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The slowing down of energetic ions in materials is determined by the nuclear and electronic stopping powers.
Both of these have been studied extensively for ordinary-matter ions. For antiprotons, however, there are numerous
studies of the electronic stopping power, but none of the nuclear stopping power. Here, we use quantum-chemical
methods to calculate interparticle potentials between antiprotons and different atoms, and derive from these the
nuclear stopping power of antiprotons in solids. The results show that the antiproton nuclear stopping powers
are much stronger than those of protons, and can also be stronger than the electronic stopping power at the
lowest energies. The interparticle potentials are also implemented in a molecular dynamics ion range calculation
code, which allows us to simulate antiproton transmission through degrader foil materials. Foil transmission
simulations carried out at experimentally relevant conditions show that the choice of antiproton-atom interaction
model has a large effect on the predicted yield of antiprotons slowed down to low (a few keV) energies.
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I. INTRODUCTION

The production of stable antihydrogen atoms relies on the
slowing down of antiprotons p̄ with initial energies of the
order of MeVs or keVs to thermal energies [1]. The first step
for achieving this is to use thin degrader foils to reduce the
kinetic energy to the order of a few keV [2,3]. Even though this
technology has been demonstrated to work, the antihydrogen
yields are low, making it desirable to design higher yield
degrading approaches [4,5]. Thus, it is important to understand
the physics behind the retardation of antiprotons in materials.

The slowing down of ions in matter is conventionally
described with the stopping power S, i.e., the energy loss of
an energetic particle per path length traveled in the solid [6–9]
[also called in some contexts the linear energy transfer (LET)
[10] ]. The stopping power can be separated into nuclear (Sn),
electronic (Se), and nuclear reaction (Snr) contributions, S =
Sn + Se + Snr [6,8,11–14]. The nuclear reaction part is usually
negligible at low energies, whereas the nuclear stopping then
becomes more significant. Although the electronic stopping
power of antiprotons in matter has been extensively studied
[15–21], there have been no systematic theoretical studies of
their nuclear stopping power. As the energy of the incoming
antiprotons decreases [5], it becomes important to consider
also the nuclear stopping power.
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The nuclear stopping power can be calculated by using
classical scattering theory [6,7]. To get the spatial description
of the pathway of an energetic ion in the material, one can
use the binary collision approximation (BCA) [22–25] or
molecular dynamics (MD) ion range simulations [26–28].
These computational approaches require the interaction po-
tential between the atoms of the ion lattice as input data [29].
The interaction potentials of normal matter ions with atoms
have been studied very extensively (see, e.g., Refs. [7,29–32]).
However, while there are some calculations of antihydrogen
interactions with hydrogen and helium [33–38], there are no
systematic computational studies of the interaction energies
of antiprotons with atoms heavier than He. Note that, in
simulations of the interaction process of energetic antiprotons
with solid foils, one needs specifically the information about
the interaction of a bare antiproton with atoms.

In this paper, we employ quantum-chemical methods to
calculate the interaction energy between antiprotons and atoms
of several elements (Sec. II), in order to determine the nuclear
stopping power of antiprotons (Sec. IV). We also use the
determined potential for molecular dynamics simulations of
antiproton transmission through energy degrading foils, under
conditions relevant for near-future antihydrogen production
experiments (Sec. V).

II. QUANTUM-CHEMICAL CALCULATIONS

A. The interparticle potential of antiprotons

The full antiproton interaction potentials were calculated
for H, Be, C, N, O, Al, Si, and Ti, because the degrading
foil materials currently considered at CERN consist of these
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FIG. 1. Quantum-chemically calculated data (triangles) for the
p̄-Si interparticle interaction as compared with the Coulomb potential
(dashed line), as a function of the distance between the antiproton
and atoms r . Inset shows the quantum-chemical data for several
different antiproton-element combinations at a lower energy scale.
For comparison, the negative value of the interaction energy of the
proton with a Si atom is also shown.

elements or their compounds. The interaction potential was
also calculated for Ne in order to elucidate how antiprotons
interact with closed-shell elements.

The interaction potential between the atoms and an an-
tiproton was calculated at the second-order Møller–Plesset
(MP2) [39] level by using the resolution-of-the-identity
approximation [40] and triple-ζ quality Gaussian-type basis
sets augmented with polarization functions (def2-TZVP) [41].
The antiproton was modelled as a negative point charge.
The hydrogen def2-TZVP basis set was employed for the
antiproton. For Be, N, Ne, and Al, we also augmented the def2-
TZVP basis set with diffuse functions to get a more accurate
description of the low-energy range of the interaction potential
[42–44]. The potential energy curves were calculated for
the lowest electronic state of the atoms. Essentially identical
potential-energy curves were obtained at the Hartree–Fock and
MP2 levels of theory, showing that electron correlation does
not play an important role in this context. The calculations
were performed with the TURBOMOLE code [45,46].

The potentials were calculated for selected interparticle
separations in the range of [0.001,50] bohr. The results from
the TURBOMOLE calculations are given in Appendix. The
antiproton-atom interaction potentials V (r) used in the MD
simulations were then obtained by subtracting the total energy
calculated for a separation of 50 bohr from the total energy
calculated for the rest of the interparticle distances. The
calculated potentials for some of the elements are illustrated
in the inset of Fig. 1 for low energies.

When the diffuse basis functions were included in the
basis sets, none of the antiproton-element pairs showed any
repulsion at any interparticle distance r . This shows that
the strong Coulomb attraction between the antiproton and
the nucleus of the atom dominates in the whole separation
range. The high-energy part is almost unaffected by diffuse
functions, and the difference in the results with and without
them is always �1 eV. Inaccuracies of the order of 1 eV in the
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FIG. 2. Quantum-chemically calculated data (open circles) for
the screening function and the fit to the expression in Eq. (4). Also
shown is the screening function for H-Si from the widely used
Ziegler–Biersack–Littmark (ZBL) repulsive interatomic potentials
[7].

long-ranged potential do not in any case significantly affect
the simulated nuclear stopping power, because the antiproton
beam energies are at least two orders of magnitude larger.

The second main feature of the calculated interaction
potential is that the potential obtained by considering all
electrons is clearly above the Coulomb interaction of the
bare nuclear charges (Fig. 1), even though the potential is
attractive in the whole range. Hence, the interaction between
the antiproton and the atomic nucleus is strongly screened by
the electron cloud. However, at larger separations there is a
major difference due to chemical effects (as also evident from
the inset of Fig. 1). Comparison of the screening functions in
Fig. 2 also show that, at separations of �0.5 Å, the screening
is completely different between the proton and antiproton.

A comparison of all the quantum-chemically calculated
potentials is shown in Fig. 3. The y-axis energy E is plotted
in Fig. 3(a) as − log(−E) to allow for logarithmic plotting of
negative values. The comparison in Fig. 3(a) shows that the
bare Coulomb interaction (corresponding to a linear trend with
slope of −2 in the log-log plot) is obtained only at distances
below ∼0.1 Å, i.e., at longer distances the screening effects
are significant.

B. Comparison of polarizability values with experiments

The quality of the calculated interparticle potentials can
be checked by comparison with experimental data on atomic
polarizabilities. At large distances r , the interaction between
the antiproton and the atom is dominated by two terms. One
is the charge-polarizability term (in atomic units)

Vcp = −Z2α

2r4
, (1)

where α is the polarizability of the atom, and Z the charge
of the approaching particle. When the atom is nonspherical
having a quadrupole moment Qa, there will also be a
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FIG. 3. (a) Quantum-chemically calculated data for all the p̄-
atom interactions. Also shown for comparison is the bare Coulomb
potential for p̄-Si. (b) Quantum-chemically calculated data (symbols)
and final fitted potentials (based on the φexp screening function).

quadrupole interaction

VQ = AZQa

r3
= C3

r3
, (2)

where A is a factor that depends on the orientation of the
atom.

For filled-shell atoms only Eq. (1) survives. The polariz-
abilities from that fit compare favorably with standard values;
see Table I. A fit to the MP2 points for neon and aluminum, as
an example of an element with an atomic quadrupole moment,
is shown in Fig. 4.

The reasonable agreement with experiments obtained here
gives an indication that the calculation results are reliable at
large (�2 Å) interparticle separations. On the other hand, at
small separations (�0.1 Å), all the potential data converge very
accurately to the pure Coulomb potential of unscreened nuclei,
as expected [see Fig. 3(a)]. At intermediate separations there

TABLE I. Comparison with literature values of the atomic
polarizabilities α (in atomic units) from the present Eq. (1) by using
MP2 data. “PW” = present work.

Atom Polarizability α

PW Literature

Be 40.90 37.76a

N 5.34 7.63b

Ne 2.44 2.66110(1)c

aReference [47].
bReference [48] (expt).
cReference [49] (expt).

is no reference case that can be compared with; however, these
two observations show that the quantum-chemical calculations
can describe well the antiproton-atom interactions at least at
small and large separations.

Finally, the interactions between atoms or molecules on
one hand, and antiprotons on the other hand are sufficiently
specific to be called antiproton chemistry.

C. Description of potentials with screening functions

To construct an analytical or an accurate numerical rep-
resentation of the interparticle potentials from the quantum-
chemically calculated interaction energies, we analyzed the
potentials in terms of a screened Coulomb potential. This
approach has been found to work well for repulsive interatomic
potentials of normal matter [7,50,51]. The screening function
φ(r) was obtained from the potential V (r) by using

φ(r) = V (r)
1

4πε0
Z1Z2e2/r

, (3)

where Z1 = −1 is the charge of the antiproton, Z2 > 0 is the
nuclear charge of the atom, and e is the elemental charge.

The screening function illustrated in Fig. 2 for Si displays
a nonlinear behavior on the logarithmic scale. This is natural
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TABLE II. Coefficients X = bi or ai of the fitted antiproton screening function φ
exp
fit (r) in Eq. (4) obtained from the calculated potentials

of the different elements. The last b term is always b4 = 1 − b1 − b2 − b3 to ensure that the potential is a pure Coulomb potential of the bare
nuclear charges when r → 0.

Element X X1 X2 X3 X4

H b 10.688 0.000319357 0.0059701 (1 − b1 − b2 − b3)
H a −2.60175 −0.231507 −0.689763 −2.75173

Be b 0.00466484 0.525641 0.027757 (1 − b1 − b2 − b3)
Be a −0.217729 −1.11801 −0.48179 −7.7278

C b 0.0380302 0.318996 0.638666 (1 − b1 − b2 − b3)
C a −0.612817 −11.2902 −1.84257 −0.193946

N b 0.0181678 0.765059 0.216198 (1 − b1 − b2 − b3)
N a −0.824271 −2.52968 −14.7289 −0.242982

O b 0.0264826 0.790077 0.182093 (1 − b1 − b2 − b3)
O a −0.847469 −2.906 −17.2312 −0.200413

Ne b 0.000113387 0.00617107 0.116765 (1 − b1 − b2 − b3)
Ne a −0.253027 −0.994693 −24.0586 −3.74468

Al b 0.00128954 0.0254584 0.276114 (1 − b1 − b2 − b3)
Al a −0.097406 −0.419499 −1.22892 −7.55095

Si b 0.00547494 0.360324 0.091372 (1 − b1 − b2 − b3)
Si a −0.19811 −1.99426 −0.79267 −9.71705

Ti b 0.00226208 0.574763 0.135421 (1 − b1 − b2 − b3)
Ti a −0.247931 −3.83816 −0.924926 −18.5785

due to the shell structure of atoms. There is no known simple
analytical function that can accurately describe the screening
of repulsive pair potentials between atoms [7].

In this work, we consider two possible forms of the
screening function. One is a sum of exponential functions,

which follows common practice of repulsive potentials for
normal matter [7] and hence can be easily implemented in
existing codes. This form is presented in Sec. II C 1. However,
this form does not have the physically well motivated 1/r3 or
1/r4 form discussed in Sec. II B. Hence we also constructed

TABLE III. Coefficients X = di or ci of the fitted antiproton screening function φ
ep
fit (r) in Eq. (5) obtained from the calculated potentials

of the different elements. The last d term is always d5 = 1 − d1 − d2 − d3 − d4 to ensure that the potential is a pure Coulomb potential of the
bare nuclear charges when r → 0. The fairly large number of decimals given for the d terms for oxygen are needed to ensure that the balance
term d5 is obtained accurately.

Element X X1 X2 X3 X4 X5

H d 9.8663 5.8879 −14.891 0 (1 − d1 − d2 − d3 − d4)
H c −1.4784 −1.3319 −1.3994 1 1.5375

Be d 0.26741 0.55834 0 0.15519 (1 − d1 − d2 − d3 − d4)
Be c −9.9074 −1.1756 1 9.9703 0.29749

C d 0.15133 0.69223 0 0.14826 (1 − d1 − d2 − d3 − d4)
C c −19.902 −1.7123 1 12.483 0.22474

N d 0.50518 0.16265 0 0 (1 − d1 − d2 − d3 − d4)
N c −9.0821 −2.1735 1 1 1.8192

O d 0.2136630 0.5771214 0 0.2092628 (1 − d1 − d2 − d3 − d4)
O c −18.555 −2.7494 1 2.9912 0.036493

Ne d 0.34306 0.39092 0 0 (1 − d1 − d2 − d3 − d4)
Ne c −14.049 −3.3565 1 1 3.0879

Al d 0.75655 0.10943 0 0.1342 (1 − d1 − d2 − d3 − d4)
Al c −7.6047 −1.0475 1 1.1273 0.051931

Si d 0.71715 0.14742 0 0.1356 (1 − d1 − d2 − d3 − d4)
Si c −8.0358 −1.3296 1 1.195 0.03787

Ti d 0.42275 0.119 0 0.45838 (1 − d1 − d2 − d3 − d4)
Ti c −18.96 −1.0055 1 3.7746 0.050276
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a new functional form for the screening that has the correct
limiting shape and also can be well fit to the data. This form
is presented in Sec. II C 2.

1. Exponential screening function φexp

We found that a screening function consisting of a sum
of a number of exponential functions can be fit well to
repulsion potentials that are deduced from quantum-chemical
calculations or from experimental data [7,52]. The calculated
MP2 energies are here fit to a screening function of the form

φ
exp
fit (r) = b1e

a1r + b2e
a2r + b3e

a3r + b4e
a4r . (4)

The coefficient of the last term is b4 = 1 − b1 − b2 − b3 to
ensure that the potential φ

exp
fit (r → 0) = 1, i.e., the resulting

potential is a pure Coulomb potential of the bare nuclear
charges at the smallest distances. The def2-TZVP basis set

0

2

4

6

8

10

12

14

E
le

ct
ro

ni
c

st
op

pi
ng

(e
V

/Å
)

0 0.5 107 1.0 107 1.5 107 2.0 107

Velocity (m/s)

Si, , Exper. 1 [Mol97]
Si, , Exper. 2 [Mol97]
Si, , interpolated
Si, , ZBL96
Al, , Exper. 1 [Mol97]
Al, , Exper. 2 [Mol97]
Al, , Exper. 3 [Mol97]
Al, , interpolated
Al, , ZBL96

or in Si p̄
p̄
p̄
p
p̄
p̄
p̄
p̄
p

p p̄

FIG. 6. Electronic stopping of antiprotons and protons in Si and
Al. The data are from Ref. [18], and the solid curve fit of an
interpolation curve constructed to ensure linear dependence with
velocity at low velocities. The dashed line for protons is the stopping
curve obtained from the original ZBL model [7]. “[Mol97]” denotes
Ref. [18].

0

20

40

60

80

100

120

140

160

S
ca

tte
rin

g
an

gl
e

(d
eg

re
es

) | |,
| |,
| |,
| |, Coulomb (-1,14)

1 keV X Si atom

0

20

40

60

80

100

120

E
ne

rg
y

tr
an

sf
er

(e
V

)
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Impact parameter (Å)

Energy transfer,
Energy transfer,
Energy transfer,
Energy transfer, Coulomb (-1,14)

p̄
p
-p

T

b

p̄
p
-p

FIG. 7. Scattering and energy loss of 1 keV antiprotons and
protons from a single Si atom. Also shown is scattering for the
hypothetical case of a negatively charged proton “−p” which would
have the same interatomic potential as a regular proton, and scattering
for a pure Coulomb potential. Note that the scattering angle θ the has
opposite sign for positively and negatively charged particles. The
absolute values are plotted here for an easier comparison.

was used for all elements but Al. For Al, the data obtained
with the def2-TZVP basis set augmented with the diffuse
functions were fit to Eq. (4) [without them, the obtained
potential exhibited a spurious weak (about 0.1 eV) repulsive
region at large separations].

The fit is illustrated in Fig. 2 and the fit coefficients are listed
in Table II. The fitting was performed by using the Levenberg–
Marquardt algorithm [53]. Fits with three or fewer exponential
terms did generally not yield accurate fits to the calculated data
at all distances. Typically, with three exponential terms, a good
fit could not be obtained at the same time around distances
of both ∼0.3 and ∼3 Å. Very good fits were obtained with
the four terms in Eq. (4), giving Pearson’s χ2 values about a
factor-of-ten smaller than the three-term fits.

We note that, in the H screening function, the first prefactor
b1 > 1, and hence the balancing prefactor b4, is negative. This
combination of factors was found to give the best fit to the data.
We checked that, in spite of one negative prefactor, the sum of
the exponentials is a monotonically decreasing function, as it
should be for a purely attractive potential.

Comparison of the p̄-Si screening function with the stan-
dard universal repulsive Ziegler–Biersack–Littmark (ZBL)
function [7] for H-Si in Fig. 2 also shows that the calculated
p̄-Si interaction potential is very different from the ZBL po-
tential. Chemical interactions further enhance this difference
at low energies (see inset in Fig. 1), which compares the p̄-Si
interaction with the interaction energy of a regular proton with
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Si [29]. Thus, one should not use negative proton or repulsive
hydrogen potentials to mimic antiproton interactions.

2. Screening function with limiting power-law behavior φep

The exponential fits were found to give very good fits to
the data, especially at the smaller distances r that dominate the
nuclear stopping. However, they do not have the limiting 1/r3

or 1/r4 form at large distances discussed in Sec. II B. Hence
we also constructed a new form of the screening function that
has either the 1/r3 or 1/r4 behavior when r → ∞. We found
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given are the densities used in scaling the stopping cross section
to nuclear stopping powers. For the materials that are gaseous at
room temperature, the same solid phase densities as those used in the
ZBL model (SRIM) nuclear stopping power calculations were used.

that combining two or three exponential terms with two simple
Padé-approximant-like [54] terms,

φ
ep
fit (r) = d1e

c1r + d2e
c2r + d3e

c3r + d4

1 + (c4r)2
+ d5

1 + (c5r)3
,

(5)

could be used to give good fits to all data. Here the fit
constants are di and ci . Since the screening function is
multiplied by the Coulomb term ∝1/r , the latter two terms
1/[1 + (dir)g], g = 2 or 3, lead to the desired 1/r3 or 1/r4

limit for large r values, respectively. Naturally when r → ∞,
the g = 2 term will dominate, except if d4 = 0. Similar to
the exponential form, we set d5 = 1 − d1 − d2 − d3 − d4 to
ensure that φ

ep
fit (r) → 1 when r → 0.

The resulting fits are presented in Table III. In all cases,
not all terms were needed to achieve a good fit, in which case
di = 0 for the unnecessary terms. In some cases, some of the
terms have a negative prefactor. In these cases, we checked that
the screening function nevertheless monotonically decreases
at all distances (which includes the requirement that d4 > 0
or, in case d4 = 0, that d5 > 0).

A comparison of the screening function fits in the two
different forms is shown in Fig. 5. The comparison shows
that both functional forms give very good fits to the quantum-
chemical data. The very small differences are not expected to
lead to significant differences in the nuclear stopping power
or foil transmission simulation results, which is confirmed by
results shown later in this paper. Unless otherwise mentioned,
the results in the remainder of this article are obtained with the
potentials constructed from the φexp-type screening functions.

III. ELECTRONIC STOPPING POWERS OF
ALUMINUM AND SILICON

To enable comparison with the nuclear stopping power,
as well as molecular dynamics simulation of antiproton
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FIG. 10. Comparison of the penetration depths (z coordinate of
ion after stopping) of antiprotons and protons in amorphous Si. The
depth profiles were simulated with the MDRANGE method, and for
protons also with a BCA code. For one of the antiproton cases, the
chord range [6] distribution is also shown. The MD results are shown
both including and not including the straggling of the electronic
stopping in the results.

movement in materials, we constructed curves of the electronic
stopping from the experimental data in Ref. [18] for the
elements Al and Si of interest in the current study. An
interpolation function was used to obtain a smooth electronic
stopping curve. The interpolation function was constructed
such that it ensures that the stopping is linear with velocity
at small velocities, to conform with stopping theory and
experimental observations [19]. The data and fit are shown and
compared with the electronic stopping of protons in Fig. 6.

IV. CALCULATION OF NUCLEAR STOPPING

A. Scattering calculations

By using the screening functions, one can construct contin-
uous interparticle potentials for all distances,

V (r) = 1

4πε0

Z1Z2e
2

r
φfit(r). (6)

The resulting continuous potentials are shown in Fig. 3(b).
The continuous potentials were used as basis for classical

scattering theory calculations to determine the nuclear stop-
ping power of the antiprotons (Sn). This is obtained from the
energy transfer of a single binary collision from the projectile
with an initial energy E0 to the sample atom as [7]

Sn(E0) = N

∫ ∞

0
T (E0,b)dσ = 2π

∫ ∞

0
T (E0,b)bdb, (7)

where N is the atomic density of the target, σ is the cross
section, T is the energy loss in the binary collision, and b is
the impact parameter of the collision.

For atoms of normal matter, the interaction between the
positive ion and the positive core of the sample atom is at
high energies of �10 eV purely repulsive [29,55]. Hence, the
scattering trajectory has the form of hyperbolic orbits receding
from each other, and Eq. (7) can be evaluated from the classical

FIG. 11. Results for 100 keV particle transmission through Si
foils. (a) Effect of interparticle interaction model (nuclear stopping
power Sn) on final energy after transmission of a foil, for particles
with the experimentally relevant initial energy of 100 keV and a
Si foil thickness of 1550 nm. For all cases the same antiproton
experimental electronic energy loss Se(p̄) was used. The cases
considered are (i) antiprotons as well as hypothetical particles with (ii)
the interparticle interaction proton-Si (simulated both with MD and
BCA methods) and (iii) no interparticle interaction (i.e., zero nuclear
stopping power). For the antiprotons, results from simulations with
both screening functions φexp and φep are shown. (b) Fraction of
antiprotons that can be captured (have an energy of 0–5 keV) as a
function of film thickness. (c) Same as panel (b) but for an upper limit
of 10 keV.

scattering integral in a straightforward way for any repulsive
potential [7,55].
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FIG. 12. (a) Energy loss of antiprotons, protons, and a hypothet-
ical particle with the nuclear stopping power of a proton and the
electronic stopping of an antiproton in a 2 nm Si foil. (b) Plot of 100
antiproton and proton trajectories in a 10-nm-thick foil with an initial
energy of 10 keV. The particle enters from below perpendicularly
to the horizontal foil showed with the hatched area. The lateral
entrance area was restricted to a 1 nm square in the center of the
10-nm-wide cell. Since the atomic nuclei attract antiprotons, the
antiprotons accelerate when entering the sample and decelerate when
leaving it, visible in the plots as antiprotons having bluer (darker)
colors after initially entering the foil.

The situation is more complicated for antiprotons. Since
our quantum-chemical calculations show that the interaction
has the form of a screened, purely attractive potential, the
antiproton approaches the nucleus. For small impact param-
eters and low kinetic energies, the antiproton may follow
complex trajectories around the nucleus (this is possible since
the potential is not a simple 1/r form [56]). It is hard to
treat such trajectories by using the binary scattering integral
approach (although the binary collision approximation has
been implemented for potentials with an attractive well [57],
this approach cannot be directly used for a purely attractive
potential). To be able to deal with arbitrarily complex trajec-
tories, we employed molecular dynamics simulations [31,32]
to model the interactions of the antiproton with the atoms. We
considered both the single-atom scattering and transmission
through foils consisting of many atoms. We used the MDRANGE

method [26] at the recoil interaction approximation [26,27]
to simulate the retardation of antiprotons in materials. The
MDRANGE method has previously been found to yield very
good agreement between simulated and experimental ion range
distributions [28,58–60]. Sample results of the energy-transfer
calculations are illustrated in Fig. 7.
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FIG. 13. Lateral distributions of 100 keV antiprotons incoming
on a-Si foils. The figure shows the lateral range R⊥ = (x2 + y2)1/2

distribution as well as the distribution of the range in the y direction
only, Ry . Due to symmetry reasons, the x distribution is the same as
the y one within statistical variation.

The nuclear stopping power was extracted from the scatter-
ing calculations by switching off the electronic interaction
in MDRANGE simulations for a system consisting of one
antiproton and a single atom. The adaptive time-step algorithm
implemented in the MDRANGE code was found to be crucial for
treating accurately the very high acceleration of the antiproton
along trajectories bound in towards the nucleus [26]. Energy-
conservation tests showed that constants of Et = 0.5 eV
and kt = 0.01 Å in the algorithm to select the time step

t [26],


tnew = min

(
kt

vmax
,

Et

Fmaxvmax
,1.1
told

)
, (8)

yielded a good description of the trajectories down to interpar-
ticle distances of 3 fm. Here vmax is the maximum velocity in
the system and Fmax is the maximum force that affects the ion
from any other atom. If the antiproton came closer than 3 fm
to the nucleus, a nuclear reaction was assumed to occur. The
simulation was then stopped and the initial energy was added
to the nuclear reaction stopping power Snr rather than Sn. The
analysis was carried out for initial antiproton energies (E0) in
the range of [2 eV, 1 MeV].

In addition to the tests of the accuracy of the calculations
with the time step, we also tested the numerical reliability
of the employed method by performing calculations for
proton interactions described by the normal ZBL universal
interatomic potential [7] using exactly the same MDRANGE

approach. In the proton simulations, the method should give
the same stopping power as obtained with the analytical ZBL
stopping model.

B. Extraction of nuclear stopping

The antiproton and proton nuclear stopping power were ob-
tained from the energy loss function T (E0,b) in the MDRANGE

scattering calculations. The stopping power evaluated using
Eq. (7) by numerical integration over b is shown in Fig. 8(a)
for Si. The nuclear stopping power obtained for the proton
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FIG. 14. Off-normal-emission (exit) angle distributions of
100 keV antiprotons incoming on a-Si foils. For the 1550 nm foil, the
analysis was also carried out separately for antiprotons with a final
energy of 0–2.5 keV, 2.5–5 keV, and any energy above 5 keV. The
angular statistics is collected in bins of ±5◦ around the angle shown
by the marker.

agrees very well with that calculated by using the ZBL model,
confirming that the numerical accuracy of the MDRANGE

approach is good. The nuclear reaction stopping power is of
the order of 10−5 keV/nm, which is too small to be visible in
the figures.

The results of the nuclear stopping power calculations in
Fig. 8 show that the nuclear stopping power of antiprotons is
in all cases clearly higher than that of protons at low energies
(for clarity in the figure, proton data are shown only for Si).
To analyze the reason for this, we compare the scattering of
antiprotons with protons for identical initial energy E0 and
initial impact parameter b. Figure 7 shows as an example case
the scattering for the energy of 1 keV. The results show that, for
the same impact parameter b, the antiprotons scatter through
larger angles than the proton and lose more energy. The figure
also shows that a pure Coulomb potential between charges
of −1e and 14e gives very different results, highlighting the
importance of obtaining a screened interparticle potential for
antiproton-atom interactions.

The results in Fig. 8 also show a small bump around 10 eV
in the antiproton Sn in some elements. Analysis of individual
ion trajectories shows that, for these very low energies, for
impact parameters around 0.5 Å, the antiproton has complex
trajectories, e.g., doing a full circle around the atom. This leads
to a higher energy transfer than the simpler hyperbolic paths
observed at higher energies.

In Fig. 8(b), we also compare the antiproton nuclear stop-
ping with their electronic stopping power for those elements
for which it is available from experimental data in Ref. [18] (Al
and Si). The results show that, at low energies, the antiproton
nuclear stopping power for both Al and Si is almost an order
of magnitude larger than the electronic stopping power. This is
in sharp contrast with the case of protons, for which it is well
established that the electronic stopping power dominates over
the nuclear stopping power at all energies and in all materials
[7,61]. This result implies that, when increasingly low energy
antiprotons are used, e.g., in antihydrogen experiments such
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FIG. 15. Results for 100 keV particle transmission through
Si foils. (a) Comparison of transmission energy distribution for
amorphous (a-Si) and crystalline (c-Si) silicon. For the c-Si, the
simulations were done assuming the incoming beam is perfectly
aligned with either a 〈100〉 or 〈111〉 crystal direction. (b) Fraction
of antiprotons that can be captured (have an energy of 0–5 keV) as a
function of film thickness for the same cases as in panel (a).

as described in Refs. [2–5], it becomes crucial to include the
antiproton nuclear stopping in the modeling of the process.

The results obtained with the two different screening fit
functions for Si, φexp and φep [Fig. 8(a)] show a small variation
at the lowest energies but converge to be practically identical
at the higher ones. A similar comparison for H and Ne (not
shown) also shows a small difference in stopping powers
below the maximum—smaller than the difference in Si—and
essentially identical results around and above the stopping
maximum. Since the fits are of comparable quality, it is not
a priori clear which of the versions is more accurate. This
indicates that, in case very high accuracy nuclear stopping
powers are needed for the very low (�100 eV) energies, the
quantum-chemical calculations would need to be expanded
with additional data to enable higher-accuracy fits. However,
we emphasize that the Sn[φexp]–Sn[φep] difference is much
smaller (of the order of 10% at most) than the difference
between the antiproton and proton stopping powers (of the
order of a factor of five), or the difference between the
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antiproton nuclear and electronic stopping powers. Thus,
the small uncertainty coming from the choice of the fitting
functions does not affect the conclusions of this work.

Figure 9 presents the nuclear stopping powers Sn[φexp]
calculated for all the elements considered in this study,
normalized with the densities. See also the Supplemental
Material [62] for the information package that contains the
original data used in the plot, as well as a plot of all stopping
powers without density normalization. For the materials that
are gaseous at room temperature, the same solid phase densities
as those used in the ZBL model (SRIM) nuclear stopping power
calculations were used. The density values are in all cases given
in the figure legend. The data show that, as expected from
basic stopping theory, the maximum in energy of the stopping
increases with increasing target atomic number Z2. On the
other hand, the normalization with atomic density shows that
the density-scaled stopping power decreases with increasing
Z2. This is because the energy transfer in binary collisions is
the most efficient when the masses of the projectile and target
are the same.

V. MOLECULAR DYNAMICS OF ANTIPROTON
TRANSMISSION IN SILICON

The effect of the unexpectedly large antiproton stopping
power on particle movement in solids and foil transmission
experiments was tested by using the MDRANGE method [26] to
simulate proton and antiproton transmission through Si foils
with completely amorphous atomic structure [28]. The proton
was in these simulation modelled with the ZBL repulsive
interatomic potential [7], to be consistent with BCA codes. The
ions were in all cases shot perpendicularly to the foil surface.
The electronic stopping power was included in the simulations
as a frictional force [26]. Unless otherwise mentioned, the
electronic stopping was implemented including the Bohr
model of the straggling of electronic stopping [6,63,64] in the
simulations. The straggling of electronic stopping can have
a significant effect on the range and energy distributions of
low-energy transmitted protons [64,65]. The results in Figs. 10
and 11 show that in the current case it does have a weak, but sta-
tistically significant broadening effect on the range profiles and
energy distributions of transmitted protons and antiprotons.
For instance, the straggling (standard deviation) of the range
distribution of antiprotons (Fig. 10) is 1781 ± 7 Å with, and
1715 ± 12 Å without, the straggling of the electronic stopping.

A. Comparison of proton and antiproton penetration depths

The large difference in the electronic stopping power and
interparticle potentials between antiprotons and protons will
naturally lead to a large difference in particle penetration
depths. This difference is illustrated in Fig. 10, which compares
the depth distribution of 100 keV antiprotons or protons
implanted in bulk (infinitely thick) amorphous Si. Since the
electronic stopping of antiprotons is weaker than that of pro-
tons (cf. Fig. 6), the overall penetration depth of antiprotons is
much deeper. For the use of energy-degrading foils, this means
that, to slow down antiprotons to low energies, one needs to
use clearly thicker foils than one would need for protons.

Since it would clearly be inappropriate to use proton elec-
tronic stopping for antiprotons, in the remainder of the paper
we focus on simulations with the experimentally determined
antiproton stopping and examine how large effects the choice
of the interparticle potential (nuclear stopping power) can have
on the results.

B. Scattering in very thin foils

To illustrate the scattering effects, we first consider the
case of antiprotons and protons passing a very thin 2 nm Si
foil. The resulting trajectories are illustrated in Fig. 12. At
low energies, the energy loss in the foil is much larger for
antiprotons than for protons. Simulations were also performed
for a hypothetical particle with the nuclear stopping power
of a proton Sn(p) and the electronic stopping power of an
antiproton Se(p̄). Comparison of the antiproton results with
those for the hypothetical particle shows that the nature of the
interparticle potential leads to the most significant differences
between antiproton and proton behavior in the Si foil.

Inspection of individual trajectories showed that, in foils,
where energy loss can occur to several material atoms at the
same time, the antiproton can be trapped in the potential well
approaching the nucleus along helical trajectories, which is a
possibility when the potential has a shape differing from that
of a pure 1/r potential [56]. The antiproton trajectory can
even form a stationary bound orbit [66]. This was observed
to occur in a few cases and was a major practical problem
in the MD simulations, since a stationary antiproton-atom
pair essentially takes the simulation into an infinite loop
(the classical MD simulations do not include the possibility
of quantum-mechanical tunneling). To circumvent this, we
stopped the simulation of a single antiproton case if it had
been run for more than 100 million steps. Such cases were
calculated into the nuclear reaction stopping power.

The larger scattering angle is demonstrated by the trajecto-
ries of the 10 keV particles in Fig. 12(b), where the antiprotons
are seen to be much more scattered than the protons. The large
scattering angle also increases the fraction of backscattered
antiprotons. The total energy loss of the particles was 66 ± 1
eV for antiprotons and 43 ± 1 eV for protons, i.e., the larger
scattering leads to significant difference in the energy loss.

C. Antiproton transmission through degrading foils

As a case that is directly relevant to near-future antihydro-
gen experiments, we used MDRANGE to simulate the motion
of 100 keV antiprotons that will be produced in the extra
low energy antiproton (ELENA) ring at CERN and degraded
by foils to energies of a few keV. At these low energies,
the antiprotons can be captured in a Penning–Ioffe trap, the
immediate step prior to antihydrogen production. We used
the simulations to determine the optimal film thickness with
respect to maximum yield of transmitted protons in this energy
range. We use here energies of 5 and 10 keV as examples of
the limit for which transmitted antiprotons can be trapped.
When the energy limit under experimental condition does not
follow a sharp step function or it also depends on the emission
direction, the analysis can be refined to account for that. The
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TABLE IV. TURBOMOLE data for the interaction energy E

between an antiproton and the elements H, Be, C.

r (bohr) E(p̄-H) (Ha) E(p̄-Be) (Ha) E(p̄-C) (Ha)

0.001 −999.86388025 −4007.46613414 −6024.58532223
0.002 −499.86388057 −2007.46622519 −3024.58577891
0.005 −199.86388282 −807.46686130 −1224.58895292
0.01 −99.86389086 −407.46911751 −624.60002569
0.02 −49.86392298 −207.47797308 −324.64202532
0.05 −19.86414734 −87.53763179 −144.89993739
0.1 −9.86494199 −47.73590160 −85.63446577
0.2 −4.86803206 −28.35847719 −57.50371504
0.5 −1.88737999 −18.31276882 −43.30106355
0.7 −1.33529171 −16.87538172 −41.05951682
1 −0.94229567 −15.94083121 −39.52010726
1.5 −0.67715769 −15.29744199 −38.50124983
2 −0.57790734 −15.01175047 −38.11784529
3 −0.51737889 −14.77413712 −37.87502056
4 −0.50380210 −14.69012355 −37.81312445
5 −0.50088762 −14.65683339 −37.79270715
6 −0.50015260 −14.64244777 −37.78448590
7 −0.49994277 −14.63568452 −37.78058936
8.2 −0.49986862 −14.63178271 −37.77822136
9 −0.49984925 −14.63038069 −37.77731067
10 −0.49983566 −14.62930656 −37.77656708
11 – −14.62865711 −37.77608346
12 – −14.62824654 −37.77575543
13 – −14.62797668 −37.77552271
14 – −14.62779327 −37.77535546
15 −0.49981493 −14.62766504 −37.77523177
20 −0.49981145 −14.62738895 −37.77492450
25 −0.49981049 −14.62731345 −37.77482171
30 −0.49981015 −14.62728633 −37.77478161
40 −0.49980993 −14.62726908 −37.77475139
50 −0.49980987 −14.62726436 −37.77474077

qualitative conclusions of this work are not expected to depend
on minor changes in the energy limit.

To assess whether the nuclear stopping power of antiprotons
matters for the experimental situation, we considered three
cases: (i) the p̄-Si interparticle potential determined in the
current work, i.e., having the antiproton nuclear stopping
power Sn(p̄); (ii) the hypothetical case of a particle with
the electronic stopping power of an antiproton Se(p̄) and
the proton-Si interatomic potential, i.e., the nuclear stopping
power of a proton Sn(p); and (iii) the case of simulating
antiprotons with no interparticle potential, i.e., zero nuclear
stopping. For all cases, we simulated the antiproton passage
until it was either captured by an atom in the foil, or
transmitted through it. For the transmitted particles, statistics
of their kinetic energy after passage through the foil Etrans was
collected.

The results on the energy distribution of transmitted
particles is shown in Fig. 11(a) for one thickness (1550 nm)
at which the production yield is appreciable with all three
models. The simulations show that the fraction of transmitted
antiprotons is affected by the choice of the nuclear stopping
model. The two different screening functions φexp and φep

calculated for true antiprotons give identical results within

TABLE V. TURBOMOLE data for the interaction energy E between
an antiproton and the elements N, O, Ne.

r (bohr) E(p̄-N) (Ha) E(p̄-O) (Ha) E(p̄-Ne) (Ha)

0.001 −7037.80596730 −8054.46939407 −10099.71666803
0.002 −3537.80675416 −4054.47066180 −5099.71941393
0.005 −1437.81220664 −1654.47941580 −2099.73823188
0.01 −737.83109011 −854.50949545 −1099.80199207
0.02 −387.90206584 −454.62118582 −600.03356615
0.05 −178.32869248 −215.27094353 −301.30038929
0.1 −109.48248460 −136.93925737 −204.19589753
0.2 −77.11640930 −100.39175693 −159.20619731
0.5 −60.63727831 −81.57714335 −135.67813384
0.7 −57.95546933 −78.51048983 −132.03300139
1 −56.13656299 −76.52515384 −129.97624829
1.5 −55.03714368 −75.45113800 −129.10099027
2 −54.71409580 −75.15956965 −128.91167942
3 −54.55808100 −75.01812619 −128.83676365
4 −54.52764841 −74.98967936 −128.82554703
5 −54.51966461 −74.98156755 −128.82337783
6 −54.51705977 −74.97854659 −128.82281826
7 −54.51602593 −74.97716844 −128.82258502
8.2 −54.51547781 −74.97634436 −128.82245555
9 −54.51528876 −74.97603089 −128.82241007
10 −54.51514568 −74.97577618 −128.82237638
11 −54.51505951 −74.97561125 −128.82235647
12 −54.51500516 −74.97549987 −128.82234396
13 −54.51496950 −74.97542200 −128.82233575
14 −54.51494534 −74.97536597 −128.82233020
15 −54.51492845 −74.97532457 −128.82232633
20 −54.51489222 −74.97522412 −128.82231801
25 −54.51488236 −74.97519009 −128.82231575
30 −54.51487882 −74.97517551 −128.82231493
40 −54.51487658 −74.97516425 −128.82231441
50 −54.51487598 −74.97516034 −128.82231427

the statistical uncertainty. However, the other nuclear stopping
models (ii) and (iii) give clearly different results. For both
true antiproton models (i), the useful transmission yield is
0.195 ± 0.006, while for cases (ii) and (iii) it is 0.35 ± 0.01
and 0.54 ± 0.02, respectively, for the upper limit of 5 keV.

Figure 11(b) shows that the optimal film thickness for
transmission up to 5 keV is 1500 nm. For an upper limit
of 10 keV, the optimal thickness is found to be 1400 nm
[Fig. 11(c)], giving useful transmission yields by each model
of (i) 0.65 ± 0.02, (ii) 0.72 ± 0.02, and (iii) 0.69 ± 0.01.

The lower transmission yields of antiprotons are due to their
larger scattering discussed above. The results in Fig. 11(b)
show that there are marked differences for all relevant film
thicknesses.

The MD range calculation approach developed here will
thus enable calculations for systematically predicting the
antiproton transmission yield to low (keV) energies, and thus
optimizing the film thickness and material.

D. Lateral range and emission-angle distributions

As evident from Fig. 12, the antiprotons do not travel in
straight paths through the material. The lateral straggling
and distribution of angles after they are emitted may be
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TABLE VI. TURBOMOLE data for the interaction energy between
an antiproton and the elements Al, Si, Ti.

r (bohr) E(p̄-Al) (Ha) E(p̄-Si) (Ha) E(p̄-Ti) (Ha)

0.001 −13199.55540746 −14241.51498578 −22758.64912739
0.002 −6699.56274368 −7241.52461182 −11758.69069754
0.005 −2799.61068002 −3041.58986568 −5158.96242068
0.01 −1499.76974041 −1641.80482985 −2959.81539910
0.02 −850.32613711 −942.54363685 −1862.49581307
0.05 −463.07186210 −526.01633185 −1212.57671270
0.1 −338.27974278 −392.12359500 −1005.27796389
0.2 −280.41715072 −329.94379800 −908.80970010
0.5 −250.26601405 −297.82560319 −862.85036440
0.7 −246.25778876 −293.70831607 −856.34412159
1 −244.17062903 −291.49267827 −852.22813596
1.5 −243.02995018 −290.17974156 −850.00353888
2 −242.56659976 −289.64118952 −849.33718120
3 −242.19483264 −289.23026003 −848.91150469
4 −242.07997705 −289.10171466 −848.77324658
5 −242.04310317 −289.05394343 −848.71495477
6 −242.03036774 −289.03342515 −848.68726313
7 −242.02565776 −289.02351235 −848.67347507
8.2 −242.02389116 −289.01821135 −848.66546754
9 −242.02371617 −289.01513884 −848.66266491
10 −242.02393704 −289.01324355 −848.66059280
11 −242.02430806 −289.01201385 −848.65939501
12 −242.02466622 −289.01118253 −848.65867110
13 −242.02496650 −289.01060068 −848.65821380
14 −242.02520984 −289.01018138 −848.65791244
15 −242.02540665 −289.00987234 −848.65770621
20 −242.02596790 −289.00912282 −848.65727569
25 −242.02619872 −289.00886897 −848.65716223
30 −242.02630876 −289.00876054 −848.65712226
40 −242.02640147 −289.00867698 −848.65709717
50 −242.02643621 −289.00864809 −848.65709039

of importance for the trapping of the antiprotons in the
antihydrogen production apparatus.

To get insight on these effects, we analyzed the lateral
(perpendicularly to the incoming beam direction) distribution
of the antiprotons as well as the direction in which they move
after emission. This analysis was done for the physically best
motivated model of antiprotons that considers Se straggling.

Figure 13 shows the lateral range R⊥ for 2000-nm- and
1550-nm-thick foils. In the 2000 nm case, all antiprotons stop
in the foil (cf. Fig. 10), and the analysis was done on the final
positions of the antiprotons. The lateral ranges R⊥ (having
a mean value of about 350 nm) are clearly smaller than the
mean range of 1400 nm. This also explains why the chord
range [6] distribution in Fig. 10 differs only slightly from the
penetration-depth distribution.

For the antiprotons traveling through 1550 nm foils, the
analysis was done only for the final x and y positions of the
antiprotons when they have exited the foil. These distributions
are naturally narrower than those for the 2000 nm foil.
Practically all the transmitted antiprotons exit the foil laterally
within 500 nm from the initial impact point. Compared to the
thickness of the foil, this shows the lateral spreading is within
1
3 of the foil thickness.

We also analyzed the distribution of outcoming emission
directions of antiprotons that transmitted through the foils. The
results in Fig. 14 show that, for the foil thickness of 1550 nm,
the distribution of emission angles is fairly wide, and that it
does not depend strongly on the energy after transmission
Etrans. The higher-energy transmitted antiprotons have on
average lower emission angles, since they have scattered less.
For the same reason, the angular distribution of antiprotons
exiting from a thinner foil is also peaked at lower angles.

E. Channeling effects

We also consider whether ion-channeling [28,67] effects
could enhance the transmission of antiprotons in the useful
energy range. Antiproton channeling has previously been
studied at higher energies [20]. Here we consider the case
of 100 keV antiproton transmission for slowing down to
the 0–5 keV energy range. We assume perfect alignment
of the antiproton beam with either a 〈100〉 or 〈110〉 crystal
direction in crystalline Si. These simulations were run for the
foil thickness of 1550 nm similarly as for a-Si. The results
in Fig. 15 show that the fraction of ions transmitted in the
energy range 0–5 keV could indeed be somewhat enhanced by
channeling. For the thickness of 1550 nm, the useful (0–5 keV)
transmission yield is 0.195 ± 0.006 for amorphous Si, while
for a 〈100〉 crystal direction it is 0.22 ± 0.01 and for a 〈110〉
direction it is 0.21 ± 0.01. However, the enhancement is small
for all film thicknesses, and it is doubtful whether the minor
improvement would justify the experimental efforts needed to
use single-crystalline foils and orient them accurately in the
beam direction.

F. Comparison with binary collision approximation

Finally, we analyze to what accuracy the computationally
efficient BCA simulations can be used to simulate antiproton
trajectories in thin films. For this purpose, we used the BCA
code CASWIN that has been tailored to read in the same
electronic stopping files as MDRANGE [25,68]. The good
agreement between the MD and BCA results for protons
in Fig. 10 confirms that the two codes are consistent with
each other when the electronic stopping and interparticle
potential are identical. Figure 12(b) shows the results of
BCA simulations for case (ii). The actual antiproton-Si case
(i) cannot be handled because BCA does not work for
purely attractive potentials. The resulting good agreement
with the MDRANGE case (ii) shows that conventional BCA
simulations can be used to handle the electronic stopping
power of antiprotons, but not the nuclear part. The minor
MD-BCA difference for case (ii) appears because the strag-
gling of electronic stopping is not considered in the BCA
code.

VI. CONCLUSIONS

In conclusion, we have used ab initio quantum-chemistry
methods to calculate the antiproton-atom interaction potentials
for a number of elements, and molecular dynamics simulations
to determine the nuclear stopping power of antiprotons. The
calculations show that the antiproton-atom interaction is purely
attractive, which leads to larger scattering and energy transfer
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than for a proton under the same collision conditions. This
renders the nuclear stopping of antiprotons much stronger than
that of protons, and also makes the antiproton nuclear stopping
power stronger than the electronic one at low energies. The
nuclear stopping power contributes significantly to the total
deceleration of antiprotons in thin foils. Hence, the nuclear
stopping power has to be considered when degrading foils are
used for slowing down antiprotons to keV or lower energies.

ACKNOWLEDGMENTS

We thank Professor Peter Johansson for interesting dis-
cussions on the possible relations between antiproton and
gravitational trajectories. This work was supported by The
Academy of Finland through project 275845 and by the

Magnus Ehrnrooth Foundation. Grants of computer time
from CSC—the Finnish IT Center for Science as well as
the Finnish Grid and Cloud Infrastructure (persistent iden-
tifier urn:nbn:fi:research-infras-2016072533) are gratefully
acknowledged.

APPENDIX: ORIGINAL DATA

The original TURBOMOLE data for the antiproton-atom
interaction energies is given in Tables IV—VI, as a function
of the interparticle separation r . The lengths are given in units
of bohrs and energies in units of hartrees (Ha). The large
number of decimals is needed to avoid roundoff errors when
the energy at infinity is subtracted out from the values to give
an interatomic potential that ends at zero.
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