to the varying electronic configurations found in the regime
rua < r < requi. A major methodological advance was recently
achieved by one of us [38], in showing that the strongly repul-
sive region can be faithfully modeled with established atomic
basis-set approaches, if the united atom limit is included in
the construction of the basis set and if the significant linear
dependencies that arise in the basis set at small internuclear
distances are properly taken care of. In this work, we employ
this method to verify the accuracy of the calculations carried
out with the two other methods discussed below.

III. METHODS

A. Gaussian-type orbital calculations (“MP2”)

Preceding work in Ref. [44] found that the repulsive poten-
tial can be accurately reproduced with Gaussian-type orbital
(GTO) calculations, if additional basis functions are added on
the bond between the nuclei. In this work, we follow [38]
and go beyond the use of bond functions by ensuring that
the united atom limit is correctly reproduced by the calcula-
tion. With this aim, we introduce ghost basis functions [47]
corresponding to the united atom at the center of charge at
z(r) = ZBr/(ZA + ZB), when atoms A and B are placed at the
origin and at (0, 0, r), respectively. State-of-the-art polariza-
tion consistent (pc-n) GTO basis sets by [48] are employed
in all calculations, with the basis set for the ghost atom also
including additional polarization functions. To allow even the
deep core orbitals to hybridize, i.e., to form bonding and
antibonding orbitals, all the GTO basis sets are employed in
fully uncontracted form. After testing, the final results are
shown for the triple-ζ pc-2 basis set, which is expected to
afford screening functions of high quality.

The resulting molecular basis set has pathological lin-
ear dependencies for vanishingly small interatomic distance,
r → 0. A pivoted Cholesky decomposition procedure was
employed to remove linearly dependent basis functions [49];
this method was shown in [38] to afford excellent accuracy in
Hartree-Fock (HF) calculations compared to ones performed

with the HELFEM program [50,51] that employs numerical
basis functions following the finite-element method, repro-
ducing values directly at the complete basis-set limit.

A threshold of 10−6 was employed in the pivoted Cholesky
procedure to choose a linearly independent set of basis func-
tions from the whole basis set, while a threshold of 10−5 was
employed to form orthonormal linear combinations thereof to
serve as the expansion basis for the HF molecular orbitals. The
PYSCF program package was employed for the GTO calcula-
tions [52]; note that PYSCF evaluates all the necessary integrals
analytically.

The calculations were run separately for all atom pairs and
each basis set. The calculations for each such combination
were carried out as spin unrestricted. Based on the findings
of Ref. [44], we assume that the chosen spin state or config-
uration will have negligible effect on the strongly repulsive
barrier; correspondingly, the calculations were carried out for
the lowest spin multiplicity M possible: M = 1 or 2 for even
and odd numbers of electrons, respectively.

The self-consistent field calculations were carried out with
a Newton-Raphson solver in combination with stability anal-
ysis [53] to allow the spin symmetry to break. Note that in
reference to the above discussion, this choice of methodology
should also allow the calculations to converge on a higher
spin state, which may be useful for systems such as the
Mg-Mg case discussed in Sec. I: the use of spin-unrestricted
orbitals with stability analysis in principle allows switching
the spin state along the internuclear coordinate by the intro-
duction of “spin contamination,” even though differences in
the screening functions for various spin states are expected to
be negligible at small r.

The calculation begins at the largest internuclear distance,
for which the density is initialized with a superposition of
atomic densities [34], while the calculations for all succes-
sive points were initialized with the electron density of the
previous point. The atomic total energies EA and EB were
determined in separate calculations.

When the HF calculation converged, the electron correla-
tion effects neglected by HF were estimated with second-order
Møller-Plesset perturbation [54] (MP2) theory, yielding the
final energy employed in the GTO calculations of this work.

B. Numerical atomic orbital calculations (“DMOL”)

As a followup of the work presented in [44], we used the
DMOL97 code to calculate the interatomic repulsive potential
for all atom pairs Z1, Z2 � 92 soon after [44] was published.
These results have since been used in numerous publications
of radiation effects; see, for instance [55–60]. The focus in
this work is to cross-check the DMOL97 results against the
data obtained with the approach of Sec. III A, which should be
more accurate from many points of view. Another contribution
of this work is the publication of all the pair-specific DMOL97
potentials as auxiliary data sets and a systematic comparison
of our models with the ZBL.

The approach to use DMOL [61–63] to calculate pair po-
tentials within all-electron density functional theory (DFT)
[64,65] was introduced in [66]. The code has the advantage
that it uses numerical atomic orbitals that can be of any form,
and the program can be run in all-electron mode. We found in
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[44] that it was crucial to augment the default DMOL numerical
atomic orbital basis sets with hydrogenic orbitals [61,63] to
obtain a good description of the repulsive potential also at
high energies. Moreover, the basis sets for each element with
atomic number Z were further augmented with the hydrogenic
basis sets for element Z − 1, which was found to further
improve the convergence of the calculations. For elements
with Z < 40, the hydrogenic basis sets for shells n = 1, 2, 3, 4
were used for both Z and Z − 1. For elements with 41 < Z <

55, hydrogenic basis sets for shells n = 1, 2, 3, 4, 5 were used
for Z , and n = 1, 2, 3 for Z − 1. For elements with Z > 54,
hydrogenic basis sets were used for shells n = 1, 2, 3. Since
the heaviest elements had a large number of regular numerical
atomic orbitals, a limit of 19 on the number of orbitals used in
the DMOL97 code prevented us from using a larger number of
hydrogenic orbitals for the heaviest elements.

The DMOL97 calculations were carried out including scalar
relativity in the “vpsr” pseudopotential [63], employing LDA
exchange [31,32] and the Vosko-Wilk-Nusair (VWN) correla-
tion functional [67].

The DMOL calculations were carried out for 74 internuclear
distances from 0.002 Å upwards. The largest considered in-
ternuclear distances were intentionally set to 100 and 1000 Å,
as the two atoms essentially do not interact at such large
distances; hence, the energy at 1000 Å was used to determine
the reference energy E tot

1 + E tot
2 .

Note that this approach can lead to an energy that differs
from the sum of the energies of two free atoms, as a different
spin state may be required to properly dissociate the atoms,
i.e., reproduce the latter energy exactly. However, the differ-
ence in total energy is only of the order of ∼1 eV, which is
very small compared to the energies in the repulsive region
�30 eV, and the forces derived from the potential F = dE/dr
that are used in MD simulations are not affected by the choice
of the reference level since the derivative of a constant van-
ishes.

C. Orbital-free density functional calculations
(“ZBL pair specific”)

While pair-specific ZBL interatomic potentials have oc-
casionally been used in literature without reference to their
source [68–70], the code or data used by ZBL are no longer
available, except for the electron densities and the obtained
“universal” fit. We have reimplemented the OF-DFT method
following Wedepohl [71], which was likewise used by ZBL.
In this approach, the electronic terms in Eq. (3) are reorga-
nized into the sum of an electronic Coulomb term Vc(r) and
quantum mechanical terms that describe the electrons’ kinetic
and exchange energy Vk (r) and Vx(r), respectively, as

V (r) = VCoul(r) + Vc(r) + Vk (r) + Vx(r). (6)

As discussed in Sec. I, the terms are evaluated assuming that
the electron densities of the two atoms remain unchanged
and add up linearly. As Eq. (3) consisted of differences of
energies between the diatomic system and the two atoms at
separation, the lattermost three terms in Eq. (6) represent
quantities that are commonly referred to as “excess energies,”
as they compare the energy of the diatomic system to that
of its constituent atoms at separation. The repulsive nuclear

Coulomb term VCoul(r) already appeared in Eq. (3), and its
expression was given in Eq. (1).

The electronic Coulomb term Vc(r) contains the classical
nucleus-electron and electron-electron interactions, whose ex-
act expressions are well known. The excess kinetic energy
Vk is approximated with the orbital-free Thomas-Fermi (TF)
LDA functional [29,30]. Denoting the electron densities of
atoms 1 and 2 as ρ1 and ρ2, respectively, the TF expression
for the excess kinetic energy reads as

Vk = κk

∫ {
[ρ1(r) + ρ2(r)]5/3 − ρ

5/3
1 (r) − ρ

5/3
2 (r)

}
d3r,

(7)

where the constant is

κk = 3

5

h̄2π2

2me

(
3

π

)2/3

≈ 21.879 eVÅ2. (8)

The excess exchange energy Vx can be computed analogously
by the LDA [31,32] with a similar expression, where the
power 5

3 is replaced by 4
3 and κk is replaced by [13,71]

κx = 3

4

e2

4πε0

(
3

π

)1/3

≈ 10.635 eVÅ. (9)

Our numerical approach to the evaluation of the integrals
appearing in Vc(r), Vk (r), and Vx(r) differs from that of
Refs. [13,71] and is presented in detail in Appendix B. The
listings supplied by ZBL in [13] were used for the electron
densities ρ1(r) and ρ2(r), comprising all stable atoms plus Bi
and U. The densities had been obtained by ZBL by spherically
and spin averaging models of solid-state electron densities
ρ(r) constructed by superposing atomic electron densities
from exchange-only LDA calculations, except that for some
systems, they extracted averaged atomic electron densities
from true solid-state LDA calculations. We compared our
results for Vc, Vk , and Vx for the B-B and Au-Au systems
against data given in Ref. [13], and found our data to be in
excellent agreement with the calculations of ZBL.

In addition, we also applied our reimplementation to elec-
tron densities of atoms in the gas phase, which were calculated
using a recently published module [46] for the GRASP2018
program [45]. GRASP2018 is based on the fully relativistic
multiconfiguration Dirac-Hartree-Fock (MCDHF) method. A
comparison of the resulting spherically averaged solid-state
and atomic electron densities for N, Si, and Ni is given in
Fig. 1.

IV. RESULTS

A. Comparison with earlier model calculations

As discussed in Sec. I, it is by now well known that the
quality of the screening function φ(r) in the repulsive region is
primarily determined by the quality of the one-electron basis
set. The pioneering study in Ref. [44] examined the impor-
tance of the level of theory, and showed that the differences
between screening functions reproduced by Hartree-Fock,
DFT, MP2, and coupled-cluster theory are negligible for the
Si-Si system. Nordlund et al. [44] also showed by comparison
to numerically exact Hartree-Fock calculations (which are
free of basis-set truncation error) that the DMOL approach, also
employed in this work, can reproduce screening functions for
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FIG. 2. Comparison of repulsive interatomic potentials calcu-
lated with four different approaches: The universal ZBL approach,
the fully numerical Hartree-Fock “2D” code, and DMOL calculations
from [44] as well as the MP2 data of this work.

H-Si, N-Si, Si-Si, C-C with an accuracy of the order of 1%
when a rich enough basis set is used.

The issue of the basis-set truncation error was revisited in
the recent study of Lehtola [38], who showed that an enriched
basis similar to the one employed in this work (see Sec. III A)
provides an excellent level of agreement with fully numerical
calculations at the Hartree-Fock level of theory. In the follow-
ing, we therefore assume that the MP2 calculations carried out
in the fully uncontracted triple-ζ pc-2 basis set enriched with
united atom basis functions at the center of nuclear charge (see
Sec. III A) provide a good estimate of the screening functions.

We begin our analysis by comparing the MP2 results with
the two versions of the ZBL potential, and with the earlier
results of Nordlund et al. [44], both their fully numerical
Hartree-Fock calculation and their original DMOL calcula-
tions. Results for the Si-Si system are illustrated in Fig. 2,
where the top part shows the potential energy curve V (r),

the middle part shows the screening function φ(r), and the
bottom part shows the ratio of the screening functions. Since
the differences between the methods are nearly undiscernible
in the top and middle plots, we also plot the ratios of the
resulting potential energies in the bottom part of the plot to
make the differences better visible.

The results in Fig. 2 show that the universal potential of
ZBL starts to deviate from the pair-specific quantum chemical
approaches already above 0.02 Å, whereas the quantum chem-
ical approaches agree well with each other up to a distance of
0.3 Å. In terms of potential energy, these distances correspond
to about 100 and 2 keV, respectively. It is remarkable that
even though the purely repulsive ZBL potential is specifically
meant for the high-energy regions, it still starts deviating from
the quantum chemical data already at quite small distances
and high energies. For example, at the distance of r = 0.1 Å
where the ZBL potential has a value of 13.7 keV, it already
deviates by 4% from the MP2 potential.

The potential energy V and screening function φ have the
same information, as they are connected by a mathematically
exact reversible mapping [multiplication or division by the
internuclear Coulomb potential, see Eq. (5)]. In the remainder
of the paper we illustrate the results only with the screening
functions, and remind the reader that ratios of screening func-
tions coincide with ratios of interatomic potentials.

B. Comparison of select potentials

Figure 3 compares screening functions for four atom pairs:
H-H, H-Si, Si-Si, and Ti-Si. In the case of H-H, the ZBL
potential clearly deviates from the quantum chemical calcula-
tions (DMOL and MP2). The quantum chemical methods agree
well with each other within the plotting accuracy, in line with
earlier findings of Refs. [38,44].

To better distinguish the potentials, we show the corre-
sponding ratios of the ZBL universal, DMOL, and pair-specific
potentials to the MP2 potential in Fig. 4 for the same element
pairs that were examined in Fig. 3. Figure 3 shows Ti-Si,
while Fig. 4 shows N-Si. Further data for other element pairs
are shown in Fig. 5 (He-He, Ne-Ne, Ar-Ar, and H-Br) and in
Fig. 6 (B-Ne, He-Ge, He-Se, and Ti-Si). As the ZBL universal
potential is an averaging fit, it is not surprising that it differs
strongly from the MP2 data. However, it is somewhat surpris-
ing that also the pair-specific ZBL potentials differ from the
MP2 data, and that several of these pair-specific potentials ex-
hibit similar-magnitude differences from MP2 as the universal
ZBL potential.

Comparison of the DMOL and MP2 data shows that these
quantum chemical potentials are in excellent agreement with
each other: the agreement is within 2% at almost all distances
considered in the repulsive region. The only exception is the
case of B-Ne, where the difference is up to 20% (Fig. 6).
This indicates that the DMOL approach is not suitable for
calculation of repulsive potentials for the B-Ne case, and we
recommend using the MP2 data instead for this system.

C. Comparison to orbital-free calculations

The screening functions for four homonuclear systems
(N-N, Si-Si, Ni-Ni, and Au-Au) obtained within OF-DFT are
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FIG. 3. Screening functions of repulsive interatomic potentials
calculated with three approaches: the universal ZBL approach, DFT
calculations with DMOL, as well as the MP2 calculations of this work.
(a) Screening functions for H-Si and Si-Si. (b) Screening functions
for Si-Si and Ti-Si. The black line shows φ(r) = 1 corresponding to
unscreened Coulomb repulsion, for reference.

compared to those obtained with the self-consistent DMOL

calculations in Fig. 7. OF-DFT data are presented for both
calculations based on electron densities of gas-phase atoms
(GRASP), as well as solid-state electron densities (ZBL). The
results of the two OF-DFT calculations are rather close to
each other, indicating that the choice of the electron density
between atoms in the solid or gas phase is of minor relevance;
this is particularly true for interaction energies larger than
10 eV (solid lines in Fig. 7).

A thorough analysis of the average relative differences
between gas-phase (GRASP) and solid-state (ZBL) screening
functions

�Z1,Z2 = 1

N

N∑
i

φ
Z1,Z2
GRASP(ri) − φ

Z1,Z2
ZBL (ri)

φ
Z1,Z2
ZBL (ri )

(10)
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FIG. 4. Comparison of screening functions of repulsive inter-
atomic potentials calculated with three different approaches. The
plots show the screening function produced by the universal ZBL
approach, the DMOL calculations, and the pair-specific ZBL calcula-
tions divided by the MP2 screening function calculated in this work
for the H-H, H-Si, N-Si, and Si-Si atom pairs.

is shown in Fig. 8 for the studied set of homoatomic systems
[Z1 = Z2 = Z in Eq. (10)]. As the near-equilibrium attrac-
tive part of the potential is not of interest in this work, the
average in Eq. (10) was taken over the subset of points for
which the potential is either larger than 10 or 100 eV; this
also ensures that φ(ri) > 0 in Eq. (10). The resulting mean
absolute errors for the two cutoffs are 2.7% and 1.3%, re-
spectively, confirming that the OF-DFT model yields similar
screening functions regardless of whether the atomic electron
density is taken from gas-phase or solid-state calculations.
In Appendix A, a systematic approach to join diatomic pair
potentials to equilibrium potentials based on solid-state DFT
data is presented. This joining procedure should, at least in
principle, also correct for the lack of solid-state effects in the
diatomic potentials.

In contrast, the results of the OF-DFT calculations deviate
strongly from the DMOL data, consistently with the findings
above in Sec. IV B. The differences are particularly large at
large internuclear distance (see Fig. 7): the DMOL potential
drops roughly down to zero in a region where the ZBL poten-
tial is still around 10 eV (Si, Ni, and Au), or even earlier (N).
This likely reflects the failure of the OF-DFT calculation to
adequately describe bond formation, which is a well-known
failure of Thomas-Fermi theory [72]. Also, these calcula-
tions employed frozen electron densities, introducing another

032818-7



NORDLUND, LEHTOLA, AND HOBLER PHYSICAL REVIEW A 111, 032818 (2025)

0.98

1.0

1.02

He-He, ZBL Universal/MP2
He-He, DMol/MP2
He-He, ZBL pair-specific/MP2

0.98

1.0

1.02

Ne-Ne, ZBL Universal/MP2
Ne-Ne, DMol/MP2
Ne-Ne, ZBL pair-specific/MP2

0.98

1.0

1.02

Ar-Ar, ZBL Universal/MP2
Ar-Ar, DMol/MP2
Ar-Ar, ZBL pair-specific/MP2

0.98

1.0

1.02

5 10-3
2 5 10-2

2 5 10-1
2 5 1

r (A)

H-Br, ZBL Universal/MP2
H-Br, DMol/MP2
H-Br, ZBL pair-specific/MP2

R
at

io
X

/
M

P
2

FIG. 5. As Fig. 4, but for the He-He, Ne-Ne, Ar-Ar, and H-Br
element pairs.

significant source of error at small internuclear distances
where the electron density is strongly modified.

D. Quantitative analysis of differences

1. MP2 reference

To quantitatively assess the average difference between the
potentials, we summed up all the differences between the ZBL
universal, ZBL pair-specific, and DMOL screening functions
and the MP2 reference value with a metric similar to Eq. (10):

�Z1,Z2 = 1

N

N∑
i

φ
Z1,Z2
X (ri )

φ
Z1,Z2
MP2 (ri )

− 1, (11)

where the sum runs over the N data points in the MP2 po-
tential. Analogously to Eq. (10), the average in Eq. (11) was
restricted to points either above 10, 30, or 100 eV in the MP2
value.

The comparison of potentials is slightly complicated by the
different choices of r grids at which the potentials were tabu-
lated. The choice of points may also weigh the comparison
towards small distances. To make a systematic comparison
regardless of the choice of tabulations, all the screening
functions were interpolated to an equidistant grid with a
0.01 Å interval starting from the origin, while the analytical
ZBL potential was evaluated exactly. To ensure high accu-
racy between tabulation points, cubic spline interpolation was
used [73]; the same interpolation scheme is also used in the
MDRANGE code for read-in potentials. We tested that using
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FIG. 6. As Fig. 4, but for B-Ne, He-Ge, He-Se, and Ti-Si element
pairs. Note that the case of B-Ne is plotted on a different ordinate
scale than the He-Ge, He-Se, and Ti-Si curves, as well as all the data
in Figs. 4 and 5.

FIG. 7. Screening functions obtained from OF-DFT calculations
using electron densities from GRASP (colored solid lines with dashed
extensions) or ZBL solid-state electron densities (black solid lines
with dashed extensions). Screening functions from DMOL are shown
as reference (dotted colored lines); the OF-DFT calculations (GRASP,
ZBL) are much closer to each other than to the DMOL calculations.
The dashed lines indicate distances for which the interatomic poten-
tial is less than 10 eV.
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FIG. 8. Average relative difference between gas-phase and solid-
phase potentials in the LDA to OF-DFT for homonuclear interactions
where valid data have been obtained for both cases.

an interval of 0.001 Å gave essentially the same average
deviations.

Results from this comparison are shown for all atom pairs
Z1 + Z2 � 36 in Fig. 9. To show all data for �Z1,Z2 in a
single plot without overlapping values on the abscissa, the
� values are plotted against Z1 + Z2/19; letting 1 � Z1 � 36
and 1 � Z2 � 18 is enough to cover all pairs Z1 + Z2 � 36.
In agreement with the observations made above for a few
specific cases, both the ZBL universal and ZBL pair-specific
potentials differ from the MP2 potential by 0%–20% even at
energies above 100 eV, while the DMOL potential is in much
better agreement with the MP2 data.

To summarize the comparisons of different systems, we
averaged �Z1,Z2 over all elemental pairs, resulting in the aver-
aged differences �̄ and root-mean-square deviations σ� given
in Table I. These data confirm that both the universal and
pair-specific ZBL models differ strongly from the MP2 ref-
erences, even at energies above 100 eV which is clearly above
chemical interactions. However, the DMOL potential agrees
within ∼1% with MP2 for practically all atom pairs above
100 eV.

TABLE I. Average �̄ and root-mean-square deviation σ� over all
element pairs Z1 + Z2 � 36 of all potentials compared with the MP2
potential. All numbers are given in %.

V > 10 eV V > 30 eV V > 100 eV

Potential �̄ σ� �̄ σ� �̄ σ�

ZBL universal 15 23 5.0 13 0.6 7.2
ZBL pair specific 26 32 15 20 8.4 11
DMOL 1.9 3.8 1.0 1.9 0.5 0.9
NLH (Sec. V) 2.5 3.9 2.5 2.1 0.15 1.5
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FIG. 9. Average difference �Z1,Z2 between (a) ZBL universal
and (b) ZBL pair-specific, and (c) DMOL potentials with the MP2
potential for all cases within the nonrelativistic limit. The analysis
was done at distances where the MP2 potential is either above 10, 30
or 100 eV.
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FIG. 10. Average difference �Z1,Z2 between (a) ZBL universal
and (b) ZBL pair-specific potentials with the DMOL potential. The
analysis was done at distances where the MP2 potential is either
above 10, 30, or 100 eV. (a) ZBL universal compared to DMOL,
(b) ZBL pair specific compared to DMOL.

2. DMol reference

We also carried out a similar comparison by using the
DMOL data for all element pairs up to Z = 92 as reference,
as MP2 data are not available for the heavier elements. The
results of this comparison are given in Fig. 10 and Table II.

TABLE II. Average �̄ and root-mean-square deviation σ� over
all element pairs available compared with the DMOL potential. All
numbers are given in %.

V > 10 eV V > 30 eV V > 100 eV

Potential �̄ σ� �̄ σ� �̄ σ�

ZBL universal 12 22 5.6 14 1.9 9.3
ZBL pair specific 18 25 9.7 15 4.4 9.2
NLH (Sec. V) 0.7 2.0 −0.31 1.8 −0.13 1.8

Similarly to the differences to MP2 discussed for lower Z ,
both the ZBL universal and ZBL pair-specific potentials again
differ significantly from the self-consistent calculations.

V. ANALYTICAL POTENTIAL (“NLH”) FIT

The comparison of the potentials showed that the DMOL

method produces screening functions that are in good agree-
ment with the MP2 reference. We will now form pair-specific
analytical fits of the DMOL potentials: we reexpress the screen-
ing functions in terms of a linear combination of exponential
functions. Such fits have the benefit that the potential can be
rapidly evaluated at any internuclear distance, and the fitted
potential is guaranteed to be smooth everywhere, as any pos-
sible numerical noise at select data points will be eliminated
by the fitting procedure.

We have thus produced three-exponentials fits

φNLH(r) =
3∑

i=1

ai exp (−bir) (12)

to the screening functions computed with DMOL for all
combinations of the elements Z � 92, where the NLH
acronym stands for the present authors (Nordlund-Lehtola-
Hobler). Note that the internuclear distance r is not scaled
in the exponent, which differs from previous practice
[11,13,14,23,26–28]. The final pair-specific NLH potential is
then obtained from Eq. (12) simply as

VNLH(r) = 1

4πε0

Z1eZ2e

r
φNLH(r), (13)

which enables facile evaluation of forces, for instance. The
screening function φ is unitless.

Any fit to the screening function requires a decision to
be made on how errors on various length scales are valued.
Our aim is to produce repulsive force fields that can be com-
bined in the energy range of 10–100 eV with near-equilibrium
many-body potentials for MD simulations. As the low-energy
part would be already described by a many-body potential,
data points with interaction energies below 10 eV were not
considered in the fits. A nonlinear least-squares fitting proce-
dure was used to minimize the metric

‖φ‖ =
∑

V (ri )�30 eV

[
φNLH(ri ) − φDMOL(ri )

φDMOL(ri)

]2

+
∑

10 eV�V (ri )<30 eV

[
φNLH(ri ) − φDMOL(ri)

φDMOL(VDMOL = 30 eV)

]2

. (14)

This metric was chosen to minimize the relative error in the
screening function at energies above 30 eV. At energies below
30 eV, the data points’ weight is not allowed to increase
further, and an absolute error scaled by the screening function
at 30 eV is used instead.

We provide the obtained coefficients ai(Z1, Z2) and expo-
nents bi(Z1, Z2) together with the resulting root-mean-square
errors as open data. The NLH potential, i.e., the fit coefficients
for the element pairs which will be used for simulations below
in Sec. VI are given in Table III. The full set of fit coefficients
is available in the Supplemental Material (SM) [74]. The
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TABLE III. NLH repulsive potential parameters for select element pairs, obtained by fitting the screening functions to DMOL data. E stands
for the root-mean-square error of the fit above either 10 (E10) or 30 (E30) eV. Parameters for all the potentials are available in the Supplemental
material file \verb+nlh_table_all.pdf+ [74] as well as the online open data package [104].

Z1 Z2 a1 a2 a3 b1×Å b2×Å b3×Å E30 (%) E10 (%)

1 1 −8.99999 9.99999 0.00000 9.55658 8.89086 0.00000 1.32 3.14
1 14 0.34955 0.65045 0.00000 14.03500 3.21949 0.00000 3.38 6.01
5 14 0.21145 0.61640 0.17215 22.46013 4.79260 2.40710 1.65 3.55
13 18 0.10006 0.59380 0.30615 38.18078 8.03267 2.70079 3.15 4.64
14 14 0.30199 0.29621 0.40180 16.28675 6.38346 3.20812 2.33 3.45
14 33 0.16304 0.45925 0.37771 31.18522 8.78859 3.57348 1.74 4.89
26 26 0.34794 0.65206 0.00000 19.25771 4.81918 0.00000 2.90 12.45

exponents are reported in units of Å−1. All the fitted potentials
are purely repulsive.

As can be seen from Fig. 11, the NLH potentials obtained
from fits to the DMOL data agree with the MP2 results almost
as accurately as the original DMOL data sets. The difference
between the NLH and MP2 potentials of all atom combina-
tions has a root-mean-square deviation from zero of 3.95%,
2.13%, and 1.56% for energies above 10, 30, and 100 eV,
respectively. The fitting error over all element pairs is shown
in Fig. 12. The difference between NLH and DMOL potentials
of all atom combinations has a root-mean-square deviation
from zero of 1.95%, 1.79%, and 1.86% for energies above 10,
30, and 100 eV, respectively. Taking these two comparisons
together, one can conclude that the NLH fitted potentials
agree within ∼2% with the best available quantum chemical
potentials above 30 eV.

VI. EFFECT OF POTENTIALS ON ION PENETRATION
DEPTH PROFILES

The above comparison has shown that there are significant
(∼2%) differences between the potentials from self-consistent
calculations (MP2 and DMOL) on the one hand, and even larger
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FIG. 11. Average difference �Z1,Z2 between the NLH and the
MP2 potentials for all cases within the nonrelativistic limit. The
analysis was done at distances where the MP2 potential is either
above 10, 30, or 100 eV. Note that the ordinate scale is three times
smaller than in Fig. 9.

(∼10%) between the self-consistent calculations and the ZBL
potentials on the other hand. We next address the question
whether these differences affect experimentally measurable
quantities. As the test case, we consider the depth distribution
profiles of ions implanted in solid materials, which can be
experimentally measured with several techniques [75–79].

A. Comparison of potentials with each other

The shape and depth of the range profile is mainly deter-
mined by the repulsive interatomic potential when the nuclear
stopping power dominates and when the sample temperature
is low enough that the implanted ions do not diffuse. These
conditions can be achieved by a suitable choice of the ions
and implantation energies.

We compare potentials for four systems, which represent
different energy-ion-solid combinations: 10-keV H ions on Si,
10-keV Si ions on Si, 30-keV Ar ions on Al, and 100-keV Fe
ions on Fe (for protons the electronic stopping dominates over
the nuclear one, but we include it in the comparison because
of the wide interest in hydrogen implantations). Since for the
last case Z1 + Z2 > 36, MP2 potentials are not available for
this system.
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FIG. 12. Average difference �Z1,Z2 between the NLH and the
DMol potentials. The analysis was done at distances where the MP2
potential is either above 10, 30, or 100 eV. Note that the ordinate
scale is 10 times smaller than in Fig. 10.
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We simulated range profiles both in the strongest chan-
neling direction [60], [110] in Si and Al and [111] in Fe, as
well as a good nonchanneling direction for all four cases. The
implantation direction with polar angle θ = 20◦ off the [001]
surface normal and azimuthal angle φ = 20◦ measured from
the [100] direction was used as the nonchanneling direction;
this choice of angles has been shown to lead to range profiles
with minimal channeling effects in all common crystal sys-
tems [60].

Since the aim in this subsection is not to compare with
experiment, but to assess how sensitive the range profiles
are to the repulsive potential, we used in all cases a con-
ventional electronic stopping power model, namely, the ZBL
parametrization from the 1995 version of the TRIM code
[13,80]. The following subsection presents comparisons with
experiments with a more realistic electronic stopping model.

The simulations were carried out in the recoil interac-
tion approximation [81,82] with the MDRANGE code [83,84],
which has been widely used for studies of ion-range profiles
[60,85–87]. The atoms were given random thermal displace-
ments ui corresponding to 300 K using the quantum level
approach that includes contributions from zero-point vibra-
tions [88,89]:

ui = 1

2

√
3h̄2

kB

√
4x−1�(x) + 1

mTD
, (15)

where i denotes the x, y, or z direction, x = TD/T , T is the
sample temperature, m the mass of the sample atoms, TD is
the Debye temperature of the material, and the function �(x)
is the Debye integral

�(x) = 1

x

∫ x

0

ξ dξ

eξ − 1
. (16)

Since the integral does not have a closed-form analytical
solution, we evaluated it with the Stegun numerical series
approximation [90] as described in detail in the Appendix of
Ref. [89]. The Debye temperatures were taken from the tables
of Ref. [91], except for Si for which the value of 519 K based
on more recent experiments was used [92].

The results of these calculations are shown in Fig. 13 for
the implantation of Si-Si, in Fig. 14 for the implantation of
Ar-Al, in Fig. 15 for the implantation of H-Si, and in Fig. 16
for the implantation of Fe-Fe. The depth distributions in the
plots are area normalized to 1 to be in the form of a probability
distribution of the implantation depth. A summary of the re-
sults is given in Table IV. The error bars were calculated as the
standard error of the mean, i.e., the standard deviation of the
values of the individual ion range divided by the square root of
the number of ions [93]. The choice of potential clearly mat-
ters: there are statistically significant differences in the range
profiles as well as mean ranges between the ZBL and quantum
chemical DMOL and MP2 potentials that are comparable to
differences in the interatomic potentials (of the order of 5%).

As expected from the comparison of potentials discussed
earlier, the calculations with the DMOL and MP2 screening
functions lead to results that are practically identical to each
other in all cases except for 10-keV H ions implanted in a
[110] channel in Si. Moreover, in many cases one of the ZBL
potentials agrees fairly well with the DMOL and MP2 poten-
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FIG. 13. Range profiles for 10-keV Si ions implanted into Si in
a nonchanneling (tilt=twist=20◦) (a) and the strongest channeling
[110] direction (b).

tials in the nonchanneled case, while the other agrees better
in the channeled case. Also, in all channeling cases there is
a noticeable difference between the DMOL and NLH potential
results, even though they have almost the same high-energy
part.

These observations indicate that the range distributions
under channeling conditions may be particularly sensitive to
the low-energy part of the potential. To test this hypothesis, we
made hybrid potentials for H-Si where we swapped the low-
energy and high-energy parts of the DMOL and MP2 potentials
above and below 100 eV. Results for this test are illustrated
in Fig. 17, showing that the shape of the range distribution is
indeed dominated by the low-energy part of the potential. This
is likely due to the low-energy part affecting the dechanneling
of the ion once it has slowed down sufficiently; note that the
differences between potentials become significant only near
the end of their range.
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FIG. 14. Range profiles for 30-keV Ar ions implanted into Al in
a nonchanneling (tilt=twist=20◦) (a) and the strongest channeling
[110] direction (b).

To get more insight on whether atomic size affects the sen-
sitivity of the range calculation on the interatomic potential,
we simulated ions in the whole studied range 1 � Z � 92
implanted in the same [110] channeling direction of Si for
which a clear sensitivity was observed in the case of H.
This comparison was done for mean ranges obtained with
the DMOL and NLH potentials. Since the latter potential is a
fit to the DMOL data above 30 eV, they agree within ∼2% at
high energies (see Sec. IV D). However, the NLH and DMOL

potentials are quite different at low energy since the NLH
potential is repulsive at all internuclear distances r, while the
DMOL potential has an attractive part at distances close to the
chemical equilibrium. Data in the inset of Fig. 15 show that
there are sometimes large differences in the mean ranges for
small atomic numbers Z � 10. For larger atomic numbers, the
difference is at most ∼2%, which may be explained by the
higher interaction energies of heavier ions. Hence, the results
indicate that small atoms of low-atomic number may be sen-
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FIG. 15. Range profiles for 10-keV H ions implanted into Si in
a nonchanneling (tilt=twist=20◦) (a) and the strongest channeling
[110] (b) direction. Note that in part (b), the abscissa scale is focused
at the end of range. The inset shows a comparison of the NLH and
DMOL potential mean ranges of various ions in the range 1 � Z � 92
under the same channeling condition.

sitive to the choice of attractive potential, when implanted in
wide channels such as the [110] channel in Si. Comparisons of
different low-energy interaction parts using the data provided
in the Supplemental Material [74] can be used to test whether
a particular channeling condition is indeed sensitive to low-
energy interactions.

However, we note that using a pair potential with the at-
tractive part of a diatomic system may also be misleading
because at the low, near-equilibrium energies below 100 eV,
the interatomic interactions are many body in character. In
other words, the attractive part of the potential in a solid
depends on how many neighbors an atom has in a particular
configuration [94,95], and hence will be different from that
of the diatomic molecule. To account for such effects, one
can use a many-body analytical or machine-learned potential
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FIG. 16. Range profiles for 100-keV Fe ions implanted into Fe
in a nonchanneling (tilt=twist=20◦) (a) or the strongest channeling
[111] (b) direction.

that also accounts for chemical effects [95–99]. We present
an approach by which one can join equilibrium potentials
to the currently developed repulsive ones without any fitting
parameters in Appendix A.
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FIG. 17. Range profiles for 10-keV H ions implanted on Si in
the strongest channeling [110] direction, for the DMOL and MP2
potentials as well as artificial test potentials where the DMOL and
MP2 parts are swapped above and below 100 eV. The potentials are
shown in the inset.

Taken together, these results show that the common as-
sumption, mentioned in the Introduction, that radiation effects
can be described as a sequence of binary interatomic collisions
governed by a repulsive potential may not be valid under all
channeling conditions.

B. Comparison of range profiles with experiments

1. Simulation setup

Direct comparison of range profiles with experiments is
complicated by several factors. Often the thickness of the sur-
face oxide layers is not known, and in many experiments the
implantation tilt and twist angles are not accurately controlled
or reported. The implantation process may also amorphize
semiconductor samples. Moreover, if the sample is polycrys-
talline, it is difficult to know what crystal directions were
facing the beam.

We compare range profiles with the experiments of Cai
et al [78,100], carried out on single-crystalline Si wafers of
(001) surface orientation, at implantation doses low enough
such that the samples were not significantly damaged, which
in most cases meant a fluence of 1013 ions/cm2. Both the

TABLE IV. Mean ranges R̄ in Å for the universal ZBL potential, the pair-specific ZBL potential, the DMOL potential, and the MP2
potential for the studied test cases. Nonchanneled means implantation in the nonchanneling direction θ = φ = 20◦. Since the Fe-Fe dimer
has Z1 + Z2 > 36, MP2 results are not available in this case (see text).

Ion Target E (keV) Direction MP2 DMOL NLH ZBL pairs specific ZBL universal

Si Si 10 Nonchanneled 154 ± 1 154 ± 1 153 ± 1 153 ± 1 162 ± 1
[110] 986 ± 1 987 ± 1 986 ± 1 982 ± 1 1001 ± 2

Ar Al 30 Nonchanneled 295 ± 1 295 ± 1 294 ± 1 291 ± 1 311 ± 1
[110] 1609 ± 2 1620 ± 2 1617 ± 1 1630 ± 2 1710 ± 2

H Si 10 Nonchanneled 1753 ± 2 1751 ± 2 1758 ± 2 1750 ± 2 1750 ± 2
[110] 3123 ± 2 3212 ± 2 3310 ± 2 3307 ± 2 3319 ± 2

Fe Fe 100 Nonchanneled 314 ± 1 312 ± 1 292 ± 1 313 ± 1
[111] 2180 ± 4 2180 ± 2 1997 ± 4 2072 ± 4
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sample tilt and twist angles were reported for nonchannel-
ing implantations. The implantation profiles were measured
with the secondary ion-mass spectrometry (SIMS) technique,
which is well established to measure implantation profiles
in Si.

The experimental depth profiles were scanned in and dig-
itized from [78,100] with the G3DATA code [101]. From
comparison of repeated digitizations, this process is estimated
to introduce errors �1% to the data. The experimental data
may carry larger systematic errors associated with the SIMS
method itself. However, since the original references do not
give estimates of experimental errors, error bars are not re-
ported here for the experimental data.

Simulations were carried out with the same MDRANGE

approach described earlier, except that a surface oxide
layer of 2.2-nm thickness was included in the calcula-
tions; the thickness of the surface layer corresponds to 4
Si unit cells. The sample atoms were given thermal dis-
placements corresponding to 300 K using Eq. (15), which
gave a one-dimensional (1D) root-mean-square displacement
magnitude of 0.079 Å for the Si atoms. The electronic
stopping power was described using the density functional
based Puska-Echenique-Nieminen-Ritchie model utilizing a
three-dimensional (3D) electron density of Si [85], combined
with a Firsov local stopping. This approach has previously
been shown to give excellent agreement between experimental
and simulated range profiles in Si [87].

For the case of As implantation into amorphous Si, the
nonlocal TRIM 1996 electronic stopping was used [80]. This
electronic stopping was also used for the amorphous 2.2-nm
SiO2 surface layers. The amorphous Si was modeled with a
4-nm cube of random atom positions with a minimum sepa-
ration of 2.1 Å. This approach has previously been shown to
well describe implantation into amorphous material [60]. The
ion-oxygen interactions were modeled with the ZBL universal
repulsive potential; since the surface oxide layer is very thin,
using any other potential would not make any significant dif-
ference. We verified this by simulating the cases of 180-keV
As implantation into amorphous Si and 15-keV As into Si in
nonchanneling direction also with the NLH potential for the
As-O interactions. As expected, in both cases the mean ranges
agreed within the statistical uncertainty of ±1 Å.

The beam in ion implanters has always some angular
spread due to the ion optics. The works presenting the ex-
perimental results reported a beam divergence of 1◦ [100]. We
described this in our simulations by a Gaussian distribution
in the incoming tilt (θ ) angle with a standard deviation of 1◦
around the nominal angle.

The simulations for which mean ranges are given in
Table VI were carried out for 100 000 ions; the statis-
tics is reflected in the standard error of the mean. At
the bottom of the table, the average deviation for each
potential is the arithmetic average over each individual de-
viation (Rmean,sim,i/Rmean,expt,i − 1), where sim stands for the
simulated and expt for the experimental values. The root-
mean-square (rms) deviations were calculated as

rms =
√∑N

i=1(Rmean,sim,i/Rmean,expt,i − 1)2

Npot
, (17)

FIG. 18. Range profiles for As ions implanted into Si compared
with experimental data [78]. The data labeled “MD” are simulated
with the MD-RIA approach with the MDRANGE code, and “SRIM”
with the commonly used BCA code SRIM. (a) 100-keV As ions into
a nonchanneling direction (tilt=8◦, twist=30◦). (b) 15-keV As ions
into the [100] channeling direction. The insets show how the range
profile depends on the thickness of the amorphous oxide layer.

where i loops over the various cases simulated (ion, energy,
direction), and Npot is the total number of cases simulated with
this potential (10 for MP2 and 16 for the other potentials).

The dose used in the simulations was the same as the
experimental fluence of 1013 ions/cm2, except for the case
of 200-keV P ions, for which it was 2.5×1013 ions/cm2. For
the cases shown in Figs. 18–20, the simulations were carried
out for 1×106 ions for clarity in the plots. The comparisons
with experiments contain no adjustable parameters, and both
the depth and concentration scales are comparable in absolute
values.

2. Effect of oxide thickness

To examine how sensitive the results are to the oxide
layer thickness, we ran the case of 15-keV As implantation
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FIG. 19. Computed range profiles for B ions implanted into Si in
a nonchanneling direction [(a) 80-keV B ions (tilt=7◦, twist=30◦)]
or the channeling 100 direction [(b) 15-keV B ions]. The data labeled
“MD” are simulated with the MD-RIA approach with the MDRANGE

code, and “SRIM” with the commonly used BCA code SRIM. Exper-
imental data [78] shown for comparison.

into the 100-channel and 100-keV As implantation into the
nonchanneling thickness with only 1-nm oxide thickness as
well as without any oxide at all. The results are plotted in the
inset of Fig. 18 and the mean ranges given in Table V. The
comparisons show that the ranges are indeed quite sensitive to
the oxide. In the channeling case, the ranges are much longer
without the oxide. On the other hand, for a 1-nm oxide the
results are not too different from the case of 2.2-nm oxide.
This shows that even a thin oxide layer is sufficient to scatter
many of the ions right at the surface and hence reduce the
channeling. In the nonchanneling case, the ranges are, on the
other hand, slightly shorter without any oxide. This is because
the oxide scatters some of the ions into a channel, leading to
a longer channeling tail. In both cases, the results for 2.2-nm
oxide thickness clearly agree best with the experiments.

FIG. 20. Computed range profiles for P ions implanted into Si
in a nonchanneling [(a) 200-keV P ions (tilt=8◦, twist=18◦)] or the
channeling [100] direction [(b) 15-keV P ions]. The data labeled
“MD” are simulated with the MD-RIA approach with the MDRANGE

code, and “SRIM” with the commonly used BCA code SRIM. Exper-
imental data [100] shown for comparison.

This observation also explains why many of the cases
that are not compared to experiments (Sec. VI A) have much
stronger channeling effects than the Si cases compared to
experiment. In those simulations, the idealized condition of

TABLE V. Comparison of mean ranges Rmean for As ranges in
Si modeled with the DMOL potential for different oxide thicknesses.
The error bar is the standard error of the mean. Nonchanneling means
implantation into directions where channeling is avoided, simulated
with the same sample tilt and twist angles as in the experiments.

Rmean (Å)

Case No oxide 1-nm oxide 2.2-nm oxide

100-keV nonchanneling 712 ± 2 763 ± 2 778 ± 1
15-keV [100] channel 588 ± 2 376 ± 298 ± 1

032818-16



REPULSIVE INTERATOMIC POTENTIALS CALCULATED … PHYSICAL REVIEW A 111, 032818 (2025)

TABLE VI. Comparison of mean ranges Rmean of different ions and implantation energies E in Si with experiment. The error bar is the
standard error of the mean. The experimental values are determined from profiles digitized from Refs. [78,100]. To enable a one-to-one
comparison, the mean range is determined from data in the depth interval zmin–zmax where experimental data are available. Nonchanneling
means implantation into directions where channeling is avoided, simulated with the same sample tilt and twist angles as in the experiments.
The bottom part of the table shows the average and root-mean-square deviation of the simulated results from the experiments.

Rmean(between zmin and zmax) (Å)

Ion E (keV) Direction zmin (Å) zmax (Å) Experiment MP2 DMOL NLH ZBL pair ZBL univ.

As 180 Amorphous Si 0 2997 1212 1211 ± 1 1212 ± 1 1187 ± 1 1227 ± 1
As 15 Nonchanneling 0 1563 175 197 ± 1 204 ± 1 194 ± 1 198 ± 1
As 100 Nonchanneling 0 2986 739 747 ± 1 750 ± 1 727 ± 1 747 ± 1
As 15 [100] channel 55 2674 325 298 ± 1 310 ± 1 298 ± 1 304 ± 1
As 50 [100] channel 41 5846 1020 1100 ± 3 1117 ± 3 1091 ± 3 1127 ± 3
As 180 [100] channel 41 14936 3654 3560 ± 9 3591 ± 9 3523 ± 9 3644 ± 9

B 15 Nonchanneling 89 2827 638 668 ± 1 665 ± 1 667 ± 1 673 ± 1 689 ± 1
B 35 Nonchanneling 284 3447 1365 1335 ± 2 1333 ± 2 1337 ± 2 1332 ± 2 1367 ± 2
B 80 Nonchanneling 291 5989 2579 2579 ± 2 2579 ± 3 2581 ± 2 2561 ± 3 2621 ± 3
B 15 [100] channel 46 3159 1185 1118 ± 2 1119 ± 2 1115 ± 2 1146 ± 2 1179 ± 2
B 35 [100] channel 271 4804 2306 2289 ± 3 2283 ± 6 2276 ± 3 2343 ± 6 2464 ± 6
B 80 [100] channel 308 7477 4346 4112 ± 5 4104 ± 5 4091 ± 5 4174 ± 5 4202 ± 5

P 100 Nonchanneling 133 3103 1270 1299 ± 2 1286 ± 2 1294 ± 2 1278 ± 2 1347 ± 2
P 200 Nonchanneling 194 8162 2438 2655 ± 3 2619 ± 3 2637 ± 3 2614 ± 4 2731 ± 3
P 15 [100] channel 0 1998 479 468 ± 1 463 ± 1 476 ± 1 481 ± 1 505 ± 2
P 100 [100] channel 255 8393 3073 3157 ± 6 3125 ± 6 3165 ± 6 3156 ± 6 3243 ± 6

Average deviation 0.23% 0.46% 1.4% 0.62% 3.8%

Root-mean-square deviation 4.3% 5.3% 6.0% 4.9% 6.6%

having no surface oxide or angular beam spread maximizes
the channeling effects.

3. Comparison of results with experiments

The results of the above approach are shown in Fig. 18 for
As-Si implantation, in Fig. 19 for B-Si implantation, and in
Fig. 20 for P-Si implantation. To put the results into context,
a range profile calculated with the commonly used SRIM code
[15,102] that does not include channeling are also shown in
the figures. A numerical summary of the results is given in
Table VI. Since the SRIM results obviously do not agree with
experiments, SRIM mean ranges are not included in the table.

The results show that the MDRANGE simulation results
agree overall well with experiments, which is largely thanks
to the experimental electronic stopping power being the phys-
ically well-motivated one utilizing a 3D electron density. The
MP2, DMOL, and NLH results are similar, as expected from
the agreement of the DMOL and MP2 potentials (cf. Fig. 9)
and from the NLH potential being a fit to the DMOL data.
The ZBL pair-specific potential results also tends to agree
well with experiment. This is almost certainly due to the
ZBL pair-specific potentials relevant for the three cases here
happening to be fairly close to the MP2 and DMOL data. While
many ZBL pair-specific potentials differ from the MP2 and
DMol by more than 10% [Fig. 10(b)], the ones here all differ
less than this: for B-Si, P-Si, and As-Si the average difference
above 100 eV is only 2.2%, 2.8%, and 3.3%, respectively. The
ZBL universal potential differs the most from experiments,
especially tending to overestimate the range in the channeling
tail for B-Si and P-Si cases (Figs. 19 and 20).

Inspection of Table VI shows that none of the potentials
always give the best agreement with the experiment. How-
ever, the analysis of the average deviations show that the first
principles (MP2 and DMOL) approaches on average are closest
to the experiments.

A likely reason for the minor deviations from the ex-
periment is inadequacies of the electronic stopping model;
when the Puska-Echenique-Nieminen-Ritchie model was de-
veloped, different varieties did give somewhat different results
especially in the channeling conditions [85,87,103]. Also,
in this work we found that the range profiles in channeling
conditions are sensitive to the beam divergence, which was
not reported in the experimental work. For instance, for the
case of 180-keV As ions implanted in the [100] channel in Si
modeled with the DMOL potential, the beam divergence of 1◦
gave a mean range of 3560 ± 9 Å, whereas a divergence of
0.8◦ gave a mean range of 3710 ± 30 Å.

While it is clear that SRIM (which does not include crystal
structure) strongly disagrees with experiments in the channel-
ing cases, it is noteworthy that it also very clearly disagrees
with experiments in the tails of the nonchanneling implanta-
tion profiles. This emphasizes the need to include the crystal
structure when simulating ion implantation range profiles of
crystals regardless of implantation direction.

VII. SUMMARY AND CONCLUSIONS

We have presented and compared results of repulsive in-
teratomic potential calculations at three levels of theory. The
one-electron basis set is known to be the most important
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source of error for repulsive potentials [44]. A numerically ro-
bust basis-set scheme has been recently verified against fully
numerical electronic structure calculations at the Hartree-
Fock level of theory in Ref. [38]. The state of the art was
represented in this work by an analogous scheme based on
the use of flexible Gaussian-type orbital (GTO) basis sets
within the PYSCF program [52], in which the total energy
was estimated with second-order Møller-Plesset perturbation
theory (MP2) calculations. The MP2 calculations were carried
out for the set of diatomic molecules with Z1 + Z2 � 36.

The MP2 calculations served to validate the accuracy of a
set of density functional theory (DFT) calculations performed
for Z1, Z2 � 92 with numerical atomic orbitals (NAOs) with
the DMOL97 program. These calculations have already been
used in several studies in the literature. We found an excel-
lent level of agreement between the new MP2 and old DFT
calculations: the screening functions φ(r) defined by Eq. (5)
agreed to within 1% for all atom pairs above 100 eV, with the
exception of B-Ne for which the DMOL calculation appears
incorrect.

The third level of theory considered was orbital-free
density functional theory (OF-DFT) evaluated on the superpo-
sition of atomic densities, following the approach of Ziegler,
Biersack, and Littmark (ZBL) in Ref. [13]. We found that the
ZBL potentials and the reproduced OF-DFT calculations have
considerable differences to our more accurate self-consistent
quantum chemical calculations: both the ZBL universal po-
tential and the ZBL pair-specific calculations differ from the
quantum chemical approaches by ∼5%–10% above 100 eV.

Having verified the accuracy of the DMOL scheme, we
formed pair-specific analytical fits of the DMOL screening
functions to a sum of three exponentials, yielding the purely
repulsive NLH potentials of this work. By comparison to the
MP2 reference data, we showed that the pair-specific NLH
potentials agree with the best available quantum chemical
data within ∼2% above 30 eV. The exponents and fitting
coefficients defining the NLH potential are included in the
Supplemental Material [74].

Studying models of ion implantation with the various po-
tentials, we found that the range distribution may be quite
sensitive to the low-energy (below 100 eV) part of the po-
tentials under some channeling conditions. In such cases, a
description of interaction models based on purely repulsive
potentials may not be sufficient for a highly accurate descrip-
tion of ion implantation.
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APPENDIX A: COMBINING HIGH-ENERGY
AND EQUILIBRIUM POTENTIALS

Atoms in a solid or molecular system are bound to other
atoms by various bonds (covalent, ionic, metallic, van der
Waals, etc.). This bonding can be modeled computationally
within the molecular dynamics method, in which the motion
of N atoms is described within the Born-Oppenheimer ap-
proximation [16] by integrating Newton’s equations of motion
for all atoms with a small time step [9,105]. According to
Newton’s II law, the instantaneous acceleration of each atom
is given by the net force acting on it; hence, conventional MD
simulations are enabled by interatomic potentials that describe
the interactions in the system.

The slowing down (stopping) of energetic ions and nuclear
recoils in materials can be described within the binary colli-
sion approximation (BCA) [7]. Energetic atom movement is
described in this approach as a sequence of binary collisions
for which the scattering angle and energy loss is determined
from the two-body scattering integral [10]. As only binary col-
lisions are treated, the pairwise atomic high-energy repulsive
potential suffices to describe interatomic interactions. Only
the repulsive pair potential is needed also in the special case of
the recoil interaction approximation variant of MD (MD-RIA)
[83], which is meant only for high-energy interactions.

We now address the question of how the two types of
interactions, near-equilibrium many-body and high-energy
repulsive, can be combined. The importance of doing this
in a systematic manner is emphasized by the conclusion
of the main text that ranges in channeling conditions are
sometimes sensitive to the equilibrium part of the potential
(cf. Sec. VI A). To address this issue it is important to be able
to join the repulsive and equilibrium potentials without free
parameters, as the choice of such parameters could introduce
additional uncertainty into the channeling results.

The key to this combination is that at the highest ener-
gies the atom collisions can practically always be handled
as two-body interactions, as strong keV energy collisions
involve internuclear distances <0.5 Å, while regular internu-
clear distances are of the order of 2–3 Å. It is thus practically
impossible for more than two atoms to simultaneously expe-
rience the strongly repulsive part of the potential. It is also
fully sufficient to use BCA-type repulsive pair potentials of
the form of Eq. (4) for small internuclear distances in MD
simulations.

However, when the energetic particles thermalize, one
needs a smooth transition from the highly repulsive potential
at small internuclear distances to the equilibrium interatomic
potential in full MD. As has been discussed above, the
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potentials used in most modern MD simulations contain at
least some many-body character.

Until recently, the short-range repulsive pair potential was
joined usually in a rather ad hoc character to the equilibrium
potential. As the first derivative of the potential gives the
force, it is clear from basic physicochemical considerations
that a classical interatomic potential and its first derivatives
should be smoothly varying and continuous functions. A
straightforward approach is thus to take the equilibrium po-
tential and join it to the high-energy repulsive expression
using some interpolation function that ensures a continuous
transition.

Since the strength of a chemical bond is typically in the
order of 1–2 eV/bond, the formalism for purely repulsive
potentials can be assumed to be valid for distances rrep for
which Vrep � 10 eV. Hence, the range of distances where the
transition should take place is rrep < r < requi.

One can easily think of two formalisms for achieving the
wanted behavior. The first is to use an interpolation function
F (r) defined at all values of r,

V (r) = F (r)Vrep(r) + [1 − F (r)]Vequi(r), (A1)

where 0 � F (r) � 1 is some continuous function that has
the properties F (r) → 1 when r → 0 and F (r) → 0 when
r → ∞. To achieve a smooth transition from the many-body
to the repulsive potential that does not affect the equilibrium
potential, the function F (r) should transition from 1 to 0 in
a fairly narrow interval below requi; the Fermi function is one
possibility [106]. This approach has the advantage that it nat-
urally ensures that, e.g., angular dependencies associated with
chemical bonds are not active at small interatomic separations.

The second approach is to use a piecewise definition, inter-
polating only between rrep and rinterp, which is some distance
at which the interpolation is turned off and the potential be-
comes the many-body potential:

V (r) =

⎧⎪⎨
⎪⎩

Vrep(r) when r < rrep,

Vinterp(r) when rrep � r � rinterp,

Vequi(r) when r > rinterp.

(A2)

To ensure correctness, rinterp < requi − rvib, where rvib is the
magnitude of the equilibrium thermal vibrations around
the equilibrium separation in the system. The interpolation
function in Eq. (A2), Vinterp(r), should be at least twice dif-
ferentiable and thereby yield continuous values for the energy
and its two derivatives at the interval boundaries rrep and rinterp.
This can be achieved, e.g., with a fifth-order polynomial,
whose six coefficients can be solved analytically from the
three boundary conditions at either end of the interval.

The first approach, Eq. (A1), is typically used with Tersoff-
type potentials [95,106,107], while the second one, Eq. (A2),
is often used with embedded-atom-method (EAM) potentials
[108,109]. In either case, the choice of the joining model
parameters and/or interval is somewhat arbitrary, and there
are no experimental data to which the joining parameters can
be directly fit. However, the quality of the final potential can
be tested, e.g., against high-pressure equations of state [109],
threshold displacement energies [110,111], or the melting
points of materials [109].

The intermediate energy regime can of course also be
tested against DFT data for atoms placed intentionally at
shorter-than-normal interatomic separations in crystals or
amorphous materials [111,112]. However, this was earlier
done more in the way of testing than fitting.

Recently, machine-learned (ML) interatomic potentials
have been extended to include also repulsive pair potential
fitting in a systematic manner, removing the ad hoc character
of the earlier approaches. Generally, ML potentials are trained
systematically against a large set of DFT data. However, these
data sets do not typically include data for small internuclear
distances, and obtaining such data tends to be difficult, as stan-
dard solid-state codes assume that the inner electronic shells
are frozen, via the use of so-called pseudopotentials. But, we
argue that including such data is not necessary, as per the
arguments presented above, the high-energy interactions are
in any case pairwise in character and can thereby be obtained
from separate calculations on diatomic molecules, as carried
out in this work, for example.

Systematic ML potentials can be fit fully consistently with
the short-range potentials without introducing additional free
parameters in the manner first introduced by Byggmästar et al.
[99]. In this method, a DFT-derived high-energy interatomic
potential Vrep(r) is first obtained for a diatomic molecule.
Next, this potential is smoothly set to vanish at some distance
r < requi with a cutoff function fc,

Vpair (r) = Vrep(r) fc(r). (A3)

The DFT database that would be used to construct an ML
equilibrium interatomic potential VML needs to include some
configurations that involve distances r � requi, but configura-
tions with very small distances r � requi are not needed in the
ML databases. After this, the total repulsive pair energy Vpair is
calculated for all these configurations, and is subtracted from
the DFT energies, yielding the reduced energies:

E reduced
DFT = EDFT −

∑
i< j

Vpair. (A4)

When the ML potential V reduced
ML is then trained against these

reduced energies, a smooth fit to the short-range interatomic
potential is ensured, and the final energies of atomic config-
urations are fully consistent with both the short-range and
equilibrium potential DFT data sets. Naturally, one needs to
ensure that the ML formalism does not diverge to extreme
values in the short-distance range, i.e., |V reduced

ML | should be �
Vrep when r < requi. The final energies are then reconstructed
simply as [99]

VTOT =
∑
i< j

Vpair +
N∑
i

V reduced
ML . (A5)

This approach also has the advantage that it tackles a mi-
nor deficiency of repulsive potentials calculated for diatomic
molecules: diatomic calculations do not fully account for the
fact that the outer electronic orbitals are somewhat contracted
in the solid state compared to those of a free atom [13], as
discussed in Sec. IV C. This effect is included in the formalism
for fitting the ML potential described above since the DFT
calculations do include the solid-state effects. Hence, if there
is a deficiency in the repulsive potential, the fitting of the
reduced DFT data set will compensate for this.
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We also note that the approach to first fix the repulsive
potential Vrep, then construct a many-body potential by fitting
the reduced energies E reduced

DFT , could also be used to remove the
ambiguity in potential joining when constructing analytical
interatomic potentials.

This discussion highlighted that energies calculated for a
diatomic system offer an excellent starting point for potentials
to be used in simulations of radiation effects both within
the BCA approximation as well as full MD simulations, the
latter class also including the most modern machine-learned
approaches.

APPENDIX B: COMPUTATION OF THE ORBITAL-FREE
DENSITY FUNCTIONAL POTENTIALS

In this Appendix, we discuss how the orbital-free density
functional calculations are carried out using the fixed atomic
electron densities. In order to make the notation unambigu-
ous, we therefore use a different notation in this Appendix.
Following the literature on electronic structure calculations on
diatomic molecules [50], the internuclear distance is denoted
as R, points in space by r, and the distances of the given point
r to the two nuclei will be denoted as r1 and r2. The nuclei
are placed at coordinates R1 and R2, and relative coordinates
from the two nuclei are analogously denoted as r1 = r − R1
and r2 = r − R2, respectively. Obviously, r1 = |r1|, r2 = |r2|,
and R = |R1 − R2|.

The basic input to the calculations are the electron densities
ρ(r), where ρ is given in units of electrons per Å3 and the
distance from the nucleus r is in units of Å. We used the
spherically averaged solid-state electron densities as listed in
the ZBL book [13] to determine what we call the pair-specific
ZBL potentials for all nonradioactive elements, plus Bi and U.
In addition, we calculated electron densities for many atoms
in the gas phase with the GRASP2018 program [45,46] for
comparison.

The ZBL electron distribution ρ(r) for each atom is
assumed to be constant beyond half the nearest-neighbor dis-
tance in the most common crystal structure of the element
(“muffin-tin” radius rMT): ρ(r) = ρ(rMT) at r > rMT. To de-
scribe the isolated-atom electron densities in the same way
as the ZBL electron densities, a pseudo-muffin-tin radius was
determined such that the total number of electrons found at
r > rMT evaluates to 0.01. A maximum radius rmax results
from the requirement of accommodating the total charge of
the atom.

The evaluation of the integrals requires care because of
(i) the discontinuous first derivative of ρ(r) at rMT, (ii) the
abrupt termination of the electron densities at rmax (compare
Figs. 21 and 1), and (iii) the subtraction of the almost equal
terms Vnn + Vee and |Vne + Ven| at large internuclear distances
R. Our implementation differs from the approach of Wedepohl
[71] used by ZBL in [13] and is described in the following.
To calculate the interatomic potential, a piecewise polynomial
describing ρ(r) was constructed as follows; see Fig. 21 for an
illustration. From the ρ(r) values between the smallest listed
radius r = r0 and r = rMT, a cubic spline with not-a-knot
boundary conditions was constructed using the CubicSpline
class of the SCIPY [113] library. Since the tabulated values
start at r0 > 0, the resulting piecewise polynomial was ex-

FIG. 21. Schematic of the electron density distribution. In r0 �
r � rMT, ρ(r) is described by a cubic spline. In 0 � r � r0, ρ(r) is
described by a parabola with ρ ′(0) = 0, and ρ(r0) and ρ ′(r0) are con-
tinuously joined to the spline used for r � r0. For rMT � r � rmax,
ρ(r) = ρ(rMT).

tended at its lower end towards r = 0 by a parabola satisfying
ρ ′(0) = 0 and C1 continuity at r = r0. At its upper end, the
piecewise polynomial was extended with only C0 continuity
by the constant ρ(r) = ρ(rMT) up to r = rmax. This piecewise
polynomial was represented by a PPoly object of the SCIPY

library.
As stated by Eq. (6), the potential energy of the two atoms

consists of terms describing the Coulomb interaction and two
quantum-mechanical contributions. The electronic Coulomb
term Vc consists of the nucleus-electron, electron-nucleus, and
electron-electron contributions,

Vc = Vne + Ven + Vee, (B1)

which are given by

Vne = − e2

4πε0

∫
V2

Z1ρ2(r2)

r1
d3r, (B2)

Ven = − e2

4πε0

∫
V1

ρ1(r1)Z2

r2
d3r, (B3)

Vee = e2

4πε0

∫
V1

∫
V2

ρ1(x1)ρ2(x2)

|x1 − x2| d3x1 d3x2. (B4)

Equations (B2) and (B3) describe the interaction of a charge
cloud with a point charge, integrating over all of space, while
Eq. (B4) describes the interaction of two charge clouds with
each other. In Eqs. (B2) and (B3), r1 and r2 denote the dis-
tances of the infinitesimal volume element d3r from nuclei
1 and 2, respectively. Equation (B4) is for now written in a
general form where x1 and x2 are coordinates of two volume
elements, and |x1 − x2| is the distance between them. The
numerical value of e2/(4πε0) was given in the main text after
Eq. (1).

As extensively discussed in the main text, the basic as-
sumption for the orbital-free density functional calculation of
the interatomic potential V (R) of two atoms 1 and 2 with
internuclear distance R is that their electron densities ρ1(r1)
and ρ2(r2) remain unchanged relative to their nuclei [114]. As
a consequence, electrons of atom 1 are always confined to the
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FIG. 22. Coordinates describing a position with respect to the
two nuclei labeled with “1” and “2.”

volume V1 defined by r1 < r1max and electrons of atom 2 to the
volume V2 defined by r2 < r2max (see Fig. 22). In the overlap
volume, V1 ∩ V2, the electron densities of the two atoms add
up linearly, ρ = ρ1 + ρ2.

The Coulomb integrals of Eqs. (B2) to (B4) are facile
to evaluate using Green’s theorem or the Laplace expansion
for the potential [50]: a spherical charge distribution yields a
potential which coincides with that of a point charge

ζi(r) =
∫ r

0
4πr′2ρi(r

′) dr′ + r
∫ rimax

r
4πr′ρi(r

′) dr′, (B5)

where we have assumed that r is within the extent of the
charge cloud r < rimax; if r � rimax the full charge of the
electron cloud is observed, ζi = Zi, as Zi is the number of
electrons on atom i. The Coulomb contributions can therefore
be readily written as

Vne = − e2

4πε0

Z1ζ2(R)

R
, (B6)

Ven = − e2

4πε0

ζ1(R)Z2

R
. (B7)

The electron-electron term requires a bit more thought to
evaluate. Yet, one of the integrals in the electronic Coulomb
integral of Eq. (B4) can be carried out using Eq. (B5) as was
done for the electron-nuclear terms above. Let us consider
the interaction of the electron charge of atom 1 contained in
an infinitesimal volume element d3r1 with the electrons of
atom 2. The contribution dVee to the interatomic potential is
obtained by replacing Z1 in Eq. (B6) with −ρ1d3r1 and R
with r2, and the total electron-electron interaction energy is
obtained by integration over the volume V1:

Vee = e2

4πε0

∫
V1

ρ1(r1)ζ2(r2)

r2
d3r. (B8)

The remaining task is thus to carry out the single integrals
over all space in Eq. (B8), as well as the analogous integral in
the quantum-mechanical terms: the excess kinetic energy

Vk = κk

∫
V1∩V2

{[ρ1(r1) + ρ2(r2)]5/3

− ρ1(r1)5/3 − ρ1(r2)5/3} d3r (B9)

and the excess exchange energy

Vx = −κx

∫
V1∩V2

{[ρ1(r1) + ρ2(r2)]4/3

− ρ1(r1)4/3 − ρ1(r2)4/3} d3r, (B10)

where the constants κk and κx were already given in Eqs. (8)
and (9), respectively.

Examining Fig. 22 we realize that all integrands in this
section are rotationally symmetric about the line connecting
the two nuclei, and that the position of a point in space can be
expressed in cylindrical coordinates by denoting the position
on the internuclear axis by x, the distance from this axis h, and
the azimuthal angle ϕ. Because of the rotational symmetry, the
integrand can be denoted as g(x, h), and the volume element
d3r can be written as d3r = dx dh h dϕ. In the new coordi-
nates, the distances from the two nuclei can be expressed as

r2
1 = x2 + h2, (B11)

r2
2 = (R − x)2 + h2, (B12)

as is obvious from Fig. 22.
As the various terms only give noncanceling contributions

in the case the atomic spheres overlap, we only need to eval-
uate integrals within atomic spheres. The expression for the
integral over the volume of the first atom can be written as∫

V1

g(x, h) d3r (B13)

= 2π

∫ r1max

−r1max

dx
∫ √

r2
1max−x2

0
dh h g(x, h), (B14)

where the integration over ϕ evaluated to 2π .
Straightforward calculus yields

h dx dh = r1r2

R
dr1dr2 (B15)

and∫
V1

g(x, h) d3r1 = 2π

R

∫ r1 max

0
dr1 r1

∫ R+r1

|R−r1|
dr2 r2 g(r1, r2).

(B16)

Using Eq. (B16) to evaluate (B8), we obtain

Vee = e2

4πε0

2π

R

∫ r1 max

0
r1ρ1(r1)

× [χ2(R + r1) − χ2(|R − r1|)] dr1 (B17)

with

χ2(r2) =
∫ r2

0
ζ2(r) dr. (B18)

Similarly, the excess kinetic and exchange energies evaluate
to

Vk = κk
2π

R

∫ r1 max

0
dr1 r1

∫ min(r2 max,R+r1 )

min(r2 max,|R−r1|)
dr2 r2

× {[ρ1(r1) + ρ2(r2)]5/3 − ρ1(r1)5/3 − ρ1(r2)5/3}
(B19)

and

Vx = − κx
2π

R

∫ r1 max

0
dr1 r1

∫ min(r2 max,R+r1 )

min(r2 max,|R−r1|)
dr2 r2

× {[ρ1(r1) + ρ2(r2)]4/3 − ρ1(r1)4/3 − ρ1(r2)4/3},
(B20)

respectively.
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Since we approximate the electron densities ρi(r) by piece-
wise polynomials, the integrals in Eqs. (B5) and (B18) can
be carried out exactly, which improves the accuracy of the
Coulomb interaction term (B1). This also speeds up the com-
putation of Vc because the integrals can be represented by
another piecewise polynomial, which has to be defined only
once for each atom species.

The integrals in Eqs. (B17), (B19), and (B20) were eval-
uated using the quad function of the SCIPY library [113],
using a relative tolerance of 10−6 for the quantum-mechanical
terms and 10−7 for the Coulomb term Vee. For the quantum-
mechanical terms, the tolerance cannot always be reached, but
the relative error usually is better than 10−4. In addition, the
error estimate is not guaranteed to be accurate. Numerical
problems are detected and fixed in the course of choos-
ing the abscissae for the function V (R) as described in the
following.

An adaptive algorithm was used with the goal of keep-
ing the interpolation error below a given tolerance. The
interpolation was performed by fitting a cubic spline with
not-a-knot boundary conditions to the screening function data
φ(R) = V (R)/VCoul(R). The interpolation error was specified
by a relative and an absolute tolerance for the potential
V . Using values of 10−3 for both tolerances, the interpo-
lation error was intended to be kept below the larger of
0.1% and 1 meV. The algorithm consists of the following
steps:

(1) Calculate the screening function φ on an equidistant
grid of R values with a spacing of 0.16 Å, starting from R =
0, so that the last value of R does not exceed Rmax−0.04 Å,
where Rmax = r1 max + r2 max.

(2) Bisect each interval, calculate φ, and evaluate the
interpolation error when evaluating the spline through all pre-
viously calculated φ(R) values at the new point. Insert the
new data point into the list of φ(R) values. If the interpolation
error is below the tolerance, mark the intervals left and right
to the new point as not to be bisected further in subsequent
iterations. Iterate until all errors are below the tolerance. At the

upper boundary, make sure there is exactly one point between
Rmax−0.08 Å and Rmax−0.04 Å.

(3) Starting from the smallest spacing, iterate over all
spacings �R, and determine points between intervals of equal
length �R. If there are more than two intervals of equal length
in a row, form pairs of adjacent intervals and consider only
points in the centers of the pairs. Remove these points, deter-
mine the spline of the remaining points and the interpolation
error at the removed points. Reinsert the point with the largest
interpolation error if above the tolerance, and recalculate the
spline. Repeat until no interpolation error exceeds the tol-
erance. Continue with the next �R until all �R have been
processed in this way.

First including points meeting the tolerance criterion in
step 2 and then removing and reinserting points in step 3 leads
to more consistent results. The reason is that spline interpola-
tion is not strictly local, i.e., the approximation in neighboring
intervals influences the spline in the interval under considera-
tion. In the course of the algorithm, initially, there is usually
only a poor approximation at small R, influencing to some
degree the spline at larger R.

Step 2 did not converge in four cases (Ca-Kr, In-Dy, Pr-Lu,
Dy-Hg). The reason turned out to be one point in each case
that had been calculated inaccurately by the integration func-
tion quad. To handle these cases, the iteration was stopped
when the interval length reached 0.00125 Å, and the inaccu-
rate value of the screening function was replaced by the mean
of the neighboring values. The accumulation of points around
the corrected point was then removed automatically in step 3.

Finally, we note that an alternative method could be used to
compute the orbital-free density functional potentials, as well:
electronic structure calculations on diatomic molecules typi-
cally employ the prolate spheroidal coordinate system, as the
Coulomb problem can be factorized in this coordinate system
[50,51]. This coordinate system, defined by ξ = r1 + r2 and
η = r1 − r2, where r1 and r2 are distances to the nuclei 1 and 2
and the angle θ around the bond axis would also enable facile
evaluation of the above integrals.
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